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Abstract

Computer simulations can complement experiments by providing insight into molecular kinetics
with atomic resolution. Unfortunately, even the most powerful supercomputers can only simulate
small systems for short timescales, leaving modeling of most biologically relevant systems and
timescales intractable. In this work, however, we show that molecular simulations driven by
adaptive sampling of networks called Markov State Models (MSMs) can yield tremendous time
and resource savings, allowing previously intractable calculations to be performed on a routine
basis on existing hardware. We also introduce a distance metric (based on the relative entropy) for
comparing MSMs. We primarily employ this metric to judge the convergence of various sampling
schemes but it could also be employed to assess the effects of perturbations to a system (e.g.
determining how changing the temperature or making a mutation changes a system's dynamics).

1. Introduction

Molecular dynamics simulations are a powerful means of understanding both the
thermodynamics and kinetics of molecular processes like protein folding and conformational
changes. Unfortunately, such processes are highly sensitive to the underlying chemical
details. For example, point mutations in the amino acid sequence of a protein may have
significant effects on its kinetics1 and a small number of point mutations can even
drastically change the native structure2. Thus, atomistic simulations are required to make
quantitative connections with experiments3,4.

Advances in computing have made it possible to rapidly generate huge data sets even at this
level of chemical detail5,6; however, these data sets are still insufficient. A typical computer
can only simulate ~5 nanoseconds/day of protein folding and would thus take over 500 years
to simulate one millisecond, an average folding time typical of proteins. Whether one is
interested in dynamics or merely equilibrium probabilities, a kinetic perspective on this
problem that explicitly considers the rate of equilibration reveals that metastability, or the
presence of long-lived states that act as “traps”, is a common source of inefficiency.

One approach to dealing with this issue is to make tremendous investments in specialized
software and hardware for generating long simulations7. While theoretically sound8, this
serial approach often only results in simulations that are long relative to standard
trajectories. However, a truly-long simulation must be orders of magnitude longer than the
slowest relaxation time so that the probabilities of all states and pathways can be estimated
accurately. Even if such a simulation were possible, the task of analyzing the data would still
remain7,9. Moreover, serial approaches are inherently inefficient, both due to parallelization
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overhead and, more importantly, the fact that they waste hundreds of years of computing
time waiting for rare events.

A statistical approach provides a fundamentally different perspective on model construction.
Rather than attempting to generate one realization of an entire process, one instead aims to
generate an ensemble of events in parallel. For example, a number of methods have been
developed for exploiting statistical mechanics to simulate protein folding more
efficiently10-13. Most of these approaches rely on the fact that in two-state protein folding,
the waiting time for observing a transition is exponentially distributed but the actual
transition times are quite rapid14. Thus, proteins often fold much faster or slower than the
average folding time. Such approaches are amenable to commodity hardware and take far
less wall-clock time than a serial approach with an equivalent amount of sampling,
particularly when combined with grid computing5. Unfortunately, these methods are
generally only applicable to two-state systems and may require simulations of an unknown
minimum length15. Some multi-state generalizations exist16 but quickly become
computationally intractable.

Markov State Models (MSMs) extend this work by allowing for a tractable, multi-state
scheme that allows efficient modeling of any system exhibiting metastability17. An MSM is
a network with nodes corresponding to metastable states and edges describing the rates of
transitioning between pairs of states, akin to a map with cities connected by roads labeled
with speed-limits. Rather than attempting to generate one realization of an entire process,
one can exploit the decomposition of conformational space into multiple metastable states to
gather statistics on each step of the process independently, allowing a problem to be broken
up into more manageable and trivially parallelizable pieces.

Mathematically, MSMs are represented as transition probability matrices, with the entry in
row i and column j giving the probability of transitioning from state i to state j within a time
interval called the lag time of the model. Building MSMs is a challenging task but
significant progress has been made over the past few years18-21, leading to freely available
software for automatically constructing these models18. While MSMs could be used to
analyze truly long simulations, their ultimate value lies in their ability to facilitate efficient
model construction by allowing precise, parallel determination of the transition rates
between states by running many short simulations from each of them.

