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REPORT

Enhanced Maternal Origin of the 22q11.2 Deletion
in Velocardiofacial and DiGeorge Syndromes

Maria Delio,1 Tingwei Guo,1 Donna M. McDonald-McGinn,2,3 Elaine Zackai,2,3,4 Sean Herman,1

Mark Kaminetzky,1 Anne Marie Higgins,5 Karlene Coleman,6,7 Carolyn Chow,8 Maria Jarlbrzkowski,8

Carrie E. Bearden,8 Alice Bailey,2,3 Anders Vangkilde,9 Line Olsen,9 Charlotte Olesen,10

Flemming Skovby,11 Thomas M. Werge,9 Ludivine Templin,11 Tiffany Busa,11 Nicole Philip,12

Ann Swillen,13 Joris R. Vermeesch,13 Koen Devriendt,13 Maude Schneider,14 Sophie Dahoun,14

Stephan Eliez,14 Kelly Schoch,15 Stephen R. Hooper,16,17 Vandana Shashi,15 Joy Samanich,18

Robert Marion,18 Therese van Amelsvoort,19 Erik Boot,20 Petra Klaassen,21 Sasja N. Duijff,21

Jacob Vorstman,22 Tracy Yuen,23 Candice Silversides,23 Eva Chow,23 Anne Bassett,23 Amos Frisch,24

Abraham Weizman,25 Doron Gothelf,25,26 Maria Niarchou,27 Marianne van den Bree,27

Michael J. Owen,27 Damian Heine Suñer,28 Jordi Rosell Andreo,28 Marco Armando,29 Stefano Vicari,29

Maria Cristina Digilio,30 Adam Auton,31 Wendy R. Kates,32 Tao Wang,33 Robert J. Shprintzen,5

Beverly S. Emanuel,2,3,4 and Bernice E. Morrow1,34,*

Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders

caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-

copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be

determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total

of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS hadmaternal origin and 170 (44%)

had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p ¼ 0.0151). Combined

withmany smaller, previous studies, 465 (57%) individuals hadmaternal origin and 345 (43%) had paternal origin, amounting to a ratio

of 1.35 or a 35% increase in maternal compared to paternal origin (p ¼ 0.000028). Among 1,892 probands with the de novo 22q11.2

deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual

countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6–1.7 times greater than that for males, suggest-

ing that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific

features, could be responsible for the observed excess in maternal origin.

Velocardiofacial (MIM 192430) and DiGeorge (MIM

188400) syndromes, also known as 22q11.2 deletion

syndrome (22q11DS), are congenital-malformation disor-

ders most often associated with a de novo 3 Mb hemizy-

gous 22q11.2 deletion.1,2 Smaller nested deletions occur

in 5%–10% of individuals, and all have similar pheno-

types.3,4 The frequency of the syndromes is estimated to

be 1/4,000 live births, making them among the most
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common congenital-malformation syndromes in hu-

mans.5–10 The de novo 22q11.2 deletion usually results

from nonallelic homologous recombination (NAHR)

events between flanking low-copy repeats (LCRs), also

known as segmental duplications (SDs), termed

LCR22s.3,4,11,12 NAHR-frequency-altering genetic risk

factors, such as parent-of-origin bias or maternal age,

have not been defined for 22q11DS. This might partly be

because such factors are infrequent and tend not to be

apparent within individual nuclear families. In addition,

previous studies were all of small sample size. If gender

bias did occur, it might suggest particular vulnerabilities

in meiotic machinery.

In this study, we isolated or obtained DNA samples from

451 individuals with 22q11DS and their healthy parents

after receiving their informed consent (internal review

board 1999-201). All procedures were in accordance with

the ethical standards of the Albert Einstein College of

Medicine Committee on Clinical Investigation. The

22q11.2 deletion size was determined by multiplex liga-

tion-dependent probe amplification (MLPA) testing

(SALSA MLPA Kit P250 DiGeorge probemix, Medical

Research Council Holland, the Netherlands) or microsatel-

lite-marker analysis.11,13,14 We used several molecular

biological methods to detect the parent from whom the

de novo deletion originated. Initially, we performed

haplotype analysis by using microsatellite markers on

115 families.11,13,14We subsequently performed SNP-based

genotyping with SNPs spanning the 3 Mb 22q11.2 region

by using Sequenom MassArray technology (Tables S1and

S2, available online). A representative example of results

obtained with both microsatellite and SNP markers is

shown in Figure 1. The map positions of the microsatellite

and SNP genetic markers spanning the 3 Mb interval are

shown in Figure 2. A subset of the SNP genotypes was

validated with traditional Sanger sequencing (Figure 1

and Figure S1).

