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Abstract. In this article we introduce Line Smoothness-Increasing Accuracy-Conserving Multi-Resolution Analysis
(LSIAC-MRA). This is a procedure for exploiting convolution kernel post-processors for obtaining more accurate multi-
dimensional multi-resolution analysis (MRA) in terms of error reduction. This filtering-projection tool allows for the transition
of data between different resolutions while simultaneously decreasing errors in the fine grid approximation. It specifically allows
for defining detail multi-wavelet coefficients when translating coarse data onto finer meshes. These coefficients are usually not
defined in such cases. We show how to analytically evaluate the resulting convolutions and express the filtered approximation
in a new basis. This is done by combining the filtering procedure with projection operators that allow for computational
implementation of this scale transition procedure. Further, this procedure can be applied to piecewise constant approximations
to functions, as it provides error reduction. We demonstrate the effectiveness of this technique in two and three dimensions.
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1. Introduction. Approximating multi-scale phenomena accurately and efficiently has its significance
illustrated in such areas as turbulence modeling and kinetics among many other applications. Of considerable
importance is the ability to match data on a coarse grid with that on a fine grid. Multi-resolution analysis
(MRA) is one technique that is useful in accomplishing such a task [2, 11, 1, 22]. MRA expresses the
approximation in terms of averages and differences, with the differences being the details between a fine
grid approximation and coarse grid approximation. The MRA approximation usually starts at the finest
grid and moves to a coarser grid. The reverse is a challenging procedure as the difference coefficients that
allow for higher levels of resolution do not exist. In this paper, we introduce a procedure which allows
for approximating the difference coefficients as well as error reduction when moving to a finer grid. To
accomplish this, we introduce Line Smoothness-Increasing Accuracy-Conserving multi-resolution analysis
(LSIAC-MRA). As the name suggests, it relies on the Line SIAC filter found in [10] that is an improvement
over the tensor-product SIAC filters [6, 9, 20]. Previously, SIAC filters were used for one-dimensional MRA
in [17]. We present the necessary operators and algorithms to accomplish this task as well as demonstrating
its effectiveness on two- and three-dimensional functions. Aside from demonstrating that LSIAC-MRA can
reduce the errors with mesh refinement, we show that it is also effective on piecewise constant approximations.

Multi-resolution Analysis (MRA) is a useful technique for moving data between successive mesh
refinements. Initially introduced in the 1980s by Meyer and Mallat [21, 25], the MRA framework was
extended to discrete data representations by Harten [1] and expanded with the addition of multi-wavelets
by Alpert [2]. MRA-based wavelet techniques have found application in a variety of numerical methods for
partial differential equations [3, 7, 11, 22, 24]. A survey of wavelet-based methods in fluid mechanics can be
found in [14]. MRA is based on the idea that an approximation can be represented as a linear combination
of scaling functions, which are typically the approximation basis, and wavelets. The scaling functions give
the averages of the approximation over a coarse grid and the wavelet information contains the information
necessary to move to a finer grid. Mathematically, the expression is the following:

(1.1) ufh(x, t)︸ ︷︷ ︸
fine grid approximation

= uch(x, t)︸ ︷︷ ︸
coarse grid information

+
N∑

j=1

p∑

k=0

dNk,j(t)ψ
c
k,j(x)

︸ ︷︷ ︸
details necessary to move to a finer grid

.

In this article, we use the basis functions for the multi-wavelet space given by Alpert, ψck,j(x). These
multi-wavelets are associated with the piecewise orthonormal Legendre approximation given in [2]. In this
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expression, both the scaling functions and wavelets are piecewise polynomials of degree p. We expect that
this procedure can be extended to generalized wavelets.

In creating this variant of Nyström reconstruction [16], we utilize the LSIAC filter [10] for multi-
dimensional data. Nyström reconstruction also uses convolution for accurate reconstructions. For LSIAC-
MRA, it allows for reducing the computational cost of the multi-dimensional filtering operation by introduc-
ing a one-dimensional support for the convolution kernel.

Pairing Smoothness-Increasing Accuracy-Conserving (SIAC) post-processing with the multi-resolution
analysis presented in [2, 11] is natural. Although SIAC has broad applicability, it has mostly been developed
for discontinuous Galerkin (DG) methods, which rely on a piecewise polynomial approximation basis. An
introduction to this pairing in one-dimension can be found in [17]. However, the multi-dimensional equiva-
lent is challenging as discussed in Section 4. Therefore in order to get to this stage we discuss the necessary
background in multi-resolution analysis (Section 2.2), followed by Line SIAC filters (Section 2.3) before in-
troducing LSIAC-MRA as a means to approximate difference coefficients. Demonstration of the effectiveness
of this technique can be found in Section 5.

2. Background. In the following sections we present the ideas necessary for understanding enhanced
multi-resolution analysis for multi-dimensions. To better illustrate the ideas, we begin with a discussion of
the one-dimensional ideas covered in [17].

2.1. Input Data Format. For ease of discussion, we will assume our data is given in a modal format.
This generalizes to the nodal format by simply assuming that the approximation basis is the Lagrange
polynomial basis. Therefore, we describe the procedure for constructing projected approximations for higher
dimensional quadrilateral and hexahedral meshes under consideration. In the following, we discuss the
definitions necessary to implement LSIAC-MRA.

For a given function u(x), we wish to construct a piecewise-polynomial approximation uh(x). To do
so, we utilize the following notation: A multi-index α = (α1, . . . , αn) is an n-tuple of non-negative integers.
Define |α| =

∑n
i=1 αi, and ∂α = ∂α1 . . . ∂αn , where ∂αi = ∂αi

∂xαi . Let x = (x1, . . . , xd). Consider a d-
dimensional rectangular domain and its partition into Nd d-dimensional rectangular elements: Ω = ∪β∈BTβ ,
where the indexing set is given by

B = {β ∈ Nd : ‖β‖`∞ ≤ N}.

Utilizing the form of a discontinuous Galerkin type approximation, we define an approximation space over
our partition that will contain piecewise polynomials in d variables up to a given degree p:

V ph = {v ∈ L2 : v ∈ Pp(Tβ), β ∈ B},

where h is typically associated with the mesh size. We approximation u(x) via L2−projection, that is on a
given element Tβ , we write

uh(x)
∣∣∣
Tβ

=
∑

‖α‖`∞≤p
uβαφ

β
α(x), 〈u, φβα〉Tβ = 〈uh, φβα〉Tβ ,

where {φβα}‖α‖`∞≤p is a basis for our approximation space on Tβ . Note the standard approximation space
notation above conflicts with the Multi-resolution analysis notation to be used below. For our purposes we
equate V ph and V pn when N = 2n.

2.2. Multi-Resolution Analysis. Multi-resolution analysis (MRA) introduced in [21, 25] provides
a framework in which to analyze modal approximations under scale transition. Specifically, MRA views
approximations as belonging to a hierarchy of nested approximation spaces, where transition between scales
is simply the addition or removal of finer-detail basis functions called multi-wavelets. To better express the
utility of this setting as it relates to our modal projections, we provide a brief summary of MRA as detailed
in [17]. More in depth introductions to multi-resolution analyses generated by scaling functions can be found
in [2, 3, 4, 7]. For ease of presentation, the one-dimensional case is given.

Consider a nested sequence of approximation spaces

V p0 ⊂ V p1 ⊂ . . . ⊂ V pn ⊂ . . . ,
2



where each approximation space is given by

V pn = {v : v ∈ Pp(Inj ), j = 0, . . . , 2n − 1},

with
Inj = (−1 + 2−n+1j,−1 + 2−n+1(j + 1)), j = 0, . . . , 2n − 1.

