
 

 

 

 

 

Edinburgh Research Explorer 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enhanced Maintenance and Explanation of Expert Systems
Through Explicit Models of Their Development

Citation for published version:
Neches, R, Swartout, WR & Moore, JD 1985, 'Enhanced Maintenance and Explanation of Expert Systems
Through Explicit Models of Their Development', IEEE Transactions on Software Engineering, vol. SE-11,
no. 11, pp. 1337-1351. https://doi.org/10.1109/TSE.1985.231882

Digital Object Identifier (DOI):
10.1109/TSE.1985.231882

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
IEEE Transactions on Software Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 09. Aug. 2022

https://doi.org/10.1109/TSE.1985.231882
https://doi.org/10.1109/TSE.1985.231882
https://www.research.ed.ac.uk/en/publications/2b7ebd38-5dde-4c98-9192-24eb56c9bc73


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-1l, NO. 11, NOVEMBER 1985

Enhanced Maintenance and Explanation of

Expert Systems Through Explicit Models of

Their Development
ROBERT NECHES, WILLIAM R. SWARTOUT, AND JOHANNA D. MOORE

Abstract-Principled development techniques could greatly enhance
the understandability of expert systems for both users and system de-
velopers. Current systems have limited explanatory capabilities and
present maintenance problems because of a failure to explicitly repre-
sent the knowledge and reasoning that went into their design. This pa-
per describes a paradigm for constructing expert systems which at-
tempts to identify that tacit knowledge, provide means for capturing it
in the knowledge bases of expert systems, and, apply it towards more
perspicuous machine-generated explanations and more consistent and
maintainable system organization.

Index Terms-Expert systems, explanation, natural language gener-
ation, software development, software maintenance.

I. INTRODUCTION

SWARTOUT'S XPLAIN system [1] demonstrated the
feasibility of producing expert systems with enhanced

capabilities for generating explanations and justifications
of their behavior. XPLAIN was based on two key princi-
ples: explicitly distinguishing different forms of domain
knowledge present in the knowledge base, and formal re-
cording of the system development process. We will argue
that these principles are vital both for explaining and for
maintaining expert systems. This paper will propose a new
paradigm for building expert systems, and consider the
paradigm's implications for providing automated assis-
tance in two tasks commonly encountered in the course of
developing and using expert systems:

* generating explanations to clarify or justify the be-
havior and conclusions of the system;

* extending or modifying the system's knowledge base
or capabilities.

The paradigm we are proposing, which we call the Ex-
plainable Expert System's approach, calls for shifting the
emphasis of knowledge engineers' efforts from procedural
encoding to declarative knowledge representation. In this
approach, development and use take place in an integrated
support environment. Knowledge engineers and domain
experts collaborate to produce a rich semantic model of
the declarative and procedural knowledge of the domain.
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Their efforts produce a knowledge base which, augmented
by advice about implementation considerations, is used to
guide an automatic program writer through generation of
the actual code for the expert system. The program writer
maintains a record of its choice points and decisions, which
constitutes the system's development history. The code is
executed by an interpreter that maintains a record of the
system's execution history.

All together, the knowledge base, the development his-
tory, the code, and the execution history, provide the basis
for question-answering routines that allow developers and
users to obtain information about the origins and ratio-
nales behind the system's code, as well as about the code
itself. The availability of this extra information provides
domain experts with more power to critique the system,
to identify deficiencies, and to find those points in the sys-
tem conception or implementation responsible for a defi-
ciency. The availability of this extra information also pro-
vides end-users greater power to understand the abilities
and limitations of the system. Thus, although the EES par-
adigm does increase initial development costs, we expect
that those costs will be repaid in greater acceptance by
users, easier maintenance, and a greater degree of reus-
ability that will smooth the development of related sys-
tems later on. To support this claim, let us briefly consider
what the availability of extra knowledge means for the
tasks mentioned earlier: explanation and maintenance.

A. Explanation
Consider the following dialog, which occurred during an

experiment in which we had human experts play the role
of an expert system that would give Interlisp program-
mers advice and assistance in improving the style of Ze-
talisp programs. In this dialog, the typed messages
exchanged between the expert and the user are in bold-
face, and their verbal remarks are in italics:1

System: Your file begins with a number of DEFVAR's.
Some of these can be changed to DEFCONST.
Would you like the system to do this?

'The discussion concerns constructs for declaring initial values for global
program variables. Interlisp has only one such construct, "DEFVAR." Ze-
talisp has two, "DEFVAR" and "DEFCONST"; the distinction between
them hinges on whether or not the variable's value is allowed to change
from its initial value during program execution. The expert has inspected
the user's program and found a number of places where he would suggest
switching to the latter construct, but the user does not fully understand and
trust the advice.

0098-5589/85/1100-1337$01.00 © 1985 IEEE
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User: DEFCONST? That advice is ...
Many of the variables I use are used freely.
Should these really be constants?

System: You should use constants if you do not
intend to change the value.

User: Hunh? What's that? ... I don't know if
it can do that for me. See, now, it said some of
these may be changed to DEFCONST, and maybe
he's-the answer to this question is he already
knows which ones should be constants. Or,
maybe it's not like Interlisp in that he can reset
constants or something like that.

The final verbal remarks illustrate a common phenom-
enon: the user is not sure what the system's capabilities
really are, and is busily spinning off myriad hypotheses.
Notable in this brief interaction is the number of questions
that the user would benefit from being able to ask the sys-
tem.

* How general is this advice?
* What is its basis?
* JWhy is it desirable?
* What does "some of these may be changed" really

mean.?
* How does the construct being suggested differ from

the one used in the program?
* Does the system know which declarations should be

changed?
* If not, does it have a way of deciding?
* What method would it use?

Answering such questions depends on knowledge above
and beyond that required to generate the initial recom-
mendations-in particular, knowledge about the structure
and capabilities of the system, and about the concerns in
the knowledge domain that motivated their design. The
answers are not merely of tutorial value to the user. They
indicate the range of the system's capabilities and the re-
liability of its conclusions. They affect the user's trust in
the system, and help in deciding how best to make use of
the system's capabilities. If users can only obtain these
answers by consulting human domain experts or knowl-
edge engineers, then the expert system has failed in a fun-
damental goal: reducing demands on scarce human re-
sources by providing a repository for knowledge and a
vehicle for disseminating it.
As we will elaborate in Section IV, the availability of

information from a domain knowledge base, a develop-
ment history, and an execution trace yields the opportunity
to provide richer explanations of the system than are avail
able in conventional approaches. Conventional expert sys-
tems, lacking these added knowledge sources, are re-
stricted to explanations composed from canned text or by
paraphrasing the system code. These suffer from a number
of flaws. Canned text cannot anticipate, or adapt to, all
possible needs. Since its maintenance is a separate and
additional task from code maintenance, the text can
quickly become invalid with respect to the true state of
the system code.

On the other hand, code paraphrasing is limited by the
information that is represented in the code-and even more
limited by the information that is not represented. Expla-
nation by code paraphrasing can describe actions in fairly
low-level terms but it cannot, for example, describe high-
level principles motivating those actions or explain why
those actions instantiate some high-level principle. For ex-
ample, in MYCIN, the general principle that the type of
an infection may be determined using a weight-of-evi-
dence scheme is encoded in several dozen rules, specific
to particular types of infections [2]. The general heuristic
itself is never explicitly represented, and hence is not
available for explanation.
More sophisticated explanations require that the design

knowledge underlying an expert system be explicitly rep-
resented, which is one of the roles served by a richer do-
main knowledge base and a development history. Our ap-
proach to explanation depends on a taxonomy of question
types, with explanation strategies associated with each
question type. An explanation strategy tells the system
how to inspect the knowledge base in order to obtain in-
formation relevant to answering a particular kind of ques-
tion.