There were examples where the genotyping data were

uninformative or only one SNP was informative as to

parental origin of the de novo 22q11.2 deletion

(Table S2). In these cases, we used Sequenom data that

were available from the TBX1 (MIM 602054) locus on

22q11.215 (Table S3). In addition, we performed Sanger

sequencing to correct genotypes in 40 of the 45 probands

with heterozygous SNP miscalls (Table S2; primers are

indicated in Table S4).

Using this combination of approaches, we were able to

obtain informative results for 389 (86.2%) of 451 families.

The main reason for the lack of informative genetic data

for the remaining 62 subjects was either missing parental

DNA samples or poor DNA quality.

We found that the de novo deletion was of maternal

origin in 219 (56.3%) of the probands and of paternal

origin in 170 (43.7%) of the probands. We performed the

binomial test for equal proportions to compare the actual

parental origin of the deletion with the null hypothesis

(proportion equal to 50%). There was a statistically signif-

icant maternal bias for the parent of origin of the 22q11.2

deletion (p ¼ 0.015; ‘‘Current study’’ in Figure 3).

Previous studies of parent of origin of the de novo

22q11.2 deletion were relatively small in size (<100

probands; Table S5) and hence might have been under-

powered. We used Fisher’s combined probability test to

calculate the combined p value from these previous

Figure 1. Haplotype Analysis for Family 12
Both microsatellite and SNP genotype analysis was performed on
DNA from the female proband (BM69), her mother (BM70),
and her father (BM71). The vertical lines represent the 22q11.2
region. Informative markers are highlighted in blue. Images of
sequences 1 and 2 are from Sanger-sequencing chromatograms
of markers rs2871041 and rs178084, respectively. Sequence 1 illus-
trates noninformative genotypes, whereas sequence 2 confirms
informative genotypes. For example, for rs178084, the genotypes
indicate that the paternal genotype is T/C and the maternal geno-
type is C/C. The child displays a T allele, which was inherited
through the father, identifying the deletion as being maternal in
origin. The following abbreviation is used: NC, no SNP call (failed
genotype).
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studies. We ensured that these comprised different DNA

samples to those used in our current studies (exceptions

are noted in Table S5). When we combined our data with

those from these previous studies, we found that there

were 465 (57.4%) individuals in whom the de novo dele-

tion was of maternal origin and 345 (42.6%) in whom

the deletion was of paternal origin (two-tailed binomial

test, p ¼ 0.00065; Figure 3). The combined results were

highly significant with the use of Fisher’s combined prob-

ability test (p ¼ 0.000028)—the ratio of maternal to

paternal origin was 1.35 to 1.00, corresponding to a 35%

increase in risk for maternal compared to paternal origin

of the de novo 22q11.2 deletion.

A possible limitation of this and other similar studies is a

sampling bias in which DNA samples from fathers might

be disproportionally missing from the cohort available

for study. Fortunately, DNA samples from both parents

were available in themajority of families. Second, we could

still determine parent of origin of the deletion in those

families with missing DNA samples from fathers given

informative genotypes from the respective proband and

mother. The numbers of families for which genotypes for

parent of origin were uninformative were too low for

drawing conclusions with respect to such a sampling bias.

The incidence of whole-chromosome aneuploidy

increases with increasing maternal age in the general pop-

ulation. We were therefore interested to see whether a

similar increase in maternal age is linked to the de novo

22q11.2 deletion and could thus explain our findings.

We first went to the website of the United Nations Fertility

and Family Planning Section of the Department of

Economic and Social Affairs (DESA) Population Division

(Web Resources) and obtained control data (‘‘Mean Age

at Childbearing’’ section under ‘‘Period Fertility Indica-

tors’’) for 11 countries. The epidemiological data for each

country are indicated in Table 1. Data for the 22q11DS

cohort are presented in Table 2 and Figure 4A. We evalu-

ated the parental age at time of conception for 1,892

mothers and 1,809 fathers of individuals with the de

Figure 2. Genetic Markers Used for Genotyping 22q11DS Trios
AUCSCGenome Browser (hg19) image of the 22q11.21–q11.22 genomic region relevant to this study. The image displays representative
genes spanning the region for orientation, as well as 15 microsatellite and 28 SNP markers used for our study. The positions of LCRs, or
SDs, taken from the SD track and 1.5, 2.0, and 3.0 Mb deletions in 22q11.2 are also illustrated.