Denote by {φk(x)}pk=0 the orthonormal basis on the coarsest mesh consisting of one element, n = 0.
These basis functions are called scaling functions, owing to fact that the systematic manner in which our
approximation space and the underlying mesh is refined allows for construction of bases for any V pn simply
by scaling and translating the coarse mesh basis functions. For example, the basis functions for V pn can be
chosen as

φnk,j = 2n/2φk
(
2n(x+ 1)− 2j − 1

)
, k = 0, . . . , p, j = 0, . . . , 2n − 1.

We can then express our global modal approximation on a mesh of N = 2n elements as

(2.1) uNh (x) = 2−n/2
2n−1∑

j=0

p∑

k=0

ukjφ
n
k,j(x).

The intermediary information which is required to advance from a coarse approximation space V pn to a finer
approximation space V pn+1 is contained within the wavelet space W p

n which is defined as the orthogonal
compliment of V pn in V pn+1:

V pn+1 = V pn ⊕W p
n , W p

n ⊂ V pn+1, W p
n ⊥ V pn .

Inductively, this hierarchy allows the expression of the fine-mesh approximation space as the direct sum of
the coarsest mesh approximation spaces and the intermediary wavelet spaces:

V pn = V p0 ⊕W p
0 ⊕W p

1 ⊕ · · · ⊕W p
n−1.

Alternatively, this means our fine-mesh approximations are simply coarse mesh approximations plus details
contained within these wavelet spaces. We denote the basis functions for W p

n by ψnk,j , k = 0, . . . , p, j =
1, . . . , 2n−1. These functions are known as multi-wavelets. Decomposing our approximation in an analogous
manner to our approximation spaces, we have that our fine-mesh approximation is just the sum of a coarse
mesh approximation (on a mesh consisting of N elements) and the details provided by the multi-wavelets:

ufh(x) = uNh (x) +
2n−1−1∑

j=0

p∑

k=0

dnk,jψ
n
k,j(x).

An illustration of this idea in two-dimensions is given in Figure 2.1. As a result, we see that one manner of
obtaining fine-mesh approximations is to take a coarse-mesh approximation and add a linear combination of
multi-wavelets, where the detail coefficient dnk,j serve as the weights. Note that the magnitude of the detail
coefficients dnk,j is determined by the local regularity of the function being approximated [7]. The difficulty
is that when approximation information is only given on a coarse grid, we do not have these finer details.
SIAC-MRA [17] enables a way of approximating detail coefficients d̂nk,j when only coarse mesh information
is given. Or, as an alternative for moving approximations from a coarse mesh to a fine mesh.

2.3. Multi-dimensional SIAC Filter. The Smoothness-Increasing Accuracy-Conserving (SIAC)
post-processor is a convolution kernel originally designed to enable superconvergence in finite element meth-
ods [6, 20]. They have since been extended for derivatives, boundaries and nonlinear hyperbolic equations
[18, 19, 12, 13, 23] as well as mesh adaptivity [8]. The SIAC filter has been generalized for application to
higher dimensional data using two methods [10, 20]: the first is a tensor product SIAC filter, whereby a
convolution kernel is constructed by taking the tensor product of multiple one-dimensional SIAC kernels;
the second is to construct a Line SIAC filter (L-SIAC), which is simply a one-dimensional SIAC kernel that
has been rotated to align with a non-Cartesian axis. Both of these techniques rely on understanding the
one-dimensional kernel presented in this section.
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Scaling function space
S3

S2

S1

S0

Multi-wavelet space
D2

D1

D0

Fig. 2.1. Illustration of the two-dimensional multi-wavelet idea. The approximation at the finest level, S3, can be
represented as the approximation from the S1 scaling function space plus the multi-wavelet coefficients from wavelet spaces D1

and D2.

In one dimension, the SIAC filtered approximation is defined by

(2.2) u?h(x) = KH ? uh =

∫ ∞

−∞
K

(r+1,`)
H (x− y)uh(y) dy,

where the convolution kernel KH(x) = 1
HK

(
x
H

)
is a scaled linear combination of r + 1 central B-splines of

order `, that is normalized in L1:

K(r+1,`)(t) =

r/2∑

γ=−r/2
cγB

(`)
(
t+ γ

)
.

The coefficients cγ are chosen so that the kernel reproduces polynomials (consistency and moments) up to
degree r:

K(r+1,`) ? xk = xk for k = 0, . . . , r,

while the central B-splines are piecewise polynomials defined recursively via the relation

B(1) = χ[−1/2,1/2)

B(n+1) = B(n) ? B(1)

=
1

n

[
(n/2 + t)B(n)(t+ 1/2) + (n/2− t)B(n)(t− 1/2)

]
.

Central B-splines are used in the kernel construction as they provide finite support to the kernel, while allow-
ing derivatives of the kernel to be expressed as divided differences. This later property and the preservation
of moments condition are crucial in deriving error estimates [6, 12, 15]. An introduction to B-splines and
their properties can be found in [5]. The kernel is scaled by a parameter H typically set as the uniform
element width h. To enable superconvergence in DG approximations, we require r = 2p and ` = p+ 1. This
allows for our filtered approximation to obtain O(h2p+1) errors in the L2−norm and L∞-norm for linear
hyperbolic equations.

In two dimensions, the Line SIAC filter is given by

(2.3) u?h(x) =

∫

Γ

K
(r+1,`)
Γ,H (t)uh(t) dt,

where
Γ(t) = x + t(cos(θ), sin(θ)),

and

K
(r+1,`)
Γ,H (t) =

r/2∑

γ=−r/2
cγB

(`)
H (t− γ) =

1

H

r/2∑

γ=−r/2
cγB

(`)
( t
H
− γ
)
.(2.4)

4



The angle of rotation θ and the scaling parameter H are selected to be

θ = tan−1

(
hx2

hx1

)
, H = hx1 cos(θ) + hx2 sin(θ).(2.5)

In this article we choose the uniform mesh diagonal, θ = π/4, and subsequently H =
√

2hx1 =
√

2hx2 . In
higher dimensions we simply need to choose a new orientation and scaling factor. In three-dimensional space,
the filtered approximation is given similarly where the line Γ parameterized by t is given by

(2.6) Γ(t) = x + t
(

cos(θ) sin(φ), sin(θ) sin(φ), cos(φ))
)

= x + tv,

with θ, φ being the orientation of the line in spherical coordinates. Because our approximation lies on a
uniform three-dimensional mesh, the line filter will be aligned with one of the four diagonals connecting
antipodal points of the cubic element. Hence, we choose H =

√
3h, where h is the uniform mesh spacing,

and θ = π/4, φ = tan−1
(√

2
)
. This results in the direction vector v = 1√

3
(1, 1, 1).

The utility of the L-SIAC filter is its ability to filter higher-dimensional data without increasing the
dimensionality of the kernel support. This makes it an alternative to the tensor product filter when evaluating
the convolution via quadrature sums. For example, in 2D for a quadratic approximation it can reduce the
number of quadrature sums from 4000 to ten [10]. Additionally, the constant in the error estimate is reduced
for the filtered solution. We consider the L-SIAC filter specifically because of its reduced and rotated kernel
support in this context. The ability to manipulate the kernel orientation and dimensionality is anticipated
to be useful in generalizing to triangulations due to the nature of the multi-variate basis functions.