Adaptive sampling algorithms for MSM construction take this statistical approach a step
further22-24. In adaptive sampling, one first obtains an initial model of the entire process of
interest by any means possible. One then iteratively calculates the contribution of each step
of the process to uncertainties in some observable of interest via Bayesian statistics and runs
numerous parallel simulations of the steps that can lead to the greatest increases in precision
until the desired level of statistical certainty is achieved. Such an approach was recently
shown to lead to dramatic reductions in the statistical uncertainty in the observable of
interest relative to other refinement schemes22.

However, a number of important questions remain to be answered. First, does adaptive
sampling improve the global model quality or just local components that are important for
the observable of interest? Exactly how much more efficient is adaptive sampling? And
finally, is adaptive sampling capable of discovering previously unknown components of a
model, or is it only able to refine the initial model it is given?

In this work, we address these questions using an MSM for the villin headpiece (HP-35
NleNle) that was recently constructed from atomistic simulations with explicit solvent19.
We then move on to simple models, where the role of the network is clear, to gain an
intuition for our results and test whether such methods could be more broadly applicable to a
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wide class of different types of systems. These analyses rely on a new distance metric for
MSMs developed in Section 2.2, which should prove generally useful for evaluating various
sampling schemes and even assessing the effects of perturbations to a system (like changes
in temperature or even mutations).

2. Theoretical Underpinnings

2.1 Adaptive sampling

In adaptive sampling approaches to MSM construction, simulations are run iteratively to
minimize uncertainties in some property of a model22-24. In this work, adaptive sampling is
performed as follows:

1. perform N simulations of L steps starting from a particular starting state(s)

2. build an MSM only including those states identified so far

3. calculate the contribution of each state to uncertainty in the slowest kinetic rate
following Ref 22

4. start N new simulations of L steps distributed amongst the states in proportion to
their contribution to their contribution to uncertainty in the slowest rate

5. repeat steps 2-4 for some number of iterations All the MSMs in this work were
constructed and analyzed with the MSMBuilder package (which is freely available
at https://simtk.org/home/msmbuilder/)18 modified such that transition count
matrices were not symmetrized by counting the transitions that would have been
observed if one watched each simulation backwards.

We note that in the past simulations in each round of adaptive sampling were all started
from the same initial state (the one contributing most to uncertainty in the quantity of
interest)22. The intuition behind our alteration was that as the number of simulations (N)
becomes large, starting all the simulations from one state would be excessive as fewer would
be sufficient to drastically reduce the uncertainty. Instead, it would be preferable to allocate
some of these excess simulations to reduce uncertainties in other states’ transition
probabilities. Indeed, we have found that our modified procedure yields better results for
sufficiently large N on reasonably complex networks and gives equivalent results for simple
networks and small N.

To demonstrate the utility of this algorithm, we carried out adaptive sampling with synthetic
trajectories generated from transition count matrices. To generate synthetic simulations from
a transition count matrix we first normalize each row to obtain a transition probability
matrix. At each time step (or each lag time), the next state is chosen according to the
distribution of transition probabilities for the current state. The prior described below is not
used for these calculations, so the matrices used to generate trajectories tend to be sparse.

2.2 Quantifying the similarity between MSMs

In order to monitor the convergence of any sampling scheme, it is important to first develop
a similarity metric that is capable of measuring the global quality of a test model relative to
some reference model. Such a metric would also have broad usefulness, as there are several
reasons for comparing MSMs quantitatively. For example, this metric could be used to
compare MSMs generated by two different simulation methods allowing one to directly
compare the resulting dynamics. Alternatively, one could compare MSMs generated by two
somewhat different, but related systems, such as comparing the simulations of the dynamics
of two point mutants of a given protein.
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We have developed such a distance metric for MSMs that is based on the relative entropy,
which is a common measure of the distance between two probability distributions in
information theory25 with important physical implications26. The relative entropy between
two normalized distributions P and Q, over a common set of outcomes, is

where Pi is the probability of outcome i, P is a reference distribution, and Q is some test
distribution.