Figure 3. A Maternal Bias Occurs in the Origin of the 22q11.2
Deletion
The bar graph shows the number of 22q11DS individuals with
either maternal or paternal origin of the deletion. Light gray
data bars represent the amount of maternal, paternal, and
combined deletion origin from previous studies (Table S5). Dark
gray data bars represent the amount of maternal, paternal, and
combined deletion origin from the current study (Table S2). Black
data bars represent the total amount of maternal and paternal
deletion origin from the combined previous and current data
sets. The two-tailed p value is listed below the figure. Significance
is based on a p value < 0.05.
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novo 22q11.2 deletion. On the basis of the data presented

in Table 2 and Figure 4A, we found that the mean age is

29.5 years for mothers (n ¼ 1,891) and 32.4 years for

fathers (n ¼ 1,809).

We used the one-sample t test to compare the mean

childbearing age of the mothers of 22q11DS children

with the mean childbearing age of the general population

(see Web Resources) and stratified this by country (Table 1

and Figure 4B). To combine data from different countries,

we applied both fixed-effects and random-effects models

for the meta-analysis. The fixed-effects model assumes

that there is no heterogeneity among countries, whereas

the random-effects model does not. Under the fixed-effects

model, all countries were estimated with the assumption of

the same effect size (difference of maternal age), and so

weights were assigned to countries on the basis of the

number of families for each country. The random-effects

model did not assume the same difference for all countries.

On the basis of the results from both methods, we found

no statistically significant difference between the child-

bearing age for mothers of 22q11DS offspring and that

for the general population (Table 3). Thus, these results

do not support a hypothesis of advanced maternal age as

an etiologic factor for the finding of enhanced maternal

origin of the deletion. General population data were not

available for paternal age at the time of conception. None-

theless, we provide the paternal ages of fathers of 22q11DS

offspring for all countries in our study (Table S6).We found

comparable paternal and maternal ages (Figure S2).

Next, on the basis of the hypothesis that enhanced

maternal origin of the deletion might be a result of

increased female recombination rate in the 22q11.2

region, we considered the known female and male recom-

bination rates across chromosome 22 to explain the

maternal bias found. According to classic genetic studies,

it was shown that the female autosomal genetic-map

length is 1.6- to 1.7-fold greater than the male genetic

length and that chromosome 22 shows relatively typical

results.16–21 Figure 5 shows a summary of recombination

rates for the 22q11.2 region. The recombination rate

(cM/Mb) has been previously determined by the genotyp-

ing of multigenerational families with the use of microsa-

tellite markers,16,17,19 and a summary of the data from

the UCSC Genome Browser is shown in Figure 5B. Skewing

Table 2. Maternal Age Ranges at Childbirth in the 22q11DS Cohort

Country

Number of Mothers in Specified Age Ranges

Total15–19 Years 20–24 Years 25–29 Years 30–34 Years 35–39 Years 40–44 Years 45–49 Years

United States 24 136 271 286 133 32 2 884

Denmark 2 6 20 18 9 1 0 56

France 3 17 27 34 5 5 0 91

Switzerland 3 12 45 42 9 2 0 113

Belgium 1 18 46 27 11 0 0 103

Netherlands 2 20 68 91 37 1 1 220

Spain 1 3 7 13 1 0 0 25

Canada 3 29 53 44 17 0 0 146

United Kingdom 1 5 23 36 17 2 0 84

Italy 3 13 29 30 14 6 0 95

Israel 3 16 21 27 8 0 0 75

Total 46 275 610 648 261 49 3 1,892

The number of mothers in each age range from each country is shown. The total number of mothers analyzed (1,892) is listed at the bottom of the rightmost
column.