3. Multi-dimensional Line SIAC-MRA. In this section, we introduce Line SIAC for more accurate
multi-resolution analysis. This procedure allows us to obtain detail coefficients for moving information to
successively finer grids. These detail coefficients are obtained for a uniform mesh by setting r = 2p and ` = 1
in the LSIAC filter (Equation (2.4)). This ensures enough moments in the underlying data are respected as
well as ensuring that over-smoothing does not occur. For this choice of parameters, the filter coefficients are
given by the equation

(3.1)

p∑

γ=−p
cγ

1

m+ 1

[(
1

2
− γ
)m+1

+

(
1

2
+ γ

)m+1
]

=

{
1, m = 0

0, m = 1, . . . , 2p
.

As presented in [17], the one-dimensional convolution, (2.2), can be analytically calculated and thereby
allows for expressing our filtered approximation in a new basis. As a result of the ordering of mesh and
kernel breaks, we have a piecewise definition for the filtered approximation itself:

u?h(x) =

{∑p+1
m=0 d

j
mχ

m
L (ζ), ζ ∈ (−1, 0)∑p+1

m=0 d̃
j
mχ

m
R (ζ), ζ ∈ (0, 1)

,

for each element. Here ζ = ξj(x) represents a local element mapping. The filtered basis functions χmL and
χmR used in this article and their associated coefficients are given in the supplementary materials. Assuming
that our initial approximation is in V pn and letting N be the number of elements of this approximation space,

denote the fine-mesh approximation by ufh = Pn+1u
?
h, where Pn+1 represents the projection operator onto

the approximation space V pn+1 consisting of 2N elements. To obtain the fine-mesh modal coefficients in the

ansatz ufh(x)
∣∣
In

=
∑p
k=0 u

n
kφ

n
k (x), n = 1, . . . , 2N we require

〈ufh, φjm〉In = 〈u?h, φjm〉In , m = 0, . . . , p.

Having determined our fine-mesh approximation ufh = Pn+1u
?
h, we can isolate the multi-wavelet

component simply by subtraction of the coarse-approximation in Equation (2.1):

(3.2)

2n−1−1∑

j=0

p∑

k=0

d̂nk,jψ
n
k,j(x) = Pn+1u

?
h − uh,

5



where ψnk,j are the basis functions of the multi-wavelet space. These alternative multi-wavelet coefficients
provide an improvement to our approximation, and the SIAC-MRA procedure provides a definition for them.
This allows for effectively transitioning the approximation onto a finer mesh. Additionally, it only requires
coarse mesh data to be constructed. This differs significantly from traditional MRA where multi-wavelet
coefficients are intrinsically dependent upon the initial function u, which means that we cannot construct
multi-wavelet coefficients for improving our approximation if only coarse modal data is available.

Knowing the form of the filtered approximation, we can map the coefficients to the fine-mesh modes
simply by application of a projection operator. Furthermore, knowing the forms of the filtered approximation
allows us to discretize this procedure and construct projection matrices to perform this scale transition. This
will be discussed further in the implementation Section 4.

As demonstrated in [17], repeated application of the filtering-projection procedure results in increasingly
better approximations. It should be noted that SIAC-MRA is mesh-dependent in that our ability to simplify
the convolution is intrinsically linked to patterns in the mesh construction. In this paper we consider uniform
quadrilateral and hexahedral meshes, to generalize this procedure to higher dimensional spaces and introduce
LSIAC-MRA.

In a manner analogous to the one-dimensional case [17], we can take advantage of the simplicity of
the kernel’s B-spline components and the predictability of the element boundaries to analytically evaluate
the convolutions given by Equation (2.3). Following this procedure, and letting ζx = ξi(x), ζy = ξj(y),
and ζz = ξk(z) denote the mapping of our filtering point to the reference element, we obtain the following
expressions for our filtered approximations:

For the two-dimensional Line SIAC, the filtered approximation can be written as

(3.3) u?h(x, y) =
∑

P={L,M,R}

p∑

m=0

p∑

r=0

aS,P,i,jm,r χm,rS,P (ζx, ζy),

where (x, y) belongs to region S of element (i, j). These regions are delineated in Figure 4.1. The P index
results from splitting up the convolution into “left”,“middle”, and “right” components owing to element
breaks. Analogously, the three-dimensional LSIAC filtered approximation can be written as

(3.4) u?h(x, y, z) =
∑

P={L,LM,RM,R}

p∑

m=0

p∑

r=0

p∑

`=0

aS,P,i,j,km,r,` χm,r,`S,P (ζx, ζy, ζz),

where (x, y, z) belongs to region S of element (i, j, k), where again the P index denotes an ordering with
respect to element breaks. A description of the aforementioned regions and an associated classification
scheme are provided in the supplementary materials.

In two dimensions, the LSIAC implementation requires 6 quadrature domains per element. In three
dimensions there are 24 quadrature domains per element. Note that for the L-SIAC filters, more complicated
integrals of shifted Legendre Polynomials are produced. Though the reduced dimension of the L-SIAC kernel
support means less information is needed to compute the a coefficients, the integrand is no longer separable
which leads to more complicated functions in the expansion. All the χ functions and their associated
coefficients are detailed in the supplementary materials. Much the same as in one dimension, we can project
these filtered approximations onto the finer mesh, and thereby construct fine-mesh approximations. The
only difference is that we are now projecting onto either the quadrant or octants of reference element in two
and three dimensions respectively. In the L-SIAC case this requires us to account for the piecewise definition
of the filtered approximations and split up projections according to the associated domains of definition.

In what follows, we demonstrate the performance of LSIAC-MRA . Because ψ(1)(x) = χ[−1/2,1/2)(x), we
are able to analytically evaluate the convolution for the L-SIAC kernel by easily accounting for mesh and
kernel breaks. This enables us to obtain a closed form expression for the filtered approximation expressed
in a new basis and allows for our improved multi-resolution analysis technique.

4. Implementation. In this section we describe a brief overview of the implementation of 2D LSIAC-
MRA as the same ideas extend to higher dimensions. Additional details on the filtered approximation basis
functions and a computational algorithm are included in the supplementary materials.

4.1. Transition Operators. Given coarse-mesh modal information, we wish to construct transition
matrices for mapping the coarse-mesh modal coefficients to their refined fine-mesh counterparts. In our

6



Element Filter Region Kernel Support

Q1 T Q2 T Q3 T

Q1 B Q4 B Q3 B

Fig. 4.1. 2D depiction of the varying element overlap of the L-SIAC kernel resulting in varying filtered approximation
forms for p = 0. The element is shaded in gray, filter region has diagonal lines, and the kernel support is encapsulated by
dashed lines. The filter region represents the location of possible filtering points, and the kernel support represents the overlap
of the kernel support for those filtering points.

discrete setting these transition matrices are the composition of the discrete filtering and projection matrices
T = Pn+1KH . In two dimensions we will have a separate transition matrix for each quadrant. It is important
to note that the sequencing of mesh and kernel breaks, and the elements within the kernel’s support varies
from region to region (see Figure 4.1). As can be seen when computing the refined approximation, we must
project our filtered approximation onto the finer mesh. In the 2D L-SIAC case we must sum the projections
over the two triangular regions composing quadrants I and III. This requires different transition matrix
construction from quadrant-to-quadrant. In the following we outline the construction procedure and refer
the reader to Figure 4.2 for a depiction of the effects of each matrix in the composition for the case p = 0.