An MSM consists of one normalized distribution per state, which gives the probability of
transitioning to each other state within one lag time. We define the relative entropy between
a reference and test MSM, with transition matrices P and Q respectively, as

(1)

where Pi is the equilibrium probability of state i, Pij is the probability of transitioning from
state i to state j during one lag time, and N is the number of states. Intuitively, our relative
entropy metric is the sum of the relative entropies between the transition probability
distributions for each state weighted by their stationary probabilities.

One may derive our relative entropy metric for MSMs more formally by considering that the
entropy (H) of a sample path of a stochastic process, normalized by its length, is also called
the entropy rate. An important theorem in information theory is the following:

Theorem. For an ergodic stochastic process X1, ..., Xn

For a Markov Chain, the right hand side takes a very simple form, because the conditional
entropy only depends on the previous step, which converges to the stationary distribution.

In the following, we prove a similar statement for the relative entropy between the paths of
two Markov chains as n goes to infinity. For two Markov chains p and q with state space Ω,
we would like to compute:

For simplicity, let us define lowercase xn = {X1, ..., Xn}. Then, by the chain rule for the
relative entropy, we get:

(2)
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Eq. 2.65 in Cover & Thomas27 defines the conditional relative entropy above as the
expectation of the relative entropy between the conditional distributions of Xn given xn-1,
with respect to the distribution of xn-1. This means that:

where we have grouped terms with the same final state in the “history” y, which have the
same relative entropy factor, and summed their probabilities to obtain the marginal
probability over Xn-1.

Repeating the step that led to Eq. 2 many times yields:

If the initial state is deterministic, the last term is just zero. As for the first term, as n goes to
infinity, the distribution of Xm-1 goes to the stationary distribution of p, which we call μ.
Then, using the equation for the conditional entropy,

Since the terms in the series converge to a limit, their Cesaro means converge to the same
limit, so:

The terms p(Y|Z) and q(Y|Z) are just the elements of the transition matrices of p and q
respectively, so this is equivalent to Eq. 1.

2.3 Prior for relative entropy and adaptive sampling

There is always some probability of transitioning between every pair of states, though these
probabilities may be low enough that no actual transitions are observed. To account for this,
as well as to reflect our lack of prior knowledge about the transition probabilities, we add a
pseudo-count of 1/N to every element of the transition count matrix, where N is the number
of states, before normalizing each row to find the transition probability matrix, as in Refs
22,28. The intuition behind this choice is that for a state to exist we must observe at least
one count in that state but before observing any real data the probability of this count
leading to any other state is equal. From a Bayesian perspective, these pseudo-counts equate
to a uniform prior. These pseudo-counts also prevent the relative entropy metric from
becoming infinite whenever a zero is encountered in an MSM's transition probability matrix.
It is often the case that certain transitions are not observed, so this correction is of great
practical importance.
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2.4 Villin simulations and MSM

The simulation details for the original ~450 villin simulations are described in detail in Ref
29. In short, ~450 constant temperature molecular dynamics simulations with explicit
solvent and up to 2 μs in length were run from nine initial configurations drawn from high
temperature unfolding simulations at 373 K. Ref 19 describes the construction of a 10,000
microstate MSM that faithfully reproduces the raw simulation data. For the purposes of this
work, we lumped these 10,000 microstates into 500 macrostates exhibiting metastability and
having an equivalent Markov time (15 ns). This lumping was done with the MSMBuilder
package18. The macrostates containing the nine initial configurations used during the real
simulations were used as the starting points for adaptive sampling. Simulations of just 30 ns
were used for adaptive sampling.

2.5 Simple models

The transition count matrices for simple models S and P (CS and CP respectively) are

where the entry in row i and column j gives the number of transitions observed from state i
to state j.

Mean first passage times were calculated following Ref 28. The mean first passage times for
S and P are ~13,000 and ~5,000 steps respectively. Other equilibrium properties can be
obtained by normalizing each row to obtain a transition probability matrix and then solving
for the eigenvalues and eigenvectors of this matrix. For example, normalizing the first
eigenvector (e.g. the one corresponding to an eigenvalue of 1) gives the equilibrium
probabilities of each state. Subsequent eigenvalue/eigenvector pairs give kinetic rates and
the states involved in these transitions respectively17. Once again, the MSMBuilder
package18 was used for analysis of these models.