B. Maintenance
As we will elaborate in Section III-C, the use of an au-

tomatic program writer to derive code from more abstract
specifications presents an opportunity to simplify the
maintenance process. The need to modify a system's code
generally arises for one of three reasons:

* there is an invalid assumption or principle upon which
the code was based;

* an assumption or principle was valid, but the code
instantiated it incorrectly or incompletely;

* additional concerns, such as ease of implementation
or efficiency considerations, make an alternative method
of achieving some goal preferable.

In all of these cases, the primary tasks of a maintainer
are to diagnose the cause of dissatisfaction with the cur-
rent system, and to locate and modify all of the relevant
code. In conventional systems, since the linkage between
code and higher-level principles is not explicitly repre-
sented, there can be difficulties with both tasks. When the
basis for some segment of code is either invalid or inap-
propriately realized, it may be very hard to reconstruct
from the code alone what that basis should have been.
When code is rewritten or superseded, it may be very dif-
ficult to determine what other code is affected. Consider
the same example mentioned above of MYCIN's weight-
of-evidence scheme for determining infection types. If one
wished to change this principle, dozens of rules would
have to be located and modified. In the absence of any
kind of pointers to those rules, it is easy to imagine some
of those rules being missed, requiring multiple iterations
of modification and testing to accomplish the modifica-
tion.

Similar issues arise when the goal is to extend a system.
Say one wanted to add knowledge about a new infection
type to MYCIN. Obviously, the many rules pertaining to
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existing infection types could be used as examples to in-
dicate the form of the new rules that would have to be
added. Again, though, in the absence of pointers into the
code, one has no easy way of making sure that all the
relevant rules are located. Thus, one has no assistance in
ensuring that all the necessary new rules are added, much
less that they are correctly stated.
Our approach is to provide support for the diagnosis

phase of maintenance through the extended explanation
capabilities, and for the code modification phase through
the automatic program writer. As Sections Ill-A and III-

C will show, the approach calls for the system builders to
provide a knowledge base containing descriptive knowl-
edge of how the domain works, and abstract problem-solv-
ing methods that apply to classes of problems. A classifier
[3] identifies all instances of domain concepts for which a

problem-solving method must be instantiated, and the au-

tomatic program writer generates code by integrating de-
scriptive domain knowledge and problem-solving meth-
ods. Thus, for example, MYCIN's weight-of-evidence
scheme for infection types would be handled by providing
a general principle for performing weight-of-evidence
evaluations together with the empirical associations be-
tween findings and infection types and (possibly) a method
for integrating the results of individual evaluations. The
program writer would use this information to generate the
appropriate specific rules for each particular infection
type. Changing the principle or adding a new infection
type both would be a matter of changing a small number
of assertions in the knowledge base and then rerunning
the program writer.

II. XPLAIN: THE PRECURSOR OF THE EES PARADIGM

The XPLAIN system recognized two forms of domain
knowledge (domain descriptive information versus prob-
lem solving methods) and one kind of development (re-
finement by a hierarchical planner). The domain descrip-
tive knowledge told XPLAIN how the domain worked. In
a medical system, the domain descriptive knowledge
would typically include knowledge of various diseases and
physiological states and causal relations among them. The
problem solving knowledge told XPLAIN how to employ
its domain descriptive knowledge to achieve particular
goals such as disease diagnosis or therapy administration.
For example, when XPLAIN was used to generate a dig-
italis drug dosage advisor, its domain descriptive knowl-
edge (or "domain model ") included assertions such as the
following.

* High serum calcium levels can cause increased au-

tomaticity.
* Low serum potassium levels can cause increased au-

tomaticity.
* High digitalis doses can cause increased automatic-

ity.
* Increased automaticity can cause ventricular fibril-

lation.

* Ventricular fibrillation is a highly dangerous condi-
tion.

This descriptive knowledge was augmented by problem

solving methods (or "domain principles"2). Domain prin-
ciples had three major parts: a goal, a prototype method,
and a domain rationale. The goal of a domain principle
stated what its prototype method could accomplish. The
prototype method was expressed in lower-level, more spe-
cific terms. When the automatic programmer tried to re-
fine a goal it examined the domain principles to find one
whose goal most closely matched the goal to be refined.
As an example, the domain principle for compensating for
drug sensitivities had a method that stated:

check for drug sensitivites, and if they exist reduce the
drug dosage.

Before this method could be further refined, it was nec-
essary to know what the particular sensitivites were for
this domain. The domain rationale associated with the
principle provided a definition of what the term sensitivity
meant, e.g., a factor that can cause something dangerous
that also can be caused by administering the drug.
By matching this definition against the descriptive do-

main knowledge, the system could find out what were the
particular sensitivities for the domain of digitalis therapy.
The domain rationale is the major feature that distin-
guished the XPLAIN approach from other refinement-
based systems [4]. Its purpose was to integrate knowledge
from the descriptive domain model into the refinement
process by defining terms at one level of refinement using
terms at the next level down.
To elaborate, refinement-based systems move through

different levels of language: they refine a high-level de-
scription of a goal or problem into a low-level one. Yet,
the steps between levels of language are often quite im-
plicit. In particular, the correspondence between terms
used at one level of language and their realization at the
next level down is usually implicit. The domain rationale
allowed us to indicate that correspondence.
Applying this principle (and, of course, others) to the

descriptive knowledge led XPLAIN to generate proce-
dures for adjusting dosage recommendations to account
for serum calcium and serum potassium levels. As it gen-
erated that implementation from the two forms of knowl-
edge, XPLAIN recorded the steps it had taken.

Recording the derivation of the actual low-level proce-
dures from the domain principles enabled XPLAIN-gen-
erated systems to give more principled answers to "why"
questions. XPLAIN's digitalis drug dosage advisor, for
example, was capable of explaining that it was asking about
the patient's serum calcium level as part of adjusting the
recommended dosage, and that this was important be-
cause too high a dosage ofdigitalis could interact with the
effects of serum calcium level to produce the dangerous
condition ofventricularfibrillation. That is, the XPLAIN-
generated system could justify its request for a patient pa-
rameter both by paraphrasing the program code, and by
constructing a justification for the parameter's signifi-
cance based on an abstract model of the domain. This
should be contrasted with conventional expert systems,

2The term "domain principles" is a bit misleading. While some of
the domain principles were quite domain specific, others (such as principles
that set up backward chaining control for assessing symptoms) were largely
domain independent.
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where only the knowledge needed to perform the task is
present. A digitalis advisor built with only performance
knowledge would know how to check serum calcium and
reduce the digitalis dosage, but would not know-and
therefore could not explain-why it was doing so.

XPLAIN's explanation is clearly richer.
The separation of knowledge in XPLAIN also seemed

to hold promise for easing the process of extending the
system. Knowledge was modularized into 1) situations
where patient factors could have undesirable interactions
with the digitalis dosage; and 2) problem solving knowl-
edge governing checking for such factors and adjusting
the dosage accordingly. Since XPLAIN took responsibil-
ity for applying the problem solving knowledge to what-
ever domain descriptive knowledge was given to it, pro-

gramming the system to handle a new situation and
generate suitable explanations for its new behaviors would
require making only a few assertions to describe the added
factors, rather than writing large amounts of new code
that bore great similarities to existing code. Unfortu-
nately, this possibility was not explored in any great depth
in the XPLAIN work.