For the purposes of performing the enhancement procedure via matrix operations it is important to have
a standard ordering for the modal information. As constructing the transition matrices is easier if modal
coefficients are grouped by element, we denote the (N2(p+ 1))2 × 1 vector of modal coefficients by

~u =
[
~u1 | . . . | ~uN

]T
,

where
~uj =

[
~u1,j . . . ~uN,j

]
,

~ui,j =
[
~ui,j0 | . . . | ~ui,jp

]
,

and
~ui,jky =

[
ui,j0,ky | . . . | ui,jp,ky

]
.

4.1.1. Sifting Matrices. All of the coefficients in (3.3) fit the form

(4.1) ai,jm,r(qx, qy) =

p∑

γ=−p
cγu

i+γ+qx,j+γ+qy
kx,ky ,

where qx, qy ∈ {−1, 0, 1} are uniquely determined by the region S and position P as detailed in the sup-
plementary materials. To compute these coefficients, a selection matrix, denoted S i,j , is first constructed.

7



Assuming periodic boundary conditions, this matrix will select all modal values from the (2p+ 3)2 elements
about element (i, j). We will later further pair this information to only those elements under the line filter’s
support. Define the (2p+ 3)N(p+ 1)2 ×N2(p+ 1)2 matrix Sj by

Sj =




. . .
... . .

.

. . . ωj(m, r)IN(p+1)2×N(p+1)2 . . .

. .
. ...

. . .




where

ωj(m, r) =





1, j 6= N & p+ 2−m+ r = j mod (N)

1, j = N & p+ 2−m+ r = j or 0

0, else

,

for m = 1 : (2p+ 3) and r = 1 : N . This matrix selects the relevant j-coordinates:

Sj~u = [uj−(p+1) . . . uj+(p+1)]T .

Next, construct an (2p + 3)(p + 1)2 × N(p + 1)2 matrix S̃i to select the relevant i−coordinates from
within each vector. Define

S̃i =




. . .
... . .

.

. . . ωi(m, r)I(p+1)2×(p+1)2 . . .

. .
. ...

. . .




for m = 1 : (2p+ 3) and r = 1 : N . We have that

S̃iuj = [ui−(p+1),j . . . ui+(p+1),j ]T .

Hence, defining S i,j to be the (2p+ 3)2(p+ 1)2 ×N2(p+ 1)2 matrix given by

S i,j =



S̃i 0

. . .

0 S̃i


Sj ,

where there are (2p+ 3) S̃i matrices on the diagonal, we have

S i,ju =
[
[ui−(p+1),j−(p+1) . . . ui+(p+1),j−(p+1)] . . . [ui−(p+1),j+(p+1) . . . ui+(p+1),j+(p+1)]

]T
= ũi,j

which, as stated previously, only contains modal information from the (2p + 3)2 elements around element
(i, j).

Now we construct an intermediary matrix C qx,qy whose function is to select the elements from ũi,j

which fall within the support of the line integral as affected by the shifting arguments (qx, qy). Define the
(2p+ 1)(2p+ 3)(p+ 1)2 × (2p+ 3)2(p+ 1)2 matrix Cqy by

Cqy =



δ−1,qy I δ0,qy I δ1,qy I 0

. . .
. . .

. . .

0 δ−1,qy I δ0,qy I δ1,qy I


 ,

where δ is the Kronecker delta and I is the (2p+ 3)(p+ 1)2 × (2p+ 3)(p+ 1)2 identity matrix. This matrix
has the effect of further restricting the relevant j−indices based off the shifting argument qy. Then define
the (2p+ 1)(p+ 1)2 × (2p+ 3)(2p+ 1)(p+ 1)2 matrix C qx by

C qx =




δ−1,qxI δ0,qxI δ1,qxI 0
R2

...
R2p+1


 ,

8



S i,j

(1)

C qx,qy

(2)

A

(3)

P 2T
( )

(4)(5)

Ki,j
qx,qy

Fig. 4.2. Purpose of transition matrix components during refinement procedure: (1) → (2) Select modes from elements
relevant to refining element (i, j), (2)→ (3) Select only the modes relevant to filtering a given region, in this case 2T , (3)→ (4)
Use that modal information to obtain filtered approximation coefficients, (4) → (5) Obtain fine mesh modes by projecting the

filtered approximation onto the refined mesh. Notice that Ki,j
qx,qy = AC qx,qyS i,j .

where I is (p+ 1)2× (p+ 1)2, and Rj is the first block row defined above with the non-zero entries translated
(j − 1)(2p + 4)(p + 1)2 places to the right. We then have the desired (2p + 1)(p + 1)2 × (2p + 3)2(p + 1)2

intermediary matrix C qx,qy given by the composition

C qx,qy = C qxCqy .

Applying this matrix produces:

C qx,qy ũi,j = ũi,jqx,qy = [ui−(p−qx),j−(p−qy), . . . , ui+(p+qx),j+(p+qy)]T ,

which are the modal coefficients appearing in (4.1).

4.1.2. Coefficient Matrices. We now describe the construction of a matrix for computing (4.1) from
the sifted modal coefficients. Define the matrix A to be the (p+ 1)2 × (2p+ 1)(p+ 1)2 matrix given by

A =
1

2




c−pI 0 | . . . | cpI 0
0 c−pI 0 | . . . | 0 cpI 0

. . . | . . . | . . .

0 c−pI | . . . | 0 cpI




where the identity matrices are (p+ 1)× (p+ 1). This is the matrix used to perform the summation and
leads to

Aũi,jqx,qy = ~ai,j(qx, qy)

where

~ai,j(qx, qy) = [ai,jr=0 . . . ai,jr=p]
T (qx, qy)

with

ai,jr (qx, qy) = [ai,j0,r(qx, qy) . . . ai,jp,r(qx, qy)].

Hence, the seven coefficient matrices Ki,j
qx,qy are defined by the composition

Ki,j
qx,qy = AC qx,qyS i,j

9



and give

Ki,j
qx,qyu = ~ai,j(qx, qy).

Rather than concatenating these matrices at this point in the procedure, we will wait until after applying
the projection in order to minimize the number of transformations performed. It is important to note that
each choice of (qx, qy) computes a different set of coefficients pertaining to a different set of basis functions,
each of which is required for obtaining the enhanced approximation.

4.1.3. Projection Matrices. We now discuss the procedure necessary to perform the projections.
Because of the different filtered approximation forms in each quadrant, we must perform each projection
slightly differently. Quadrants II and IV are similar as are I and III. Here we detail a procedure for QII.

QII. In QII we define the projection of this approximation by ufh|K2i−1,2j (x, y) where the new modal
coefficients are computed by

〈u?h, φkxφky〉QII = 〈ufh, φkxφky〉QII(4.2)

= u2i−1,2j
kx,ky , kx, ky = 0, . . . , p, i, j = 1, . . . , N.(4.3)

To account for the change in domain scaling define ξx(ζx) = ζx−1
2 and ξy(ζy) =

ζy+1
2 . We have

u2i−1,2j
kx,ky =

p∑

m=0

p∑

r=0

∫ 1

−1

∫ 1

−1

{
ai,jm,r(−1, 0)χm,r2T,L(ξx, ξy)

+ai,jm,r(0, 0)χm,r2T,M (ξx, ξy)

+ai,jm,r(0, 1)χm,r2T,R(ξx, ξy)
}
φkx(ζx)φky(ζy) dζy dζx.

This expression will be broken up into three separate integrals, one for each of the different χ( ) functions
where ( ) ∈ {L,M,R}. For each χ( ), define

P( )(kx, ky,m, r) =

∫ 1

−1

∫ 1

−1

χm,r(2T, )(ξx, ξy)φkx(ζx)φky(ζy) dζy dζx.

