Enhanced Mining of Association Rules from Data Cubes

Riadh Ben Messaoud, Sabine Loudcher Rabaséda, Omar Boussaid, and Rokia Missaoui*

Laboratoire ERIC – Université Lumière Lyon 2 – France
*Laboratoire LARIM – Université du Québec en Outaouais – Canada

General ContextOLAP context

OLAP capabilities

- Visual exploration of multidimensional data.
- Navigation through hierarchical levels of dimensions.
- Extraction of relevant information for decision-making.

OLAP limitations

- Limitation to exploratory tasks.
- Automatic explanation of associations within data.

General ContextOLAP context

OLAP capabilities

- Visual exploration of multidimensional data.
- Navigation through hierarchical levels of dimensions.
- Extraction of relevant information for decision-making.

OLAP limitations

- Limitation to exploratory tasks.
- Automatic explanation of associations within data.

General ContextProblem

An example: a sales data cube

	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Soccer shoes	\$ 9,400	\$ 10,000	\$ 12,600	\$ 10,600
Sleeping bag	\$ 20,500	\$ 13,700	\$ 52,400	\$ 21,000
Tennis racket	\$ 13,100	\$ 14,600	\$ 15,200	\$ 12,300
Bicycle	\$ 11,400	\$ 12,000	\$ 28,000	\$ 10,000

General ContextProblem

An example: a sales data cube

	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Soccer shoes	\$ 9,400	\$ 10,000	\$ 12,600	\$ 10,600
Sleeping bag	\$ 20,500	\$ 13,700	\$ 52,400	\$ 21,000
Tennis racket	\$ 13,100	\$ 14,600	\$ 15,200	\$ 12,300
Bicycle	\$ 11,400	\$ 12,000	\$ 28,000	\$ 10,000

Sales of sleeping bags are particulary high in the third quarter?

General Context

Problem

An example: a sales data cube

		Quarter 3				
		June	July	August		
Sleeping bag	Young	\$ 9,300	\$ 9,300 \$ 24,300			
	Adult	\$ 1,200	\$ 600	\$ 1,600		
	Old		\$ 300			

Explanation

- Summer season and young customers are associated with high sales of sleeping bags
- Young ∧ July ⇒ Sleeping bag

General ContextProblem

An example: a sales data cube

		Quarter 3					
		June	July	August			
Sleeping bag	Young	\$ 9,300	\$ 24,300	\$ 19,100			
	Adult	\$ 1,200	\$ 600	\$ 1,600			
	Old		\$ 300				

Explanation

- Summer season and young customers are associated with high sales of sleeping bags
- Young ∧ July ⇒ Sleeping bag

General Context

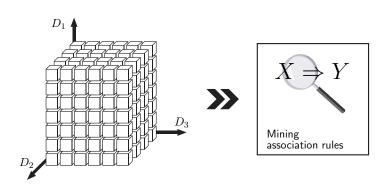
An example: a sales data cube

		Quarter 3					
		June	July	August			
Sleeping bag	Young	\$ 9,300	\$ 24,300	\$ 19,100			
	Adult	\$ 1,200	\$ 600	\$ 1,600			
	Old		\$ 300				

Explanation

- Summer season and young customers are associated with high sales of sleeping bags
- Young ∧ July ⇒ Sleeping bag

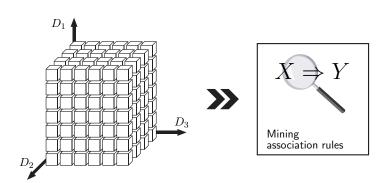
Objectives



Key idea

Mine association rules in data cubes in order to explain relationships within multidimensional data.

Objectives



Key idea

Mine **association rules** in **data cubes** in order to **explain** relationships within **multidimensional data**.

Outline

- Related Work
- Our Framework
 - Inter-dimensional meta-rules
 - Measure-based support and confidence
 - Advanced evaluation of association rules
- Proposed Algorithm
- 4 Performance Evaluation
- **5** Conclusion and Perspectives

Traditional association rules

- Agrawal et al. (1993): the mining of association rules.
- Srikant and Agrawal (1995): categorical data.
- Han and Fu (1995): multilevel association rules.
- Srikant and Agrawal (1996): quantitative association rules.
- . . .

Traditional association rules

- Agrawal et al. (1993): the mining of association rules.
- Srikant and Agrawal (1995): categorical data.
- Han and Fu (1995): multilevel association rules.
- Srikant and Agrawal (1996): quantitative association rules.