A. Limitations ofXPLAIN
Although XPLAIN demonstrated some of the promise

of this paradigm for expert system development, it suf-
fered from several important limitations in the represen-

tation of terminology, in the power of the program writer,
and in explanation production.

Although a central feature of XPLAIN was the ability
to use the domain rationale to indicate the correspondences
between terms at different levels of refinement, in fact,
terminology was represented poorly in XPLAIN. No ex-

plicit definitions were given. The particular term that a

domain rationale defined really depended on what context
the program writer interpreted it in. An additional prob-
lem was that because XPLAIN's (implicit) terminological
definitions were provided by the domain rationale part of
domain principles, that meant that the definitions of terms
were associated with particular pieces of problem solving
knowledge. That does not seem to be appropriate. In-
stead, terminological knowledge should be shared across

individual domain principles.
XPLAIN's program writer was limited to goal/subgoal

refinement. If no principle could be found to refine a goal,
the system could go no further. This limitation reduced
the reusability of the system's problem solving knowledge
in new situations. As described below, the program writer
in EES will be capable of reformulating a goal when a

match cannot be found. This ability to reformulate goals
will also result in a more explicit development history
which we expect will be useful in producing better expla-
nations.
XPLAIN's explanation generator could answer only a

few types of questions. Answers were generated by rela-
tively fixed procedures that were coded into XPLAIN it-
self. In our current work, we are viewing explanation pro-
duction as a planning task, and expressing knowledge
about explanation as a set of declarative explanation strat-
egies. Our desire to answer a broader range of questions

has forced us to represent additional kinds of knowledge
in the knowledge base of EES.
The primary goal of the EES project is to provide a

framework that will facilitate construction of expert sys-
tems according to the paradigm of separate models and
recorded developments. This requires pursuing the lessons
of the XPLAIN system by extending the forms of knowl-
edge known, extending the kinds of development re-
corded, and extending the benefits beyond explanation to
development and maintenance.

III. DESIGN OF THE EES SYSTEM
In response to the considerations laid out in the preced-

ing section, we are currently designing and implementing
a prototype of the EES framework, which will be used to
implement the Program Enhancement Advisor. A broad
view of the EES system is shown in Fig. 1.
The knowledge base is the foundation stone of the EES

system. The domain model describes how the domain
works. It contains, among other things, typological and
causal linkages. While the domain model describes how
the domain works, it does not indicate how problem solv-
ing should be done. Domain principles represent problem-
solving strategies and are used by the program writer to
drive the refinement process. Tradeoffs are associated with
domain principles to indicate the beneficial and harmful
effects of selecting a particular strategy to achieve a goal.
Preferences are associated with goals and are used to set
priorities based on tradeoffs. Mappings between abstract
terms and the concepts that realize them (which had been
included as part of domain principles in XPLAIN), are
broken out as a separate type of knowledge to allow ter-
minology to be shared across domain principles. Integra-
tion knowledge is used to resolve potential conflicts among
knowledge sources. For example, in the digitalis domain,
dosage reduction recommendations based on patients'
serum calcium levels have to be integrated with recom-
mendations based on serum potassium levels in order to
compute a single overall dosage recommendation. Optim-
ization knowledge represents ways of efficiently control-
ling the execution of the derived expert system.
The EES framework will generate a runnable expert

system by applying the program writer component to the
knowledge base. The steps taken in producing code are
recorded in a development history (or "refinement struc-
ture"), a lattice structure whose leaf nodes represent sys-
tem implementation code and whose interior nodes rep-
resent goals and decisions made on the way to generating
the implementation. The interpreter executes the leaf
nodes of the development history. It produces an execution
trace, and manages the system's normal interaction with
users. User questions, however, are sent to the explana-
tion generator, which accesses the knowledge base, de-
velopment history, interpreter, and execution trace in the
course of constructing answers to queries.
The program writer consists of two major components.

Conceptually, it is simplest to think of them as applying
in multiple passes, although they may be interleaved in the
actual implementation. The first component makes use of
the domain model, domain principles, terminology, inte-
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Knowledge Base
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Descriptive Domain
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(Domain Model)
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Tradeoffs/ (Refinement Struc)
Preferences

Terminology
Definitions /

-------------------

n ( ) 0- Interpreter Execution
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Knowledge

OptimizatioE na User
Knowledge Ge neator

Fig 1. Global view of the EES framework.

gration knowledge, and preference and tradeoff knowl-
edge to produce an initial version of the expert system.
During the second pass, the refinement structure is mod
ified by an efficiency optimizer that attempts to use optimi-
zation knowledge to find restructurings of the develop-
ment structure that reduce execution costs.
The remainder of this section will illustrate the con-

cepts introduced thus far by considering the development
of a portion of the Program Enhancement Advisor. This
portion seeks to improve the readability and maintainabil-
ity of programs by recoding conditional expressions cur-
rently expressed using Lisp's COND into expressions that
use higher-level constructs like the IF-THEN-ELSE avail-
able in Interlisp's "Conversational LISP" package [5]. We
have deliberately selected a transformation whose appro-
priateness depends on user preferences so that we can
consider some issues that arise in such cases. We will first
describe the knowledge base related to this example, then
consider the process by which the program writer uses the
knowledge base to produce executable code.

A. The Knowledge Base
The system's knowledge base is represented in NIKL

[6]. NIKL is a refinement of KL-ONE [7], a semantic net
work-based representational formalism. NIKL has the
usual complement of representational devices, such as
concepts, roles (or slots) on concepts, links between con-
cepts indicating subsumption, and the like. For our pur-
poses, the most attractive feature of NIKL is that the se-
mantics of these devices have been worked out sufficiently
so that automatic classification [3] is possible. Given an
existing network and a new concept, the NIKL classifier
automatically determines the appropriate place for the new
concept in the subsumption hierarchy of the network,
based solely on the structure of that :concept. As we will
see, this is a very useful feature for knowledge acquisi-
tion, plan finding, and explanation.
To see just how this classification operation takes place,

consider the sample network in Fig. 2. In this simple net-
work, double arrows indicate a-kind-of (superc) relations,
while single arrows indicate attributes (roles) of concepts.
Roles point to concepts that indicate the type of filler re-
quired for that role. These type restrictions are called

NAr SERIOUS
Fi. 2. SDISEASE

Fig. 2. Simple NIKL network.

value restrictions. The roles associated with a concept are
definitional-they define what the concept means. Thus,
in Fig. 2, a SICK-ANIMAL is defined to be an animal
with a has-disease role that must be filled by a DISEASE,
while an ANIMAL-WITH-SEVERE-DISEASE has its
has-disease role filled by a SERIOUS-DISEASE. Suppose
we now define a new concept, MAD-DOG, as shown in
Fig. 3. Based on just the information given in Fig. 3 the
classifier can infer that a MAD-DOG is a kind of ANI-
MAL-WITH-SEVERE DISEASE because it has RABIES
which is a SERIOUS-DISEASE, and add the superc link as
shown in Fig. 4. Suppose we now further define a new
term, RABID-ANIMAL, as shown in Fig. 5. Based solely
on the structure of the new concept, the classifier can de-
termine that the concept can be moved down to a more
specific position in the network, as shown in Fig. 6. This
classification is possible since a RABID-ANIMAL by def-
inition has-disease RABIES and therefore must be a kind
of ANIMAL-WITH-SEVERE-DISEASE since such ani-
mals by definition have a SERIOUS-DISEASE and RA-
BIES is a SERIOUS-DISEASE.
From the standpoint of EES, the use of NIKL provides
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RABID
. ANIMAL .

*-. has-disease

AAL:) ~ ~ ~~~~~.A.- ' ' ' ' '
RABIES

has-disease

Fig. 5. Defining another term.
Fig. 3. Defining a new term.