Define the projection matrix P 2T
( ) by

P 2T
( ) =

[
~P (0, 0) . . . ~P (p, 0) . . . ~P (0, p) . . . ~P (p, p)

]T
,

where
~P (kx, ky) = [P (kx, ky, 0, 0) . . . P (kx, ky, p, 0) . . . . . . P (kx, ky, 0, p) . . . P (kx, ky, p, p)]T .

Hence, we have

uf2i−1,2j = P 2T
L ~ai,j(−1, 0) + P 2T

M ~ai,j(0, 0) + P 2T
R ~ai,j(0, 1).

Noting the necessary choice of Ki,j
qx,qy to obtain each of the coefficient vectors, we have

uf2i−1,2j = (P 2T
L Ki,j

−1,0 + P 2T
M Ki,j

0,0 + P 2T
R Ki,j

0,1)~u.

Denoting this composition by T 2
i,j we can concatenate these matrices together to obtain the global transition

matrix T 2 defined by

T 2 =
[
T 2

1,1 . . . T 2
N,1 | . . . | T 2

1,N . . . T 2
N,N

]T
,

such that

uf2 = T 2u.

QIV. The projection matrices for quadrant IV are the same except that the quadrant IV basis function
are used and the change of variables are instead ξx(ζx) = ζx+1

2 and ξy(ζy) =
ζy−1

2 .
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QIII. The cases of quadrants I and III are similar in that a change of variables must be applied to split
the integrals over the quadrant into a pair of integrals over diagonals of that quadrant. Beginning with the
integral over the whole quadrant, we have

ū2i−1,2j−1
kx,ky = 〈u?h, φikxφjky〉QIII

=

∫ 1

−1

∫ 1

−1

u?h|QIII(ξx(ζx), ξy(ζy))φikx(ζx)φjky(ζy) dζy dζx,

where ξx = ζx−1
2 and ξy =

ζy−1
2 . Breaking this up into integrals over 3T and 3B we have

ū2i−1,2j−1
kx,ky =

∫ 1

−1

∫ 1

ζx

u?3T (ξx, ξy)φikx(ζx)φjky(ζy) dζy dζx

+

∫ 1

−1

∫ ζx

−1

u?3B(ξx, ξy)φikx(ζx)φjky(ζy) dζy dζx.

Now to use Gauss-Legendre quadrature, we must scale the bounds of the inner integral to [−1, 1]. To do so
introduce the change of variables ζy = 1−ζx

2 αT + 1+ζx
2 for the first integral and ζy = ζx−1

2 αB + 1+ζx
2 for the

second. This allows us to rewrite the expression as

ū2i−1,2j−1
kx,ky =

∫ 1

−1

∫ 1

−1

u?3T (ξx, ξy(ζy(αT ))φikx(ζx)φjky

(1

2

[
αT (1− ζx) + 1 + ζx

])1− ζx
2

dαT dζx

+

∫ 1

−1

∫ 1

−1

u?3B(ξx, ξy(ζy(αB))φikx(ζx)φjky

(1

2

[
αB(ζx − 1) + 1 + ζx

])ζx − 1

2
dαB dζx.

= I T + I B .

We now need to split the I terms into a sum of integrals over the basis functions and then multiply by the
appropriate modal coefficients. Defining

P 3T
( ) (kx, ky,m, r) =

∫ 1

−1

∫ 1

−1

χm,r3T,( )(ξx, ξy(αT ))φkx(ζx)φky(ζy(αT )) dζx dαT ,

where ( ) ∈ {L,M,R}, we construct the projection matrices P 3T
L , P 3T

M , P 3T
R in the same manner as in

quadrant II. Now for the second set of integrals define

P 3B
( ) (kx, ky,m, r) =

∫ 1

−1

∫ 1

−1

χkx,ky3B,( )(ξx, ξy(αB))φkx(ζx)φky(ζy(αB)) dζx dαB ,

and analogously construct the projection matrices P 3B
L , P 3B

M , P 3B
R . We then have

uf2i−1,2j−1 = P 3T
L ~ai,j(−1,−1) + P 3T

M ~ai,j(−1, 0) + P 3T
R ~ai,j(0, 0)

+ P 3B
L ~ai,j(−1,−1) + P 3B

M ~ai,j(0,−1) + P 3B
R ~ai,j(0, 0).

Now ~ai,j(qx, qy) = Ki,j
qx,qy~u, thus

uf2i−1,2j−1 =
[
(P 3T
L + P 3B

L )Ki,j
−1,−1 + (P 3T

R + P 3B
R )Ki,j

0,0 + P 3T
M Ki,j

−1,0 + P 3B
M Ki,j

0,−1

]
~u.

Denoting this composition by T 3
i,j we can concatenate these matrices together to obtain the global transition

matrix T 3 defined by

T 3 =
[
T 3

1,1 . . . T 3
N,1 | . . . | T 3

1,N . . . T 3
N,N

]T
,

such that
uf3 = T 3u.

QI. The case of quadrant one is that same as quadrant three except now ξx = ζx+1
2 , ξy =

ζy+1
2 , and the

χ functions used are those defined on quadrant one.
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Coding Comment:. The LSIAC-MRA procedure was implemented in MATLABTM R2021a. The
authors make no claim to the computational efficiency of the implementation but simply state that the
memory requirements are on the order of the number of modal values of the finer mesh 4N2(p + 1)2. An

algorithm, whereby only the local transition matrices TQi,j are formed to perform the enhancement is provided
in the supplementary materials.

5. Numerical Results. The goal of LSIAC-MRA is to produce a fine-mesh modal approximation from
coarse-mesh data that has lower error than repeated L2-projection alone. The measures used for comparison
are the L2− and L∞−errors defined respectively by
(5.1)

‖uexact − uapprox‖0 =

√
1

|Ω|

∫

Ω

|uexact − uapprox|2 dΩ , ‖uexact − uapprox‖∞ = sup
x∈Ω
|uexact − uapprox|.

For our simulations, the L2 error is evaluated through Gauss-Legendre quadrature at 6d nodes per element.
Similarly, the L∞ is taken to be the maximum absolute error over these nodes. To ensure a consistent
standard for comparison, we compute the errors on the finest mesh occurring during the enhancement pro-
cedure. It is very important to use a standard mesh for computing the errors. Not doing so can lead to
counter-intuitive behaviors in the error. An example of this is displayed in Figure 5.2 where repeated pro-
jections of the same polynomial approximation have varying errors, contradicting the reproduction property
of the projection. The cause is the discrete approximation of the error-norms. By performing the error
computation over a fixed sufficiently fine mesh, we no longer encounter these discretization artifacts. In all
the simulations considered below, periodic boundary conditions are assumed to allow the application of the
filter in regions where the kernel support would surpass the domain boundaries. The first two columns of
the tables detail the projections errors of the L2 approximation subject to scale transition by projection
without filtering. This represents the standard which our filtered approximations must outperform to jus-
tify the computational expense. The third and fourth columns detail the errors of an approximation when
LSIAC-MRA is applied only once and then L2−projection is used. The final two columns detail the errors
of the LSIAC-MRA procedure applied at each refinement. As a result, the first rows are equal. Similarly,
the Enhanced Once and Enhanced Each Refinement columns will agree on the second mesh simply because
only one filtering procedure has been applied at that point. These equalities are emphasized by the shad-
ing of entries in the tables (gray and medium gray, respectively). We have performed numerous two- and
three-dimensional experiments to gauge the ability of the LSIAC-MRA filtering-projection procedure, but
below we will only focus on the most illuminating examples. Note that we only expect reduced errors, not
improvement in order of convergence.