Plots of the average relative entropy as a function of simulation number and length were
generated by running 600 simulations of 5,000 steps for each model. Average relative
entropies over 10 random samples of N trajectories from this pool were then calculated and
plotted. Similar plots for our adaptive sampling scheme were also generated by averaging
over 10 independent runs.
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3. Results and Discussion

3.1 Application to villin MSM

With these tools in place, we are now in a position to assess the efficacy of adaptive
sampling using a previously calculated MSM for the villin headpiece19 as a model system.
In particular, we would like to assess two types of efficiency. First, given our desire to push
the envelope of what is possible in a reasonable amount of time, can adaptive sampling
reduce the wall-clock time necessary to achieve a given model quality? Second, given our
desire to mitigate negative impacts on the environment, can adaptive sampling reduce the
amount of resources (in this case computer time) necessary to achieve a given model
quality?

To address these questions we have performed adaptive sampling with a variable number of
simulations per iteration generated from our villin MSM. We then assume each simulation
progresses at a rate of 5 ns/day, a typical value for modern personal computers, and compare
the convergence of our adaptive simulations to the gold-standard model from Ref 19 (that
was validated by comparison to both the raw simulation data and experiments) with the
convergence of a single long reference simulation to the same gold-standard. Convergence
to the gold-standard model is measured with our relative entropy metric for MSMs
(described in Section 2.2).

Figure 1A shows that the wall-clock time efficiency of adaptive sampling scales linearly up
to 5,000 simulations per iteration. That is, adaptive sampling with N simulations per
iteration can reduce the wall-clock time necessary to achieve a given model quality by a
factor of N for N as high as 5,000. Using more simulations will help but will only reduce the
wall-clock time by a factor of αN, where α<1. The crucial result, however, is that one can
reduce a calculation that would take decades to run with traditional methods to a calculation
that can be run in a matter of days with adaptive sampling.

Adaptive sampling can also greatly reduce the resource requirements for achieving a given
model quality. For example, Figure 1B shows the computer time necessary to achieve a
given model quality for one long simulation and adaptive sampling with a varying number
of simulations per iteration. This figure shows that adaptive sampling requires about half as
much computer time to achieve the same model quality as one long simulation. Once again,
the relative efficiency of adaptive sampling begins to fall off beyond some optimal number
of simulations per iteration.

3.2 Application to simple models

To gain an intuition for the applicability of adaptive sampling to other systems, we have also
applied it to two classic network topologies, shown in Figure 2A and defined more
thoroughly in Section 2.5. These models are representative of problems with metastability,
their equilibrium properties can be derived analytically and used as an unambiguous
reference, and truly-long simulations are feasible.

Both models have states with approximately the same equilibrium and transition
probabilities, such that differences between their behaviors can be attributed to differences
between their topologies. More specifically, states 1-6 have equilibrium populations of 6%,
1%, 1%, 1%, 1%, and 90% respectively. Drawing an analogy to protein folding, state 1 is
the unfolded state, state 6 is the folded state, and the remaining states are intermediates.
Thus, S has a single folding pathway and P has parallel folding pathways.

The reduced connectivity in S results in longer timescale transitions relative to P. In fact, the
mean first passage time (MFPT) between states 1 and 6 is about three times longer in S than
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in P, making S considerably harder to sample. In addition, such linear models are often cited
as a case where the holistic, long-trajectory approach is absolutely necessary; nevertheless,
adaptive sampling is able to learn the network more efficiently than traditional approaches,
as shown in Figure 2B. This figure shows how close various schemes can approach the true
model for S given a set amount of wall-clock time and starting from state 1 to mimic the
practice of starting protein folding simulations from an arbitrary conformation in the
unfolded state.