• ...

Mining association rules in multidimensional data?

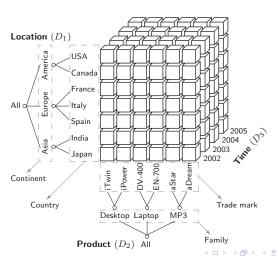
Association rules in multidimensional data

	Dimension		Leve	I	Pred	icate	Measure		Application domain	
	Intra-dimensional	Inter-dimensional	Single level	Multiple levels	Repetitive	Non-repetitive	COUNT	All measures	Market basket analysis	General
Kamber <i>et al.</i> (1997)		•	•			•	•			•
Zhu (1998)	•	•	•		•	•	•		•	
Imieliński <i>et al.</i> (2002)		•		•	•			•		•
Dong <i>et al.</i> (2004)		•		•	•			•		•
Chen <i>et al.</i> (2000)	•			•	•		•		•	
Nestorov & Jukić (2003)	•		•		•		•		•	
Tjioe & Taniar (2005)	•	•		•	•	•	•			•
Our proposal (2006)										

Association rules in multidimensional data

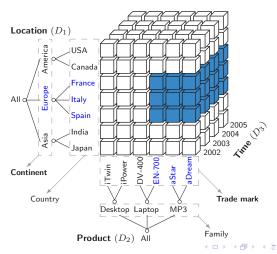
	Dimension		Level	I	Pred	icate	Measure		Application domain	
	Intra-dimensional	Inter-dimensional	Single level	Multiple levels	Repetitive	Non-repetitive	COUNT	All measures	Market basket analysis	General
Kamber <i>et al.</i> (1997)		•	•			•	•			•
Zhu (1998)	•	•	•		•	•	•		•	
Imieliński <i>et al.</i> (2002)		•		•	•			•		•
Dong <i>et al.</i> (2004)		•		•	•			•		•
Chen <i>et al.</i> (2000)	•			•	•		•		•	
Nestorov & Jukić (2003)	•		•		•		•		•	
Tjioe & Taniar (2005)	•	•		•	•	•	•			•
Our proposal (2006)		•	•			•		•		•

Sub-cube (example)



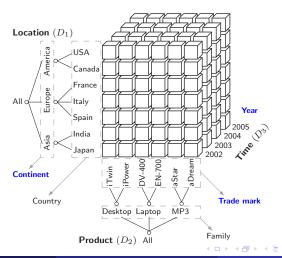
Sub-cube (example)

(Europe, {EN-700, aStar, aDream})



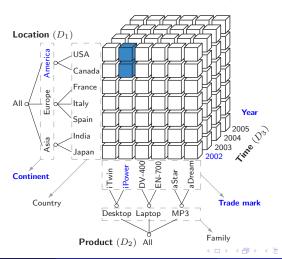
Inter-dimensional predicate (example)

 $\langle a_1 \in \mathsf{Continent} \rangle \land \langle a_2 \in \mathsf{Trade} \; \mathsf{mark} \rangle \land \langle a_3 \in \mathsf{Year} \rangle$



Inter-dimensional predicate (example)

$\langle America \rangle \land \langle iPower \rangle \land \langle 2002 \rangle$



Inter-dimensional meta-rules

We consider two distinct subsets of dimensions in the original data cube:

- $\mathcal{D}_{\mathcal{C}}$ is a subset of **context dimensions**
- ullet $\mathcal{D}_{\mathcal{A}}$ is a subset of **analysis dimensions**

Inter-dimensional meta-rules

In the context of a sub-cube according to $\mathcal{D}_{\mathcal{C}}$ Head \Rightarrow Body

ullet Head \wedge Body is an inter-dimensional predicate in $\mathcal{D}_{\mathcal{A}}$

Inter-dimensional meta-rules

Example of an inter-dimensional meta-rule

- $\mathcal{D}_{\mathcal{C}} = \{ \text{Profession, Gender} \}$
- $\mathcal{D}_{\mathcal{A}} = \{ \text{Location, Product, Time} \}$

In the context (Student, Female) $\langle a_1 \in \text{Continent} \rangle \land \langle a_2 \in \text{Year} \rangle \Rightarrow \langle a_3 \in \text{Trade mark} \rangle$