Table 1. Number of 22q11DS-Affected Families Organized by
Country

Country

Number of 22q11DS-Affected Families

Maternal Origin Paternal Origin

United States 884 822

Denmark 56 54

France 91 87

Switzerland 113 114

Belgium 103 102

Netherlands 220 213

Spain 25 23

Canada 146 144

United Kingdom 84 81

Italy 95 95

Israel 75 74

Total 1,892 1,809

We obtained data from individual 22q11DS-affected families in which both
parents were healthy and the affected child harbored a de novo 22q11.2 dele-
tion. The data are sorted by country.
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of recombination rate is consistent with more recent find-

ings for parent-offspring pairs analyzed with high-density

SNP markers, which indicate that the female-to-male

map-distance ratio is 2.31 for chromosomal region

22q11.2 and 1.46 for all of chromosome 22 (Figure 5C).22

These data suggest that there is an increase in the maternal

meiotic recombination rate in the 22q11.2 region. If this

is true, it might suggest that the 22q11.2 duplication

(MIM 608363) might also originate more often from

maternal de novo events. There are three complicating

features that might make testing this hypothesis difficult:

first, the 22q11.2 duplication is frequently inherited;

second, the penetrance is reduced; and third, the expres-

sivity is variable. Thus, it might be difficult to obtain the

number of subjects needed for an adequately powered

statistical study.

To determine whether our finding could be broadly

applicable to other types of chromosomal-rearrangement

disorders, we examined similar data in the available litera-

ture. In one study of 876 cases of any de novo chromo-

somal-rearrangement disorder (independent of whether it

occurred byNAHRmechanisms), 464 (53%) had amaternal

Figure 4. Range of Maternal Age at
Childbirth
(A) Range ofmaternal age at childbirth. For
each age range, determined from the
values shown in Table 2, light gray bars
indicate the percentage of mothers who
gave birth to a 22q11DS child.
(B) Average maternal age at childbirth per
country for 22q11DS offspring and normal
population controls. The average maternal
age for 22q11DS offspring was derived
from the data shown in Table 2. *Control
data were derived from the United Nations
DESA Population Division World Fertility
Data, 2008 (Web Resources).

origin of the deletion and 412 (47%)

had a paternal origin of a deletion,

suggesting a marginal maternal bias

(p ¼ 0.04).23 In a similar study of

115 individuals with de novo rear-

rangements found by karyotypic

analysis, there was a paternal bias24

(83/115 [72%]). In addition, there

was a significant paternal bias for

de novo structural variations by any

mechanism in 118 individuals with

intellectual disability as identified

by array comparative genome hybrid-

ization.25 Notably, these studies

included various types of structural

variations.

In one recent study of parent of

origin of NAHR-mediated rearrange-

ments irrespective of genomic loca-

tion, it was found that 12 of 30 were

of maternal origin and 13 of 71 were of paternal origin.26

Neurofibromatosis type 1 (NF1 [MIM 162200]) is caused

by either deletions or mutations in NF1 (MIM 613113) in

17q11.2. The NF1 deletion results from NAHR events

during meiosis. A strong maternal bias exists for the NF1

deletion, but studies were small in size.27,28 For Williams

Beuren syndrome (WBS [MIM 194050]), which results

fromNAHR events between flanking LCRs, or SDs, in chro-

mosomal region 7q11.23, we performed a meta-analysis

on existing data29–33 and found no gender bias of origin

for the 7q11.23 deletion among 471 probands: 248

(53%) were of maternal origin and 223 (47%) were of

paternal origin (two-tailed p ¼ 0.27). There is, however,

an important confounding feature for WBS in that

the presence of an inversion polymorphism32 greatly

increases risk of meiotic NAHR events.34–36 No such

inversion polymorphism exists in 22q11.2.37 In contrast,

in one study of 61 probands with Charcot-Marie-Tooth

type 1 (CMT1A [MIM 118220]; 17p11.2–p12), there was

a distinct bias for paternal origin of the de novo CMT1A

duplication,23 implying a different mechanism for this

rearrangement.
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Another factor for consideration is that the recombina-

tion rate is reduced in centromeric regions and increased

in the telomeric regions of chromosomes.38 In previous

studies using restriction fragment polymorphic39 or micro-

satellite markers16,17 and newer studies using SNP

markers,18,19 it was determined that the average female

recombination rate is 1.6–1.7 for the 22q11.2 region and

throughout the genome. This suggests that there is

a maternal bias for recombination within the 22q11.2

region, despite its location near the centromere. The

same is true for the NF1 region on 17p11.2, where the

maternal bias for origin of the de novo deletion is similar

to the enhanced female-to-male recombination-rate ratio.

The similar skewing of the female-to-male recombina-

tion-rate ratio on 17p11.2 and the absence of gender bias

of origin for the 7q11.23 deletion indicate that it is not

possible to generalize that NAHR events depend solely on

such recombination-rate factors.