-has-disease

ANIMAL WITH
SEVERE DISEASE

has-disease

Fig. 4. Superc link added by classifier.

us with two valuable features. First, it allows us to give
explicit definitions for terminology, overcoming one of the
limitations of XPLAIN. Second, we have found it to be
very useful to regard the classifier as a sort of pattern-
matcher. As such, it is useful both for finding specific in-
stances that match more general terms and, since all of
the system's knowledge about plans and goals is expressed
in NIKL, the classifier organizes the system's problem-
solving knowledge into a hierarchy which is very useful
in finding plans for achieving particular goals.
As was described earlier, the knowledge base is the re-

pository for several different kinds of knowledge which are

integrated together by the program writer to produce a

working expert system. In the knowledge domain of Lisp
program enhancement, the predominant domain descrip-
tive knowledge involves the properties of language con-

structs and transformations between alternative con-

structs. Problem-solving knowledge centers around using

RABID N R
MAD DOG :: :;..ANIMAL DISEASE

\has-disease
has-disease , /7

Fig. 6. Term moved down in net by classifier.

transformations to improve a program. Tradeoff/prefer-
ence knowledge defines when transformations are consid-
ered improvements and provides rules for resolving con-
flicts when alternative transformations are applicable.
Terminological knowledge allows the transformations and
problem-solving knowledge to be expressed in high-level
terms. Integration and optimization knowledge primarily
serve to guide the program writer in generating a runnable
implementation of the system by indicating how to coor-
dinate applicability testing across the assorted transfor-
mations.

In the Program Enhancement Advisor domain, the do-
main knowledge, or descriptive knowledge of how the do-
main works, is the knowledge of program transforma-
tions: what their applicability criteria are and what effect
they will have. A simplified portion of the NIKL repre-
sentation describing the transformation of a COND state-
ment into a CLISP IF-THEN-ELSE statement is shown
in Fig. 7. It is not necessary to understand the details of
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'This diagram simplifies the NIKL as
description of the COND which should agentent
be of the form: identify
(COND ((pred fnl) (T fn2)))

Fig. 7. Simplified NIKL representation of IF-THEN-ELSE transform.

the NIKL representation (and space limitations preclude
describing them). It is sufficient to point out that the
COND to IF-THEN-ELSE transformation is classified as
a kind of readability-enhancing transformation because the
result of the transformation is an easy to read construct.
This classification follows because the IF-THEN-ELSE
construct is a kind of keyword-marked construct which,
in turn, is an easy to read construct because the parts of
the construct are explicitly identified by keywords. In
summary, this portion of the net expresses the idea that an
IF-THEN-ELSE construct is easy to read because each
of the components of the construct is explicitly identified
by a keyword. (In Section IV we will consider how the
system might mechanically create an explanation justify-
ing the desirability of this transformation.)
The problem-solving knowledge in the Program En-

hancement Advisor is knowledge that tells the system how
to use its knowledge of transformations to enhance a pro-
gram. In particular, this includes strategies for scanning a
program file to find places where transformations might
be applied, for resolving conflicts among those possible
transformation applications, and for finally applying the
transformations. Plans and goals are represented in NIKL
and are organized into a hierarchy by the NIKL classifier.
Associated with each plan is a capability description
which describes what the plan can do. This description is
used by the system to find plans that can achieve goals.
The explicit representation of terminological knowl-

edge, or the knowledge of how terms are defined and dif-
ferentiated, is considerably facilitated by our use of NIKL,
because it is exactly the kind of knowledge that has to be

represented for the NIKL classifier to do its job. For ex-
ample, in Fig. 7, a keyword-marked construct is defined
as an abstract construct whose concrete syntax has key-
words that identify parts of the concrete syntax as com-
ponents of the abstract construct. This structural descrip-
tion is used by the classifier (and the program writer as
described below) to find particular instances of keyword-
marked constructs.3

B. The Refinement Process
In XPLAIN, the program writer created the. expert sys-

tem in a top-down fashion, starting. from a high-level goal
that was an abstract statement of what the expert system
was intended to accomplish. As the writer implemented
goals, subgoals were raised which in turn required imple-
mentation. The writer iteratively implemented goals using
goal/subgoal refinement until the level of system primi-
tives was reached. This is the familiar form of refinement
by breaking a goal down into subgoals. This occurred
whenever the system could find a plan that implemented a
goal. The system located plans by searching up the clas-
sification hierarchy starting from the goal until it found a
plai;..

In EES, we have retained the goal/subgoal refinement
process of XPLAIN, but we have also increased the power
of the program writer so that it is capable of reformulating

3It is worth pointing out that in the XPLAIN system, because its knowl-
edge base did not support definition of terms and classification, termino-
logical knowledge was represented implicitly in the domain rationale, as
part of the domain principles. We now feel that this mixing of terminology
with problem-solving knowledge was inappropriate. Terminology should be
defined separately so that it can be consistent across domain principles.
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a goal automatically if no direct implementation can be
found for that goal.
We have identified three different classes of reformula-

tions that seem to be useful in expert system construction.
The first reformulation we refer to as an "and" refor-
mulation because it involves splitting a goal into parts,
each of which must be performed to accomplish the orig-
inal goal. Integration knowledge must be used to integrate
the results returned by each of the pieces into an accept-
able result for the original goal. We refer to second and
third reformulations as "or" reformulations because they
involve splitting a goal into parts, of which only one needs
to be performed to accomplish the original goal. In per-
forming these reformulations, the program writer must
create a selection test that will indicate, at runtime, which
subplan should be executed, based on the particular situ-
ation at hand. Integration is not necessary for "or" re-
formulations.

Useful reformulations we have identified are as follows.
Covering Reformulation: When the system is unable to

find a plan that implements a goal, it may reformulate
that goal into several goals that can be implemented and
together cover the possibilities presented by the original
goal. We feel that this kind of reformulation caused by
implementation concerns occurs quite frequently in expert
system design. For example, one may want an overall as-
sessment of the symptoms of a disease, but only be able
to ask about individual symptoms. This requires splitting
the goal into cases and asking about each symptom in turn.
Similarly, the Digitalis Advisor had the goal of adjusting
the drug dose based on the patient's sensitivities, but it
had no direct way of assessing the patient's sensitivities
as a collection, so again the goal had to be split into in-
dividual cases. Below, we will also illustrate the use of
this kind of reformulation in the Program Enhancement
Advisor. With the capability of covering reformulations
comes the need to be able to recombine the results of in-
dividual cases into an overall result for the general goal.
For example, once a patient's individual symptoms have
been assessed there is still the issue of how to combine
those assessments into a reasonable overall assessment of
the disease. This is where the system's integration knowl-
edge comes into play. An example of its use in the Pro-
gram Enhancement Advisor is given below.

User Directed Dynamic Refinement: Most current ex-
pert systems do not accept much direction from the user.
Yet as -expert systems move into domains where the goals
are less clear cut, it becomes more important to allow the
user to further specify goals. For example, in the Program
Enhancement Advisor, the top-level goal of enhancing a
program is under-specified. It could be that to enhance a
program means to make it more readable, or it could mean
to make it more efficient or maintainable. Exactly what is
appropriate depends on knowledge that is outside the
scope of the Program Enhancement Advisor, so it makes
sense to get advice from the user to further specify such
goals. However, the system must constrain the user's abil-
ity to'refine goals lest he push the system beyond its ca-
pabilities. We illustrate our approach to providing the user

with a constrained ability to specify goals in the example
below.