Example of an inter-dimensional rule

R₁ In the context (Student, Female)
America \land 2004 \Rightarrow Laptop

Inter-dimensional meta-rules

Example of an inter-dimensional meta-rule

- $\mathcal{D}_{\mathcal{C}} = \{ \text{Profession, Gender} \}$
- $\mathcal{D}_{\mathcal{A}} = \{ \text{Location, Product, Time} \}$

In the context (Student, Female) $\langle a_1 \in \text{Continent} \rangle \land \langle a_2 \in \text{Year} \rangle \Rightarrow \langle a_3 \in \text{Trade mark} \rangle$

Example of an inter-dimensional rule

 R_1 In the context (Student, Female) America \land 2004 \Rightarrow Laptop

Inter-dimensional meta-rules

Example of an inter-dimensional meta-rule

- $\mathcal{D}_{\mathcal{C}} = \{ \text{Profession, Gender} \}$
- $\mathcal{D}_{\mathcal{A}} = \{ \text{Location, Product, Time} \}$

In the context (Student, Female) $\langle a_1 \in \mathsf{Continent} \rangle \land \langle a_2 \in \mathsf{Year} \rangle \Rightarrow \langle a_3 \in \mathsf{Trade} \; \mathsf{mark} \rangle$

Example of an inter-dimensional rule

 R_1 In the context (Student, Female) America \land 2004 \Rightarrow Laptop

Support and confidence

With the **COUNT** measure:

- the support and the confidence are computed according to the frequency of units of facts;
- only the number of facts is taken into account to decide whether a rule is large, or strong, or not.

In OLAP context ...

 Users are usually interested in observing facts according to summarized values of measures more expressive than their simple number of occurrences.

Support and confidence

With the **COUNT** measure:

- the support and the confidence are computed according to the frequency of units of facts;
- only the number of facts is taken into account to decide whether a rule is large, or strong, or not.

In OLAP context ...

 Users are usually interested in observing facts according to summarized values of measures more expressive than their simple number of occurrences.

Support and confidence

With the **COUNT** measure:

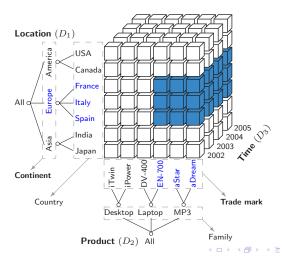
- the support and the confidence are computed according to the frequency of units of facts;
- only the number of facts is taken into account to decide whether a rule is large, or strong, or not.

In OLAP context ...

 Users are usually interested in observing facts according to summarized values of measures more expressive than their simple number of occurrences.

 \triangleright It is **more significant** to compute **support** and **confidence** according to the **SUM** of fact measures supporting the rule.

Profit(Europe, {EN-700, aStar, aDream})



Measure-based support and confidence

Key idea

With the sum-based aggregate measure:

- The rule mining process can handle any measure in order to evaluate the interestingness of extracted association rules.
- A rule is evaluated according to the quantity of measures of its corresponding facts.
- Studied associations concern the population of units of measures of these facts.
- The choice of the measure closely depends on the analysis objectives.

Advanced evaluation of association rules

Only support and confidence ...

Advanced evaluation of association rules

Only support and confidence ...

- Support and confidence usually produce a large number of association rules.
- Some of extracted association rules **may not** be **interesting**.

Advanced evaluation of association rules

Only support and confidence ...

- Support and confidence usually produce a large number of association rules.
- Some of extracted association rules may not be interesting.

Advanced evaluation of association rules

Descriptive Vs. Statistical criteria

- A statistical criterion:
 - depends on the size of the mined population;
 - loses its discriminating power and tends to take a value close to one for large number of examples;
 - requires a probabilistic approach to model the mined population.
- A descriptive criterion:
 - is easy to use and express interestingness of association rules in a more natural manner.

Advanced evaluation of association rules

Descriptive Vs. Statistical criteria

- A statistical criterion:
 - depends on the size of the mined population;
 - loses its discriminating power and tends to take a value close to one for large number of examples;
 - requires a probabilistic approach to model the mined population.
- A descriptive criterion:
 - is **easy to use** and **express interestingness** of association rules in a more **natural manner**.
- \triangleright We use **two descriptive criteria** : the **Lift** criterion (Lift) and the **Loevinger** criterion (Loev).