To provide some intuition for our distance metric, Figure 3 shows the evolution of the
relative entropy and the estimated free energy of each state in S during adaptive sampling.
Adaptive sampling was carried out by running 10 simulations from state 1 and then
repeatedly building an MSM and starting 10 new simulations from the state contributing
most to uncertainty in the slowest process. Small jumps in the relative entropy are found
each time a state with a low population is discovered (or, equivalently, when a new path is
discovered for this model) and a very large jump is evident when the most populated state,
state 6, is discovered. Slow decay occurs between these jumps. Thus, our metric is most
sensitive to state and path discovery but still captures improvements in estimates of the
transition probabilities along known paths. Such behavior is desirable as models that miss
important states or paths should be penalized more than ones with imperfect transition
probabilities.

Figure 4 shows a more thorough comparison of adaptive sampling and reference simulations
with an equal amount of sampling for various numbers and lengths of simulations.
Evaluation of the reference simulations for both S and P demonstrates that achieving a
reasonable model quality by naively starting simulations from state 1 requires simulations of
some minimal length, though this minimal length is shorter for P than S in terms of the
absolute number of steps. Moreover, adaptive sampling is able to gain valuable information
from much shorter and fewer simulations regardless of the topology of the network; that is,
whether there is a single folding pathway or multiple pathways. This figure also shows that
adaptive sampling generally benefits from using more parallel simulations but not longer
ones. An important point is that each data point in Figure 4B and 4D depends on the data
points to its left. For example, to fill in the row corresponding to simulations of length 100,
ten independent adaptive sampling runs of 50 iterations were performed. The first round of
each adaptive sampling run was used to compute average relative entropies for 1-10
simulations, the first and second round of each run (which depends on the first round) for
11-20 simulations, and so forth. As a result, there is some horizontal streakiness in these
figures. We also note that adaptive sampling results in smaller uncertainties in the relative
entropies shown in Figure 4 (see Figures S1 and S2).

Finally, we find that the scaling of adaptive sampling of our simple networks is similar to
that found for villin, as shown in Figure 5. One noteworthy difference is that our simple
models saturate (i.e. fall short of linear scaling as additional parallel simulations are run)
earlier than villin. Comparison of the two simple models also shows that S saturates before
P. For S, adaptive sampling scales linearly up to 150 parallel simulations. For P, adaptive
sampling scales linearly up to 500 simulations. The improved scaling for P is the result of
the increased complexity of the network topology of P compared to S. Each node in P has
more connections to learn and the algorithm benefits from doing this in parallel. Indeed, the
complexity of our villin model is much greater than either of these simple networks and, as
discussed previously, villin scales linearly up to 5,000 simulations per iteration. Thus, we
expect that we can achieve linear scaling well beyond 5,000 simulations per iteration for
systems that are more complex than the villin MSM that we sampled from.
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3.3 Applicability

The adaptive sampling algorithm employed here was developed for application to MSMs
with metastable states. That is, it assumes that every state has a self-transition probability
greater than 0.5 such that a simulation in one state is more likely to stay there than to
transition to a new state. This property helps to ensure a separation of timescales (fast
intrastate transitions, slow interstate transitions) and, therefore, that the model is Markovian
because a simulation can lose memory of its previous state before transitioning to a new one.
Thus, the procedure for ab initio adaptive sampling is: 1) run some initial simulations, 2)
cluster all the simulation data into microstates, 3) lump these microstates into metastable
macrostates, 4) calculate the contribution of each macrostate to uncertainties in the slowest
rate (or some other observable), 5) start new simulations from each state in proportion to its
contribution to the overall uncertainty, and 6) repeat steps 2-5 until the desired level of
statistical certainty is achieved. In the future it will be interesting to explore whether this
adaptive sampling algorithm is equally applicable to more fine grained divisions of
conformational space (e.g. at the microstate level) as the lumping stage would no longer be
necessary. In addition, recent work has shown that more fine grained MSMs are better for
obtaining quantitative predictions of experimental observables19,30,31, so it could be
advantageous to do refinement at this level.