Input-Based Reformulation: Sometimes a goal may be
posted that has such a general input that none of the avail-
able plans can handle it. However, if a set of plans can be
found that accept inputs that together cover the space of
possible inputs that the original goal may present, then the
original goal may be implemented by dispatching at run-
time to one of the more specialized plans, depending on
what the input actually is. For an example of the result of
such a reformulation, consider the "generic" arithmetic
operators provided by many programming languages.
These allow a programmer to perform operations without
worrying about the types of the arguments. At runtime, a
dispatch is made to the appropriate routine based on the
types of the actual arguments.
From the standpoint of system construction, providing

these reformulations is important because they give the
program writer more flexibility. The system builder does
not have to worry as much about the exact match up of
goals and plans. Instead, he can state what a goal requires
or a plan is intended to accomplish and the writer can help
with the details of matching the two up. This flexibility in
matching can also help to make problem-solving knowl-
edge developed for one expert system reusable in another.
Providing these reformulations has only become possible
by moving to a richer knowledge representation language
such as NIKL, where it is possible to indicate "covering"
relationships among concepts.
From the standpoint of explanation, it is important to

distinguish each of these means of implementing goals,
and to record their use. Goal/Subgoal refinements indicate
to the explanation facility how a low-level goal fits into
the overall strategy expressed by a higher-level goal.
Modeling covering reformulations explicitly is important
because knowing that a particular goal was created due to
implementation concerns usually means that that goal is
unlikely to be interesting to users (but possibly quite im-
portant to system designers). The explicit modeling of user
preferences afforded by user directed dynamic refinement
allows the system to tailor its explanations based on known
user desires. For example, if the system knows that the
user is just interested in enhancements that improve the
readability of a program and the system is asked to justify
its recommendation of a transform that enhances both
readability and efficiency, it could produce a focused ex-
planation that stressed just readability. Finally, by mod-
eling input-based reformulation, the explanation facility
can explain to a user that the reason why it used two dif-
ferent methods on different occasions to solve what ap-
peared to be the same problem was that the particular in-
puts provided caused the system to pick the most
appropriate method.

C. An Example
This section outlines a portion of the steps the program

writer goes through in generating the Program Enhance-
ment Advisor. Starting from the abstract goal of enhanc-
ing a program we will show how the system moves toward
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Fig. 8. A simplified portion of the development history.

generating code to scan for specific transformation op-
portunities. Fig. 8 shows the development history that re-
sults from the implementation steps described below.
The system starts with the goal ACHIEVE ENHANCED PRO-

GRAM. A further specification (not shown in the figure)
tells the program writer that code should be created to
allow the user to specify at runtime what kind of enhance-
ment should be performed. Since the program writer can-
not predict which kinds the user will request, it will plan
code to cover all kinds present in the knowledge base.
Suppose it finds two kinds of enhancements, those for en-
hancing efficiency and those for enhancing readability. The
writer would post the goals ACHIEVE READABILITY EN-
HANCED PROGRAM and ACHIEVE EFFICIENCY ENHANCED

PROGRAM as goals to be implemented. It would also create
code for interrogating the user and invoking the appropri-
ate subgoal based on the user's desires.

In EES, we have found it useful to distinguish two types
of goals: state goals that specify a particular state to be
achieved and action goals that are used to realize the state
goals. -To achieve the state goal of ACHIEVE READABILITY
ENHANCED PROGRAM the system finds a plan that has a sin-
gle action subgoal APPLY READABILITY ENHANCEMENT
TRANSFORMATIONS. That is, a readability enhanced pro-
gram is being achieved by applying readability enhance-
ment transformations.

Next, the system finds a four-step plan to implement the
goal APPLY READABILITY ENHANCEMENT TRANSFORMATIONS

(this same plan is also used to implement the goal APPLY
EFFICIENCY ENHANCEMENT TRANSFORMATIONS).

1) Scan the program for transformation opportunities.
2) Resolve conflicts among transformation opportuni-

ties.

Fig. 9. A portion of the method hierarchy.

3) Confirm transformation opportunities with the user
(to assure that they are acceptable).

4) Perform the transformation opportunities approved
by the user.

In, the development history, the writer records the im-
plementation of the ACHIEVE ENHANCED PROGRAM goal as
a goal/subgoal refinement and specializes the general steps
of the plan to reflect the particular goal being implemented
(see Fig. 8).

Let us consider how the writer might further refine the
goal of scanning for readability enhancing transforma-
tions. There is no direct method for implementing this
goal, so the program writer examines higher methods in
the hierarchy. At the level of SCAN PROGRAM FOR TRANS-
FORMATION OPPORTUNITIES, the system finds two subcon-
cepts that have specialized methods associated with them
(see Fig. 9). One of these scans for local transformations,
that is, transformations like the COND = => IF-THEN-
ELSE transform where the applicability criteria of the
transform can all be verified within a single s-expression.
The other scanning method scans for what we call distrib-
uted transformations, where the applicability critera re-
quire looking at several places in the program. An example
of the second type of transform would be one that verifies
that it is possible to use records to replace explicit accessor
functions. By examining its terminological knowledge, as
expressed in NIKL, the writer determines that together
these two methods cover the space of possible transforms,
so the single goal of scanning for readability enhancing
transforms can be re-expressed as the two goals of SCAN
FOR DISTRIBUTED READABILITY-ENHANCING TRANSFORMS

and SCAN FOR LOCAL READABILITY-ENHANCING TRANS-

FORMS. This covering reformulation is an instance of a
goal being changed based on available domain techniques.

The system continues on in this fashion, refining gen-
eral goals into increasingly more specific goals, until
eventually the level of system primitives is reached. At
that point the expert system is complete.

D. Control Issues
How would this approach be used to build expert sys-

tems with particular control structures, such as black-
board or backward-chaining architectures? We view this
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as a problem of specifying the interpreter that will execute
code produced by the program writer. We evaluate three
possible approaches below.
Our current approach is to keep the expert system in-

terpreter very simple, and explicitly express the architec-
ture for the system in domain principles. The program
writer compiles these principles into a program simple
enough for the interpreter to handle. For example, if we
wanted a system to perform diagnosis using backward-
chaining, we would write a principle that would say, in
essence, "To determine whether a physiological state ex-
ists, conclude that it does if sufficient evidence for the
physiological state exists.-- The causal and associational
relations that would determine what constitutes evidence
for a physiological state would be expressed as domain de-
scriptive knowledge, and integration knowledge would be
used to integrate the results of multiple sources of evi-
dence.

This approach seems to be the most appropriate one for
the two application domains we have considered, digitalis
therapy and program enhancement. It allows us to cleanly
and easily intermix different control strategies. Also, be-
cause the interpreter is very simple- any sophisticated fea-
tures of the expert system-s architecture have to be ex-
plicitly derived in the development history, so that they
can be explained. The major disadvantages are that it may
result in an enormous development history, and that the
program writer may not be sufficiently powerful to per-
form all of the derivation steps.
A second alternative would be to raise the level of the

interpreter so that the system primitives captured the de-
sired architecture. The program writer would create code
for this architecture. The advantages and disadvantages of
this approach are just the reverse of the first approach. We
have not explored this approach; we prefer the explanatory
benefits of the first approach.
The most desirable (but also most difficult) alternative

would have the program writer create both a high-level
interpreter from simple primitives and the code to run at
that high level. A higher-level interpreter would allow the
development history to be smaller, and because the inter-
preter would be explicitly derived, its operation would be
explainable. We have not yet explored this approach in
detail.