Advanced evaluation of association rules

For a rule $X \Rightarrow Y$:

$$Lift(R) = \frac{P_{YX}}{P_X P_Y} = \frac{Supp(R)}{P_X P_Y}$$

Interpretation (Lift)

- **Deviation** of the support of the rule from the support expected under the independence hypothesis of the head and the body.
- Scale coefficient of having the body when head occurs.
- Greater Lift values indicate stronger associations.

Advanced evaluation of association rules

For a rule $X \Rightarrow Y$:

$$Loev(R) = \frac{P_{Y/X} - P_Y}{P_{\overline{Y}}} = \frac{Conf(R) - P_Y}{P_{\overline{Y}}}$$

Interpretation (Loevinger)

- Linear transformation of the confidence in order to enhance it.
- Expresses the confidence according to the probability of not satisfying its head.
- Greater Loevinger values indicate stronger associations.

Proposed Algorithm

Search for large itemsets

Search for large itemsets

- The top-down approach:
 - starts with *k*-itemsets and steps down to 1-itemsets;
 - if a *k*-itemset is frequent, then all sub-itemsets are frequent.
- The bottom-up approach:
 - starts from 1-itemsets to longer itemsets;
 - complies with the Apriori property "for each non frequent itemset, all its super-itemsets are definitely not frequent";
 - enables the **reduction** of the **search space**, especially when it deals with **large** and **sparse** data sets.

Proposed Algorithm

Search for large itemsets

Search for large itemsets

- The top-down approach:
 - starts with *k*-itemsets and steps down to 1-itemsets;
 - if a *k*-itemset is frequent, then all sub-itemsets are frequent.
- The **bottom-up** approach:
 - starts from 1-itemsets to longer itemsets;
 - complies with the Apriori property "for each non frequent itemset, all its super-itemsets are definitely not frequent";
 - enables the reduction of the search space, especially when it deals with large and sparse data sets.

Proposed Algorithm Properties

Our algorithm

- An adaptation of the Apriori algorithm for the multidimensional data structure.
- Directly extracts inter-dimensional association rules from data cubes.
- Enables a guided-mining process according to an inter-dimensional meta-rule defined by users.
- Extracts significant rules, for OLAP users, by taking into account any measure in the cube.
- Provides advanced evaluation of extracted associations by using Lift and Loevinger.

Proposed Algorithm Implementation

Performance Evaluation

Configuration

 Food Mart data cube from Analysis Services of MS SQL Server 2000

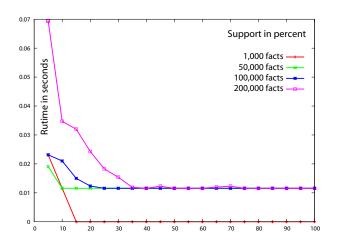
System: Windows XP

Processor: Intel Pentium 4 (1.60GHz)

• Main memory: 480MB

Performance Evaluation

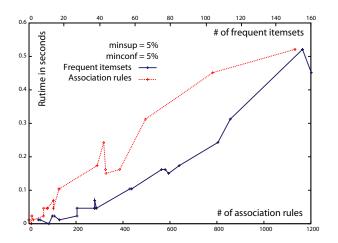
Runtime according to minsupp for different sizes



⊳ For **large** *minsupp*, the mining process has already equal response times **independently** from the **number of mined facts**.

Performance Evaluation

Runtime according to # of frequent itemsets and # of association rules



The generation of association rules from frequent itemsets is more
time consuming than the extraction of frequent itemsets themselves.

Conclusion and Perspectives

Conclusion

- **1** A general framework for a **guided mining** of **inter-dimensional** association rules from data cubes.
- Inter-dimensional meta-rule which allows users to limit the mining process to specific contexts.
- A general computation of support and confidence that can be based on any measure from the data cube.
- Wide analysis objectives not restricted to associations only driven by the COUNT measure.
- Interestingness of mined rules according to two additional descriptive criteria (Lift and Loevinger).
- An adaptation of the Apriori algorithm in order to handle multidimensional data.

Conclusion and Perspectives

Perspectives

- Extension to handle inter-dimensional association rules with repetitive predicates.
- 2 Extension to handle intra-dimensional association rules.
- **3** Embedding the **measure** in the **expression** of mined association rules.
- Profit from the hierarchical aspect of cube dimensions to mine multi-level association rules.
- Ope with the visualization for an easier interpretation of mined associations by OLAP users.
- Explore other approaches for association rule mining: closed itemset generation and non-redundant rule generation.

The end

Thank you for your attention!

Feel free to ask questions...