5.1. 2D Test Problems. Consider the following functions on the domain Ω = {(x, y) ∈ [0, 1]2} :
1. u0(x, y) = sin(2π(x+ y))
2. u0(x, y) = sin(10πx) sin(10πy)
3. u0(x, y) = f1(x)f1(y)
4. u0(x, y) = f2(x)f2(y)

where

f1(x) =

{
2 cos(2π(2x− 1)), 1/4 ≤ x ≤ 3/4

cos(4π(2x− 1)), Else
,

f2(x) =

{
2/3 sin(2π(2x− 1)), 1/4 ≤ x ≤ 3/4

cos(π(2x− 1)), Else
.

These tests aid us in evaluating the effectiveness of the LSIAC-MRA procedure for different function types.
The first function can be viewed as a combination of a product and summation of the coordinate directions.
The second represents a higher frequency function. The third is discontinuous, while the fourth has discon-
tinuous derivatives for x and y at 1/4 and 3/4. Depictions of the third and fourth functions are provided in
Figure 5.1.

Performing the LSIAC-MRA on functions with different wave number k, we observe that different initial
mesh resolutions are necessary for improvement. The first and second functions behave similarly, except

12



that the first corresponds to a wavenumber k = 1 and has repeated improvement from LSIAC-MRA on a
relatively coarse mesh (35 × 35, see Figure 5.3). This contrasts with the higher frequency second function
k = 5, which requires a much finer starting resolution of 160×160 for improvement. Even then, the resolution
requirements increase with approximation order and so for coarser meshes the LSIAC-MRA procedure is
more effective for lower order polynomial approximations, see Figure 5.5 and Table 5.1.

For the third and fourth functions we begin with their projection onto a piecewise orthonormal Legendre
basis defined over a 70× 70 uniform quadrilateral mesh. We observe that the refinement procedure provides
error reduction for lower polynomial degrees, though performance degrades for increasing p. While LSIAC-
MRA is effective in smooth regions, it is not as globally effective at error reduction as compared to the
analytic examples above. This is due to the lack of smoothness of the functions under consideration. In
cases 3 and 4, application of the SIAC filter near a discontinuity will smear the discontinuity by introducing
artificial smoothness, and the pollution region will increase with each application of the filter. However, for
these functions with non-smooth components occurring along lines, the pollution region will reach a finite
extent of h(2p+3/2) in any Cartesian direction from the point of discontinuity, where h is the uniform coarse
mesh size. If we look at the contour plot given in Figure 5.4 or the zoomed in plots of Figure 5.7, we can in
fact observe that near the discontinuous derivative of the function at x, y = 1/4, 3/4, increased errors occur
with refinement. This error growth is lesser than compared to the discontinuous test case 3. We do not
include refinement contour plots for test case 3 as the error distribution is similar to test case 4. Away from
the polluted regions, significant error reduction occurs with refinement. The L2− and L∞−errors of the
enhancement procedure excluding the polluted regions for these less smooth functions are given in Tables 5.2
and 5.3. We do not include the polluted errors because, as expected, the L∞−errors stay relatively constant
while L2−errors grow as the polluted region covers a larger portion of the domain. The pollution regions
for tests 3 and 4 are the same, and so we use an identical procedure for determining the pollution regions
and computing the errors. The procedure is relatively simple, if an element on the coarse mesh contains a
non-smooth feature caused by lack of smoothness in the initial condition, we exclude that element. When we
enhance, we wish to exclude any element where the filtered approximation on that element drew information
from polluted regions. As the non-smooth components of these functions occur along the lines x, y = 1/4, 3/4
we can exclude any element within h(p+ 1/2) in any Cartesian direction of the non-smooth coarse elements
on the refined mesh after application of LSIAC-MRA. Finally, following the second and final application of
LSIAC-MRA, we exclude any element on the finest mesh within 3

2h(p+1/2) in any Cartesian direction of the
non-smooth coarse elements. We observe that application of the filtering procedure at each stage continues
to provide error reductions with each refinement and outperforms only applying the filtering procedure once,
except in the p = 4 case for the third function. This is caused by insufficient resolution in the initial mesh,
and increasing the initial resolution enables continued error reduction.

As depicted in the log-log plots in Figures 5.5 and 5.6, LSIAC-MRA can indeed provide error reduction
for sufficiently smooth functions; however, this technique does not guaranteed an improvement in the order
of the method. The contour plots in Figures 5.3 and 5.4 display that repeated application of LSIAC-MRA
will alter not only the magnitude of errors, but also their distribution throughout the domain.

Fig. 5.1. Surface plots of u0(x, y) = f1(x)f1(y) (Left) and u0(x, y) = f2(x)f2(y) (Right). The initial condition defined
as a tensor product of a discontinuous function f1 represents a “strong discontinuity”, while that using a tensor product of a
continuous but not globally differentiable function f2 represents a continuous function with discontinuous derivatives ∂u0

∂x
and

∂u0
∂y

.
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Fig. 5.2. Comparison of the log-log plots of the L2 and L∞ errors of the function u0(x, y) = sin(2πx) + sin(2πy) with
p = 4 under refinement. In the left plot, the errors are computed on the mesh level of the iteration, i.e on the mesh size
indicated by the data points abscissa. In the right plot, the errors are computed on the 140 × 140 mesh which is the finest
mesh encountered during the procedure. We observe that this latter approach allows for the errors to remain constant under
L2-projection alone, which agrees with the intuition of the approximation being reproduced.

Fig. 5.3. Contour plots depicting pointwise |Error| for initial condition u0(x, y) = sin(2π(x + y)) on a series of three
meshes using 2D LSIAC-MRA for p = 4. Notice that the filtering procedure regularizes and reduces the errors when it is
applied at each refinement.
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Fig. 5.4. Contour plots depicting pointwise |Error| for the initial condition u0(x, y) = f2(x)f2(y) which contains a

discontinuity in its first derivatives derivatives ∂u0
∂x

and ∂u0
∂y

. 2D LSIAC-MRA was performed over a series of three meshes

for p = 4. Notice that owing to the jump discontinuity in the derivatives at x, y = 1/4, 3/4, the polluted region where filtering
adds artificial smoothness grows with each enhancement. Away from these locations, we still have error improvement. A
zoomed in view is given in Figure 5.7.

Table 5.1
Table of L2 and L∞ errors for the high frequency initial condition u(x, y) = sin(10πx) sin(10πy) on a series of three

meshes using 2D LSIAC-MRA. Because it is high frequency, we have to initialize our approximation on a more refined grid.
The shaded regions of the same shade represent the same approximation. For higher wave numbers the enhancement procedure
requires greater initial mesh resolution for error reduction.