E. Toward Easier Maintenance of Expert Systems

We close this section With a brief discussion of the main
advantages that this approach may provide for mainte-
nance and evolution of expert systems:

High-level strategies are easily expressed and their
refinement is recorded. In conventional rule-based sys-
tems, high-level strategies cannot be easily represented.
However, most large rule-based systems are based on some
high-level strategies, even though they are only implicitly
expressed [8]. These strategies are very difficult to un-
derstand just from examination of their rules, but suc-
cessful modification of the expert system often depends
critically upon them. The EES approach makes the strat-
egies, and the record of their refinement into lower-level

strategies, explicit. This may give system builders a better
chance to understand the workings of an expert system.

* Separation of different kinds ofknowledge makes the
system more modular. By separating different kinds of
knowledge, such as problem-solving and descriptive
knowledge, each is made more independent of the other.
Hence, it is possible to modify one without having to mod-
ify the other. This is usually not the case in traditional
expert systems where many kinds of knowledge are con-
founded within a simple rule formalism.

* Automatic classification ofnew knowledge eases sys-
tem modification. In the example just presented, the NIKL
classification structure was used to select transformations
based on their enhancement effects, and, having selected
such transformations, to find methods for scanning pro-
grams for opportunities to use them based on their appli-
cability criteria. Because NIKL supports automatic clas-
sification, new knowledge, such as transformations or
problem-solving strategies, can automatically be placed in
the classification hierarchy and thus be employed consis-
tently and appropriately.
We feel that, together, these features will significantly

facilitate the construction of explainable, evolvable expert
systems. The approach puts more emphasis on the devel-
opment phase and will require tools to support construc-
tion of richer knowledge representations (see Section V).
However, we believe that the costs of extra attention to the
development phase will be repaid by several gains, partic-
ularly smoother maintenance and the richer systems that
might result from a more disciplined approach to speci-
fying their contents.

IV. EXPLANATION-A PROCESS MODEL FOR
QUESTION-ANSWERING

In previous sections we have described the types of
knowledge included in the EES architecture and discussed
how this knowledge is organized. One of the primary mo-
tivations behind the EES architecture was a. desire to pro-
vide richer explanations to a broad range of questions. In
this section, we will describe the classes of questions we
believe are important and discuss how the knowledge
available within the EES framework could enable us to
provide answers to these questions.
Once we have presented the range of questions we wish

to address, we will discuss the issues that arise in actually
producing explanations from the knowledge provided in
our system. We describe how our explanation strategies
are organized, and then demonstrate how our architecture
aids in providing a broader range of explanatory capabil-
ities by presenting a detailed example.

A. Answering a Broader Range of Questions
In expert systems which record only the program code,

and not the knowledge and reasoning required to generate
that code, explanation is necessarily limited to answering
questions which depend only on access to that code.
Among such questions are primarily questions about be-
havior, such as:

* How does/did the system perform < action > ?
* How is/was <parameter> used?
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* What would be the result of <parameter setting> ?

The explanation capabilities of the XPLAIN system went
beyond those of previous systems. XPLAIN could justify
why a question was being asked and could answer ques-
tions about general as well as specific problem-solving
knowledge. However, there are a number of other kinds of
questions that might reasonably be asked by a system
builder or user. A more complete list of questions follows.

1) Questions ofJustification: Questions ofjustification
include questions such as:

* Why is the system concerned with <parameter, goal,
or action > ?

* Why is <goal or action> necessary (desirable, or
important) ?

* Why should < recommendation > be followed?

These questions all essentially seek information about
the purpose underlying some aspect of the system, that is,
about the relationship of that aspect to the goals of the
system builder or user. Answering them involves looking
at the development history to determine the domain prin-
ciple(s) that generated the queried object, and from there
finding further information by examining related termi-
nology, tradeoffs, and the preferences operative at the
point in time under consideration.

2) Questions of Timing or Appropriateness: Both in de-
bugging a system, and in deciding how much faith to put
in its conclusions, it is often useful to obtain information
about the course of its reasoning processes. This involves
questions such as:

* When did the system consider/reject <goal, action,
or conclusion> ?

* Why did it consider/reject < goal, action, or conclu-
sion > at <time reference> ?

* Why didn 't it consider/reject <goal, action, or con-
clusion > at < time reference > ?

At one level, these are simply questions about the exe-
cution history of a system. Treated as such, they can be
answered by techniques such as those in Davis' Teiresias
system [9] that recorded triggering conditions for rules,
and determined absences that prevented near-miss rules
from being satisfied. However, at a higher level, the ques-
tions again deal with intentions, i.e., the reasons behind
the selection conditions imposed on various knowledge
items. Answering such questions may be essentially the
same process as justification questions, but it may also tap
knowledge that went into deriving the control aspects of
the system. This entails examining the development his-
tory in search of tradeoffs and preferences that applied in
generating choice constraints, and optimization knowl-
edge that was also used to edit the originally planned pro-
gram.

3) Questions ofDefinition or Function: These are ques-
tions that concern the meaning of a particular concept in
the system.

* What does <term> mean?
* What is a < term > ?
* What are the effects of < action > ?

* What is the relationship between < term, parameter,
goal, or action> and <term, parameter, goal, or ac-
tion > ?

* What is the difference between <term, parameter,
goal, or action> and <term, parameter, goal, or ac-
tion > ?
These are essentially questions that involve paraphras-

ing either the development history, the domain model, or
domain principles. In each of these cases, paraphrasing
depends on tapping knowledge about terminology.

4) Questions of Capabilities: Both for users to deter-
mine when and how much to trust the system, and for
system builders to determine where augmentation is re-
quired, it is useful to be informed about the abilities and
limitations of a system. This involves questions such as:

* What does the system know about < concept> ?
* Whatfactors does the system consider/ignore in con-

cluding < conclusion > ?
* What methods does the system use/avoid in achieving

<goal> ?
Questions of this class are particularly likely to be stim-

ulated by answers to previous questions. For example, in
the case of the XPLAIN digitalis advisor, the answer to a
justification question was that the system was interested
in serum calcium levels in order to reduce the recom-
mended dosage if the level was abnormal. This naturally
leads to the question, "are there any other factors'like
serum calcium?" Answering such questions primarily in-
volves searching through the domain model, examining
type and causal linkages. However, answering ignore/
avoid questions entails looking at the development history
to identify processes that have been masked out by the
introduction of efficiency optimizations.

B. Producing an Explanation
There are several issues that must be addressed when

attempting to provide reasonable explanations to users of
an expert system. We believe that our architecture allows
us to address these issues in a more satisfactory way than
existing expert systems. When generating explanations,
one is faced with the problem of deciding what informa-
tion to include in the explanation and how to express this
information. One issue that arises when deciding what in-
formation should be included in the explanation is choos-
ing the appropriate level of detail. This issue comes up in
several aspects of explanation. For example, when- de-
scribing the system's behavior to end users, the explana-
tion should focus on goal-based concerns and should not
include implementation details. Other systems have ad-
dressed this issue by marking certain portions of the sys-
tem's code as implementation specific, thus indicating that
these portions of the code should not be included in ex-
planations [10], [11].

In our system, the explanation generator knows about
certain structures in the development history which allow
it to determine which goals are generated as a result of
implementation concerns and which are problem-solving
goals appropriate for inclusion in explanations to end
users. We will see an example of this later.
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C. Question Types and Answering Strategies
In order to devise a process model for answering the

range of questions discussed above, we found it useful to
categorize the questions we wished to answer into several
question types. Based on the question type, the explana-
tion facility selects a strategy to be used in answering the
question. Other researchers in the area of question-an-
swering have found it useful to identify question cate-
gories and organize procedures for answering questions
around these types [10], [12], [13].
A review of the strategies associated with each question

type is beyond the scope of this paper, as is a discussion
of the interface which allows users to access question-an-
swering capabilities. Here we will concentrate on a dis-
cussion of one question type and the strategy for answer-
ing it.