The relative entropy metric assumes that the two models being compared have the same
state-space. Comparing two simulation data sets therefore requires the following steps: 1)
define a state space common to both datasets (i.e. by using both data sets for clustering to
define microstates and, optionally, lumping to define macrostates), 2) computing transition
probability matrices for each data set independently, and 3) computing the relative entropy
between these matrices.

4. Conclusions

Together, our results with villin and fundamental model systems demonstrate the
tremendous value of adaptive sampling. Since model quality has been assessed with a global
metric and shows strong agreement between adaptive sampling results and the true model,
we can conclude that adaptive sampling to minimize uncertainties in the slowest kinetic rate
improves the global quality of a model. Moreover, adaptive sampling is significantly more
efficient than a single long simulation, both in terms of the wall-clock time and resources
required to achieve a given model quality, up to some saturation point. In fact, adaptive
sampling with N parallel simulations requires about a factor of two less computer-time and a
factor of N less wall-clock time. Considering that N can easily be as large as 10,000 (or
more)5, this can be a truly dramatic advantage in wall-clock time, turning calculations
normally requiring decades into routine calculations on the timescale of days. Finally, since
our simulations started from just a couple of states, we can conclude that adaptive sampling
is capable of discovering new model components given no prior knowledge of the system,
and is thus useful for model construction in addition to model refinement.

The adaptive sampling method described here may be directly applied to learn models from
simulations of metastable phenomena, leading to significant resource and time savings in
fields like molecular and quantum mechanics, but is not limited to these applications. Given
a means to prepare samples within a given state, it could be applied equally well to
experimental techniques, such as single molecule FRET and force extension experiments.
More broadly, minimizing uncertainties in a model is likely to prove valuable even when
metastability is not present. Similar methods may also be useful for understanding other
complex network dynamics, as in signaling pathways.
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Figure 1.
Scaling for adaptive sampling of villin as the number of parallel simulations (N) used during
each round is varied. (A) Wall-clock time scaling as N is varied. The black line is a best fit
to the linear portion of the data (circles), which extends up to 5,000 simulations per iteration.
(B) Computer time required to achieve a given model quality (relative entropy) for various
sampling schemes. L refers to one long trajectory and the numbers refer to the number of
parallel simulations used in each iteration of adaptive sampling. All results come from
averaging over ten independent runs. Each step equates to 15 ns.
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Figure 2.
(A) The two models, S and P. (B) Distance from the true model (measured via the relative
entropy) as a function of wall-clock time for adaptive sampling versus one long simulation
of S (assuming 5 steps/day to mimic 5 nanoseconds/day in protein folding simulations). The
lines are one long simulation (dashed line) and adaptive sampling with 10 simulations of 20
steps (solid line), 10 simulations of 200 steps (dotted line), 100 simulations of 20 steps
(dash-dot line), and 1000 simulations of 20 steps (black squares) per iteration.
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Figure 3.
Relative entropy (top) and free energy of each state in kcal/mol (bottom) as a function of the
adaptive sampling iteration on model S.
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Figure 4.
Distance from the true model (measured via the relative entropy) as a function of the number
and length of simulations averaged over 10 independent samples. (A) Reference distribution
for S, (B) adaptive sampling of S, (C) reference distribution for P, and (D) adaptive
sampling of P. All simulations for the reference distributions started from state 1. The first
10 simulations for adaptive sampling started from state 1 and subsequent batches of
simulations started from the state contributing most to uncertainty in the slowest process.
Black lines are contours of equal amounts of data.

Bowman et al. Page 15

J Chem Theory Comput. Author manuscript; available in PMC 2013 April 26.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 5.
Scaling for adaptive sampling of our simple models as the number of parallel simulations
(N) used during each round is varied. (A) and (B) Wall-clock time scaling as N is varied for
simple models S and P respectively. The black line is a best fit to the linear portion of the
data (circles). (C) and (D) Computer time required to achieve a given model quality (relative
entropy) for various sampling schemes applied to S and P respectively. L refers to one long
trajectory and the numbers refer to the number of parallel simulations used in each iteration
of adaptive sampling. All results come from averaging over ten independent runs.
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