Projection Error Enhanced Once Enhanced Each Refinement

N L2-Error L∞-Error L2-Error L∞-Error L2-Error L∞-Error

P0

160 4.01e− 02 9.59e− 02 4.01e− 02 9.59e− 02 4.01e− 02 9.59e− 02

320 4.01e− 02 9.59e− 02 2.04e− 02 5.30e− 02 2.04e− 02 5.30e− 02

640 4.01e− 02 9.59e− 02 2.04e− 02 5.30e− 02 1.11e− 02 2.97e− 02

P1

160 1.02e− 03 6.10e− 03 1.02e− 03 6.10e− 03 1.02e− 03 6.10e− 03

320 1.02e− 03 6.10e− 03 2.60e− 04 1.40e− 03 2.60e− 04 1.40e− 03

640 1.02e− 03 6.10e− 03 2.60e− 04 1.40e− 03 8.11e− 05 3.08e− 04

P2

160 1.69e− 05 6.07e− 05 1.69e− 05 6.07e− 05 1.69e− 05 6.07e− 05

320 1.69e− 05 6.07e− 05 2.33e− 06 9.44e− 06 2.33e− 06 9.44e− 06

640 1.69e− 05 6.07e− 05 2.33e− 06 9.44e− 06 1.00e− 06 2.97e− 06

P3

160 2.08e− 07 1.48e− 06 2.08e− 07 1.48e− 06 2.08e− 07 1.48e− 06

320 2.08e− 07 1.48e− 06 2.69e− 08 1.08e− 07 2.69e− 08 1.08e− 07

640 2.08e− 07 1.48e− 06 2.69e− 08 1.08e− 07 2.32e− 08 3.63e− 08

P4

160 2.06e− 09 7.91e− 09 2.06e− 09 7.91e− 09 2.06e− 09 7.91e− 09

320 2.06e− 09 7.91e− 09 6.51e− 10 1.19e− 09 6.51e− 10 1.19e− 09

640 2.06e− 09 7.91e− 09 6.51e− 10 1.19e− 09 6.47e− 10 9.39e− 10
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Table 5.2
Table of L2 and L∞ errors for an initial condition that has discontinuities along x, y = 1/4, 3/4, u(x, y) = f1(x)f1(y).

The 2D LSIAC-MRA procedure was performed on a series of three meshes. Errors were calculated by excluding the polluted
regions around the discontinuities. The LSIAC-MRA procedure reduces errors in these unpolluted regions.

Projection Error Enhanced Once Enhanced Each Refinement

N L2-Error L∞-Error L2-Error L∞-Error L2-Error L∞-Error

P0

70 1.12e− 01 3.52e− 01 1.12e− 01 3.52e− 01 1.12e− 01 3.52e− 01

140 1.12e− 01 3.52e− 01 5.58e− 02 1.92e− 01 5.58e− 02 1.92e− 01

280 1.12e− 01 3.52e− 01 5.58e− 02 1.92e− 01 3.05e− 02 1.07e− 01

P1

70 4.00e− 03 2.55e− 02 4.00e− 03 2.55e− 02 4.00e− 03 2.55e− 02

140 4.00e− 03 2.55e− 02 9.08e− 04 5.71e− 03 9.08e− 04 5.71e− 03

280 4.00e− 03 2.55e− 02 9.08e− 04 5.71e− 03 3.55e− 04 1.35e− 03

P2

70 1.15e− 04 6.95e− 04 1.15e− 04 6.95e− 04 1.15e− 04 6.95e− 04

140 1.15e− 04 6.95e− 04 1.94e− 05 1.04e− 04 1.94e− 05 1.04e− 04

280 1.15e− 04 6.95e− 04 1.94e− 05 1.04e− 04 1.38e− 05 6.15e− 05

P3

70 2.47e− 06 1.76e− 05 2.47e− 06 1.76e− 05 2.47e− 06 1.76e− 05

140 2.47e− 06 1.76e− 05 1.09e− 06 4.63e− 06 1.09e− 06 4.63e− 06

280 2.47e− 06 1.76e− 05 1.09e− 06 4.63e− 06 9.30e− 07 3.86e− 06

P4

70 4.57e− 08 3.00e− 07 4.57e− 08 3.00e− 07 4.57e− 08 3.00e− 07

140 4.57e− 08 3.00e− 07 8.91e− 08 3.55e− 07 8.91e− 08 3.55e− 07

280 4.57e− 08 3.00e− 07 8.91e− 08 3.55e− 07 7.17e− 08 3.49e− 07

Table 5.3
Shown are the L2 and L∞ errors for a function u0(x, y) = f2(x)f2(y) that has discontinuous derivatives ∂u0

∂x
and ∂u0

∂y
.

The 2D LSIAC-MRA procedure was performed on a series of three meshes. Errors were calculated by excluding the polluted
regions around the discontinuous derivatives. We observe that the LSIAC-MRA is effective for error reduction in unpolluted
regions.

Projection Error Enhanced Once Enhanced Each Refinement

N L2-Error L∞-Error L2-Error L∞-Error L2-Error L∞-Error

P0

70 1.78e− 02 5.87e− 02 1.78e− 02 5.87e− 02 1.78e− 02 5.87e− 02

140 1.78e− 02 5.87e− 02 8.71e− 03 2.92e− 02 8.71e− 03 2.92e− 02

280 1.78e− 02 5.87e− 02 8.71e− 03 2.92e− 02 4.44e− 03 1.47e− 02

P1

70 3.63e− 04 2.27e− 03 3.63e− 04 2.27e− 03 3.63e− 04 2.27e− 03

140 3.63e− 04 2.27e− 03 9.10e− 05 5.23e− 04 9.10e− 05 5.23e− 04

280 3.63e− 04 2.27e− 03 9.10e− 05 5.23e− 04 2.40e− 05 1.15e− 04

P2

70 5.10e− 06 2.89e− 05 5.10e− 06 2.89e− 05 5.10e− 06 2.89e− 05

140 5.10e− 06 2.89e− 05 5.59e− 07 3.30e− 06 5.59e− 07 3.30e− 06

280 5.10e− 06 2.89e− 05 5.59e− 07 3.30e− 06 1.34e− 07 8.75e− 07

P3

70 5.86e− 08 4.59e− 07 5.86e− 08 4.59e− 07 5.86e− 08 4.59e− 07

140 5.86e− 08 4.59e− 07 4.09e− 09 3.07e− 08 4.09e− 09 3.07e− 08

280 5.86e− 08 4.59e− 07 4.09e− 09 3.07e− 08 1.77e− 09 8.27e− 09

P4

70 5.12e− 10 3.12e− 09 5.12e− 10 3.12e− 09 5.12e− 10 3.12e− 09

140 5.12e− 10 3.12e− 09 4.55e− 11 2.42e− 10 4.55e− 11 2.42e− 10

280 5.12e− 10 3.12e− 09 4.55e− 11 2.42e− 10 3.43e− 11 1.73e− 10

16



Fig. 5.5. Log-log plots of N vs. Error for a high frequency function u0(x, y) = sin(10πx) sin(10πy) with wavenumber
k = 5 on a series of three meshes using 2D LSIAC-MRA. We see that the effectiveness somewhat degrades with increasing
polynomial order.

Fig. 5.6. Log-log plots of N vs. Error for a continuous function that has discontinuous ∂
∂x

and ∂
∂y

derivatives on a series

of three meshes using 2D LSIAC-MRA. Errors were calculated by excluding the polluted regions around the discontinuous
derivatives. Notice that performance is better than for the discontinuous function.
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Fig. 5.7. Zoomed in contour error plots for the twice enhanced p = 4 approximation of a discontinuous function (Top)
and a continuous function that is discontinuous in its ∂

∂x
and ∂

∂y
derivatives (Bottom). Both approximations were initialized

on a 140× 140 mesh.
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5.2. 3D Test Problems. We now investigate the application of 3D LSIAC-MRA for three-dimensional
functions. We have tested the procedure on other functions as well, but present results only for the function
u0(x, y, z) = sin(2πx) + sin(2πy) + sin(2πz) on the domain Ω = {(x, y) ∈ [0, 1]3}.