D. An Example
In this section we present a detailed examination of the

strategy used in answering questions of the type Justify
Recommendation. Questions which fall into this category
are looking for justification of a method or recommenda-
tion in terms of the user's goals, the user's stated prefer-
ences, or the system's knowledge about trade-offs. For ex-
ample, " Why should the < recommendation > be
followed?"

Part of the question analysis process will categorize the
question as one of the question types defined in the sys-
tem. Associated with the question type is the strategy to
be used in generating an answer to questions of this type.
Here we present a simplified version of the strategy to be
used in answering questions categorized as type Justify
Recommendation.4

1) Search the development history for the < method >
that produced <recommendation>.

2) Search upward through the development history for
the < goal > that this < method> is a plan for achieving.
Continue searching upward until reaching a goal that the
user shares. (The user is assumed to share the top-level
goals of the system.)

3) State this <goal>.
4) State general <method> that is used to achieve

<goal> .
5) State how < recommendation > is involved in

achieving < goal > .
Now, we will show how this strategy is used to generate

a response to an example question of type Justify Recom-
mendation. Suppose that the system had just presented the
following recommendation:

The construct:
(COND ((ATOMP X) (LIST X))

(T X))
may be replaced by the construct:

(IF (ATOMP X)
THEN (LIST X)
ELSE X)

Further suppose that the user then asks why he should

4This strategy considers only goals. It does not take into account any
preference or tradeoff knowledge.

apply this particular transformation. Once the user's ques-
tion has been recognized as being of type Justify Recom-
mendation, the system will apply the strategy described
above to produce the following explanation:

The system is trying to enhance the readability of the
program by applying readability enhancing transforma-
tions. COND to IF-THEN-ELSE is a readability en-
hancing transformation because IF-THEN-ELSE has
keywords which identify its abstract components.

In order to generate the first sentence, the system must
perform the first two steps of the strategy shown above.
It begins by searching through the development history
looking for the <method> that produced <recommen-
dation>. (At this point <recommendation> is instan-
tiated to: APPLY COND TO IF-THEN-ELSE TRANSFORMATION.)
Referring to Fig. 8, we see that the <method>. which
produced <recommendation> is the one which scans
over s-expressions to check if a transformation like COND
TO IF-THEN-ELSE is applicable, and, if so, adds it to the list
of enhancement opportunities.

Next, we search upward through the development his-
tory for the < goal > which this < method > is a plan for
achieving. In performing this search, we skip over those
goals which are results of the program writer's implemen-
tation concerns. Such goals frequently arise when the pro-
gram writer must reformulate a single goal into several
cases which together cover this goal (see Section III-C on
goal reformulation into cases). The development history
records which goals were generated due to implementation
concerns (see Fig. 8). Thus the explainer can determine
which goals must be skipped when looking for a goal that
is appropriate to incorporate into an explanation to an end
user. The result of the search upward in the development
history is the goal ACHIEVE READABILITY ENHANCED PRO-
GRAM. Note that we do not have to go all the way up to
the goal ACHIEVE ENHANCED PROGRAM because we assume
that the user has provided input at the level of the dynamic
refinement node. Thus we can assume that he knows that
the goal ACHIEVE READABILITY ENHANCED PROGRAM is a re-
finement of the goal to ACHIEVE ENHANCED PROGRAM.

Next, we state the goal ACHIEVE READABILITY ENHANCED
PROGRAM and the general method which is used by the
system to achieve this goal. This method is APPLY READ-
ABILITY ENHANCING TRANSFORMATIONS in Fig. 8. At this
point, we have generated the first sentence of the expla-
nation above. Besides the lexical knowledge of how to ex-
press the goal and method we have stated, the explainer
needs to have the knowledge that goals are satisfied "by"
methods.

Finally, we use the domain model in conjunction with
the NIKL classifier to describe how <recommenda-
tion>, in this case APPLY COND TO IF-THEN-ELSE TRANS-
FORMATION, iS involved in achieving the goal ACHIEVE
READABILITY ENHANCED PROGRAM. In this case < recom-
mendation> is an instance of a method for achieving the
goal. Thus we will describe how <recommendation>
qualifies as an instance of the method APPLY READABILITY
ENHANCING TRANSFORMATION. This requires stating why
the particular COND to IF-THEN-ELSE transformation
recommended is an instance of a readability enhancing
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transformation. The NIKL classifier is used to provide this
information. Looking at the domain model (see Fig. 7),
we see that the distinguishing characteristic of a readabil-
ity enhancing transformation is that its result role is filled
by an easy-to-read construct. Thus, when attempting to
classify a concept as a readability enhancing transforma-
tion, the classifier must verify that its result may be clas-
sified as an easy-to-read construct. When queried about
the recommendation, a particular COND to IF-THEN-
ELSE transformation, the classifier will return informa-
tion stating how the result of this COND to IF-THEN-
ELSE transformation, namely a particular IF-THEN-
ELSE construct, is classified as an easy-to-read construct.
This will include information about all of the subsumption
relationships that hold between the IF-THEN-ELSE con-
struct being classified and the concept easy-to-read con-
struct. See Fig. 7. This includes the information that a
particular IF-THEN-ELSE construct classifies under the
generic IF-THEN-ELSE definition which in turn classi-
fies as a keyword-marked construct. In addition a key-
word-marked construct classifies as an easy-to-read con-
struct. The information returned from the classifier also
notes that IF, THEN, and ELSE all classify as keywords,
that predicate classifies as an abstract construct, etc.
At this point, we wish to describe the essential charac-

teristics of the IF-THEN-ELSE construct which allow it
to classify as an easy-to-read construct. Although it would
not be particularly readable, we could therefore generate
an explanation which states that IF-THEN-ELSE is an
easy-to-read construct because it has a keyword IF which
identifies its predicate, and do likewise for the keywords
THEN and ELSE. However, since we wish to generate
more abstract explanations, we have heuristics in the ex-
plainer which note such parallel structure and form gen-
eralizations. When we note that IF, THEN, and ELSE
are all keywords and that they all participate in identify
relations with concepts which are abstract components,
we can form the generalization which appears in the last
sentence of the example explanation.
Here we have seen an example of an explanation strat-

egy which allows us to answer one type of question. Sim-
ilar strategies are being developed to answer the other
types of questions we described earlier in this section.

V. DIRECTIONS

A. Current Status
As of this writing, the EES framework is being imple-

mented, as is the Program Enhancement Advisor.
Using programs volunteered by research programmers

in our laboratory as input, and relying on both our own
Lisp knowledge and the expertise of two highly skilled
builders and maintainers of Lisp-based systems with over
a dozen years of experience each, we have identified ap-
proximately a dozen enhancements that the program ought
to be able to perform. Interviews with our domain experts,
and analysis of their thinking-out-loud protocols given as

they rewrote the example programs, were used to identify
useful enhancements and to try to determine the princi-
ples underlying them. As can be expected in an approach
that relies heavily on detailed knowledge representation,

much of the preliminary work goes into identifying key
general concepts in the knowledge domain and determin-
ing how to model those concepts in the representation lan-
guage. Most of those policy decisions have now been
made. We have developed an initial-pass version of a lan-
guage for expressing goals and plans, which translates to
their underlying NIKL representation. We have set ground
rules for representing concepts such as transformations,
syntactic structure of programming constructs, semantic
components of programming constructs, and some as-
pects of the effects of evaluating an expression. Using
those ground rules, we have completed the process of en-
coding the domain and problem solving knowledge related
to the COND = = > IF-THEN-ELSE transformation.
We are in the process of encoding the knowledge pertain-
ing to three other transformations: rewriting selected
COND's as SELECTQ's, eliminating redundant code in
conditionals, and replacing ad hoc data structures by RE-
CORD declarations.
We have developed a higher-level language of defining

forms for concepts, goals, and plans; specifications in this
language are translated into definitions in the underlying
NIKL knowledge base. The structures in this underlying
knowledge base constitute the input for the EES program
writer. Implementation of the planning (or first pass) com-
ponent of the program writer, which generates the initial
refinement structure representing the preoptimized imple-
mentation, is also almost complete. We expect soon to be-
gin debugging the handshaking between the knowledge
base and the program writer.