This leads to the conclusion that there might be partic-

ular features that enhance the vulnerability of the

22q11.2 region in females rather than males, in addition

to the known differences in gender-based meiotic

machinery. An altered number of crossovers can lead to

chromosomal aneuploidies, particularly in female

meiosis.40 In a small haplotype-reconstruction study of

20 families for which DNA samples from three generations

of individuals were available, there were an unexpectedly

higher number of typical interchromosomal exchanges

in the pter–q11.2 region between chromosome 22 homo-

logs than in the rest of the chromosome and other pter–

q11 regions on other chromosomes.41 This suggests that

the 22q11.2 region might be particularly susceptible to

recombination during meiosis and that there might be

gender biases based in part upon differences in meiotic

processes. The two LCR22s that flank the typical 3Mb dele-

tion are over 250 kb in size. Recently, it has been suggested

that NAHR events result from ectopic chromosome

synapsis and that the likelihood of these events might

increase with increased LCR length.42 Our data suggest

that, in addition, there might be gender-specific biases in

synapsis formation during meiosis.

Recent studies have compiled catalogs of rare copy-

number variations (CNVs) in congenital-anomaly and

developmental-delay disorders and have underscored their

clinical importance.43,44 In some cases, there might be

a second pathogenic CNV that could help to explain the

variable penetrance and expressivity of associated pheno-

types.44 Further studies will be needed for more fully

understanding the molecular mechanisms responsible for

the etiology of the de novo mutations involved and the

molecular basis of their variable phenotypic expression.

Supplemental Data

Supplemental Data include two figures and six tables and can be

found with this article online at http://www.cell.com/AJHG.

Acknowledgments

We thank all the individuals and family members for participating

in this study. We also thank the many clinical support staff for

their significant effort in obtaining informed consent and blood

or saliva specimens. We appreciate technical assistance by Jidong

Shan and Ms. Debbie Lewis in the Molecular Cytogenetics Core

at the Albert Einstein College of Medicine. We appreciate the

technical support from our summer student, Levi Teitz. We

acknowledge Sylvie Laglois (BC Children’s Hospital, Vancouver,

BC, Candada), Sarah Dyack (IWK Health Centre, Halifax, NS,

Canada), and Rosanna Weksberg (Hispital for Sick Children,

Toronto, ON, Canada) for collaboration with Eva Chow. We also

thank David Reynolds and Kevin Lau for performing Sequenom

assays in the Genomics Core at the Albert Einstein College of

Medicine. We acknowledge National Institutes of Health grants

HL84410 and HD070454, which provided funds for this research.

Received: October 2, 2012

Revised: December 19, 2012

Accepted: January 31, 2013

Published: February 28, 2013

Web Resources

The URLs for data presented herein are as follows:

Online Mendelian Inheritance in Man (OMIM), http://omim.org/

UCSC Human Genome Browser, http://genome.ucsc.edu/cgi-bin/

hgGateway

United Nations DESA Population Division Word Fertility Data

2008, http://www.un.org/esa/population/publications/WFD%

202008/WP_WFD_2008/Data.html

Table 3. Maternal Age Statistics

Countries Difference of Mean Age [95% CI]

Denmark �0.2821 [�1.5993, 1.0350]

France �1.0791 [�2.2300, 0.0717]

United States 1.7425 [ 1.3810, 2.1041]

Switzerland �1.4168 [�2.2673, �0.5663]

Belgium �2.3175 [�3.1176, �1.5173]

Netherlands �0.7182 [�1.3066, �0.1298]

Spain �2.3800 [�4.2015, �0.5585]

Canada �1.3329 [�2.0551, �0.6106]

United Kingdom 2.1500 [ 1.1920, 3.1080]

Italy �1.0895 [�2.2444, 0.0654]

Israel �1.7333 [�2.9001, �0.5666]

All Countries Combined

Fixed-effects model 0.0858 [�0.1400, 0.3116]a

Random-effects model �0.7330 [�1.8078, 0.3418]b

Data are based on the United Nations World Fertility Data, 2008 (see Web
Resources). The difference between the mean childbearing age of mothers of
22q11DS individuals and that of the general population is shown as sorted
by country. The following abbreviation is used: CI, confidence interval.
aZ score ¼ 0.7447; p value ¼ 0.4565.
bZ score ¼ –1.3367; p value ¼ 0.1813.
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