For the Program Enhancement Advisor domain, the pri-
mary optimizations we expect the expert system to need
have to do with collapsing redundant scanning performed
in checking for the applicability of individual transfor-
mations. The design of the portion of the program writer
that will handle those optimizations has begun, but is still
preliminary.
To create an English paraphraser of NIKL knowledge

structures, one of the critical components of the explana-
tion generator, we are generalizing an existing NIKL par-
aphraser [14] to employ more principled methods for pro-
ducing natural language. Explanation strategies have been
devised for 6 of our 13 question types, but none have yet
been implemented.
B. Future Directions
The EES system is intended as a tool to facilitate the

production of expert systems. Thus, our users are both
system-builders and the end users of the expert systems
constructed with EES. It is worthwhile to consider our
plans for addressing their needs.
The most critical determinant of a successful system

built with EES will be, for some time to come, the skills
of the system builder at specifying conceptual models of
the domain of expertise. The approach relies heavily
on its underlying knowledge representation language.
Knowledge engineers using EES need to be highly con-
versant in both knowledge representation in general, and
the underlying language in particular, in addition to hav-
ing mastered the art of knowledge elicitation. As our
higher-level knowledge specification language evolves, the
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depth of familiarity knowledge engineers must have about
the underlying representation language will be somewhat
reduced. Furthermore, the very explanation capabilities
that the system is centered around should be a significant
aid to knowledge engineers in understanding, extending,
and correcting the representations they must build.

Nevertheless, the ease of building expert systems via the
EES approach will be heavily dependent on the presence
of support tools to aid in the construction, testing, and
modification of the knowledge base from which the actual
expert system will be derived. A knowledge acquisition
aid, called the Intelligent Agenda Manager, is being de-
veloped to address this need. This aid will assist the build-
ers of knowledge representations in planning their activi-
ties and keeping track of their status during the
development process. The principle underlying it is that
the increased reliance on detailed knowledge representa-
tions is not just a problem, it is also an opportunity. Be-
cause more concepts are explicitly represented, it be-
comes easier to communicate about how one intends to
make use of them. Thus, the Intelligent Agenda Manager
will provide a language in which system-builders can
specify expectations about the finished form and content
of knowledge bases under construction. These expecta-
tions primarily consist of generalizations about where par-
ticular concepts should be placed in a classification hier-
archy, and/or relationships intended to be created between
instances of particular classes. The Agenda Manager will
maintain a goal tree, or agenda, of "unfinished business"
for the system builders by two primary processes. First,
it will record expectations explicitly stated by the system
builder and use meta-knowledge about knowledge repre-
sentations to help plan how to achieve those goals. Sec-
ond, it will generate tests for violations and satisfactions
of expectations, modifying the agenda appropriately upon
detecting that such an event has occurred.

In the near term, responsibility for the quality of a sys-
tem from the end users' viewpoint will rest primarily with
the system builder. The EES approach will provide two
gains that the system builder can take advantage of: the
ability to generate natural language explanations in re-
sponse to user questions, and the ability provided by the
EES notion of runtime preferences for users to tailor an
expert system more specifically to their needs. It will ini-
tially be up to the system builder to pass these gains on to
end users by building adequate conceptual models and by
programming interactions to obtain information about
preferences. Preliminary studies of end users interacting
with simulated EES products, however, indicate that user
interface issues will play a large role in determining
whether full advantage is taken of the novel capabilities
EES will provide. In the long term, therefore, it would be
desirable for EES to take more responsibility for con-
structing user interfaces, so that less of the effort involved
in following useful interface principles has to be duplica-
ted across system builders.

VI. CLOSING COMMENTS
In the sections above, we have argued for a new para-

digm of expert system development, in which deep models

separate and explicitly represent the different forms of
knowledge that go into the implementation of an expert
system, and in which a recorded development history is
kept to trace the intertwining of those different forms of
knowledge into runnable code. We have considered some
particular forms of knowledge and development that seem
likely to be important, discussed our design proposal for
an EES system that makes use of them, and tried to show
how that system might facilitate a broader range of expla-
nations than is possible under current expert system tech-
nology.

In addition to its implications for explanation, we be-
lieve this approach also offers other benefits related to de-
velopment and maintenance. Separating the different
forms of knowledge reduces the amount that has to be
changed when moving to a new domain. The separation,
combined with the support of the hierarchical planner, also
means that less has to be done when adding new knowl-
edge about a given domain; producing additional code to
account for a new concept involves making a few asser-
tions and rerunning the program writer rather than engag-
ing in extensive manual recoding. In addition to these
maintenance-related benefits, there are also potential
gains in the development process, since the discipline of
explicitly specifying domain knowledge and principles is
likely to make errors and inconsistencies more readily
apparent.
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The Role of Domain Expenence in Software Design
BETH ADELSON AND ELLIOT SOLOWAY

Abstraet-A designer's expertise rests on the knowledge and skills
whkh develop with experience in a domain. As a result, when a designer
is designing an object in an unfamiliar domain he will not have the same
knowledge and skills available to him as when he is designing an object
in a familiar domain. In this paper we look at the software designer's
underlying constellation of knowledge and skills, and at the way in which
this constellation is dependent upon experience in a domain. What skills
drop out, what skills, or interactions of skills come forward as expe-
rience with the domain changes? To answer the above question, we
studied expert designers in experimentally created design contexts with
which they were differentially familiar. In this paper we describe the
knowledge and skills we found were central to each of the above con-
texts and discuss the functional utility of each. In addition to discussing
the knowledge and skills we observed in expert designers, we will also
compare novice and expert behavior.

Index Terns-Artificial intelligence, cognitive models, cognitive sci-
ence, software design.

I. ITRODUCTION: MOTIVATION AND GOALS

ADESIGNER'S expertise rests on the knowledge and
A skills which develop with experience in a domain. As
a result, when a designer is designing an object in an un-
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familiar domain he will not have the same knowledge and
skills available to him as when he is designing an object
in a familiar domain. In this paper we look at the software
designer's, underlying constellation of knowledge and
skills, and at the way in which this constellation is depen-
dent upon experience in a domain. What skills drop out,
what skills, or interactions of skills come forward as ex-
perience with the domain changes? Specifically we ask the
following.

* What happens when well-known information must be
used in novel ways?

* What happens when domain experience cannot be re-
lied upon? What are the general knowledge and skills
which remain?

* What happens when the object has been designed be-
fore?

To answer the above questions, we studied expert de-
signers in experimentally created design contexts with
which they were differentially familiar. In this paper we
describe the knowledge and skills we found were central
to each of the above contexts and discuss the functional
utility of each; what role it played, how it contributed to
getting the job done. In addition to discussing the knowl-
edge and skills we observed in expert designers, we will
also compare novice and expert behavior. The comparison
points out the utility of the knowledge and skills of the
expert.
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