Beginning with a projection of this function onto a piecewise orthonormal Legendre basis on a 15×15×15
uniform hexahedral mesh, the approximation is then enhanced using the LSIAC-MRA procedure. This
procedure is applied two times, resulting in a final approximation on a 60 × 60 × 60 mesh. The L2− and
L∞−errors of those approximations with and without the filtering enhancement are given in Table 5.4.
Notice that we have included the results for a piecewise constant approximation, p = 0. The theory of
(L)SIAC does not generally extend to piecewise constants. However, it is evident from the results in these
tables that the LSIAC-MRA procedure is effective for piecewise constant approximations. For piecewise
linear approximations, p = 1, we can see that it is less effective, but still provides an error reduction. Similar
to the two-dimnesional case, we speculate that for higher degree polynomial approximations it is necessary
to start with a higher resolution in order for the LSIAC-MRA procedure to be more effective. The log-log
plots for the results of the 3D LSIAC-MRA procedure are given in Figure 5.8.

Table 5.4
Table of L2 and L∞ errors for initial condition u(x, y, z) = sin(2πx) + sin(2πy) + sin(2πz) on a series of three meshes

using 3D LSIAC-MRA. We observe error reduction with each enhancement.

Projection Error Enhanced Once Enhanced Each Refinement

N L2-Error L∞-Error L2-Error L∞-Error L2-Error L∞-Error

P0

15 1.48e− 01 6.13e− 01 1.48e− 01 6.13e− 01 1.48e− 01 6.13e− 01

30 1.48e− 01 6.13e− 01 7.61e− 02 3.08e− 01 7.61e− 02 3.08e− 01

60 1.48e− 01 6.13e− 01 7.61e− 02 3.08e− 01 4.43e− 02 1.59e− 01

P1

15 7.99e− 03 4.14e− 02 7.99e− 03 4.14e− 02 7.99e− 03 4.14e− 02

30 7.99e− 03 4.14e− 02 2.13e− 03 1.53e− 02 2.13e− 03 1.53e− 02

60 7.99e− 03 4.14e− 02 2.13e− 03 1.53e− 02 7.70e− 04 7.53e− 03

Fig. 5.8. Log-log plots of N vs. Error for the function u0(x, y, z) = sin(2πx) + sin(2πy) + sin(2πz) on a series of three
meshes using 3D LSIAC-MRA. Notice that procedure improves the approximation and provides error reduction.
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6. Conclusions and Future Work. In this article, we have introduced an improved multi-resolution
analysis scheme for multi-dimensional applications, LSIAC-MRA. This scheme utilizes the Line Smoothness-
Increasing Accuracy-Conserving filter which post-processes multi-dimensional data using a one-dimensional
support. This allows for approximating the difference coefficients in the multi-wavelet representation and
allows for error reduction with mesh refinement. We have provided the underlying operational framework
and demonstrated that LSIAC-MRA is effective for two- and three-dimensional applications. Furthermore,
LSIAC-MRA is shown to be effective for multi-dimensional piecewise constant data as well. Though the
method does not have translational invariance with respect to arbitrary translations owing to the discrete
projection, it is invariant with respect to translations by the uniform mesh scaling, h. In the future, we
plan on investigating the requirements for the points per wavelength of the initial data as well as allowed
non-uniformities in the data in order to leverage LSIAC-MRA for turbulence modeling data or improved
identification of undersampled signals.
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Supplementary Materials

March 11, 2022

S1 SIAC-MRA: Filtered Basis Functions & Coefficients:

In these supplementary materials we detail the χ−functions and associated coefficients appearing in the
simplified filtered approximations. In addition, figures are provided delineating the different domains of
definition for these functions. Denote by ζ the mapping of the filtering point to the reference element [−1, 1],
i.e. ζx = 2

h (x− xi), ζy = 2
h (y − yj), ζz = 2

h (z − zk).

S1.1 One-dimensional SIAC-MRA:
We first recall that the filtered approximation given in Ryan, (2021) is of the form

u?h(x) =
{∑p+1

m=0 d
j
mχ

m
L (ζx), ζx ∈ (−1, 0)∑p+1

m=0 d̃
j
mχ

m
R (ζx), ζx ∈ (0, 1)

,

with the χ functions and coefficients given in Table S1.

Table S1: Table of basis functions and associated coefficients resulting from the analytical evaluation of the
convolution in u?h(x).

k dj
k d̃j

k

0
√

2
2
{∑p

γ=−p cγu
j+γ
0
} √

2
2
{∑p

γ=−p cγu
j+γ
0
}

1
√

2
4
{∑p

γ=−p cγ(uj+γ0 − uj+γ−1
0 )

} √
2

4
{∑p

γ=−p cγ(uj+γ+1
0 − uj+γ0 )

}

k > 1 1
2
{∑p

γ=−p cγ(uj+γk − uj+γ−1
k )

} 1
2
{∑p

γ=−p cγ(uj+γ+1
k − uj+γk )

}

χk
L(ζ) χk

R(ζ)
0. 1 1
1. ζ ζ

k > 1.
√
k−1/2

2k−1

[
Pk(1 + ζ)− Pk−2(1 + ζ)

] √
k−1/2

2k−1

[
Pk(ζ − 1)− Pk−2(ζ − 1)

]

S1.2 Two-dimensional LSIAC-MRA
There are seven different forms for the coefficients included in the two-dimensional L-SIAC case with the
basis given in Table S2. These coefficients are of the form

aS,Pm,r = am,r(qx, qy) =
p∑

γ=−p
cγu

i+γ+qx,j+γ+qy
m,r ,

where the arguments (qx, qy) are determined by the region S and position P of the filter point. A table of
these dependencies by region and position is provided in Table S3. The regions themselves are depicted in
Figure S1. An algorithm for the LSIAC-MRA procedure is included in Algorithm S1.
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Table S2: 2D L-SIAC basis functions. For notational convenience suppose x belongs to element (i, j).
Region S Basis Function Definition

1T χm,r1T,L(ζx, ζy) 2−ζy

2

∫ 1
−1 φkx

(
ζx − ζy

2 +
(
1 − ζy

2

)
η
)
φky

((
1 − ζy

2

)
η + ζy

2

)
dη

χm,r1T,M (ζx, ζy) ζy−ζx

2

∫ 1
−1 φkx

(
ζy−ζx

2 η + ζx−ζy

2 + 1
)
φky

(
ζy−ζx

2 η + ζy−ζx

2 − 1
)
dη

χm,r1T,R(ζx, ζy) ζx
2

∫ 1
−1 φkx

(
ζx
2 η + ζx

2 − 1
)
φky

(
ζx
2 η + ζy − 1 − ζx

2

)
dη

1B χm,r1B,L(ζx, ζy) 2−ζx
2

∫ 1
−1 φkx

((
1 − ζx

2

)
η + ζx

2

)
φky

(
ζy − ζx

2 +
(
1 − ζx

2

)
η
)
dη

χm,r1B,M (ζx, ζy) ζx−ζy

2

∫ 1
−1 φkx

(
ζx−ζy

2 η + ζx−ζy

2 − 1
)
φky

(
ζx−ζy

2 η + ζy−ζx

2 + 1
)
dη

χm,r1B,R(ζx, ζy) ζy

2

∫ 1
−1 φkx

(
ζy

2 η + ζx − ζy

2 − 1
)
φky

(
ζy

2 η − 1 + ζy

2

)
dη

2T χm,r2T,L(ζx, ζy) − ζx
2

∫ 1
−1 φkx

(
− ζx

2 η + ζx
2 + 1

)
φky

(
− ζx

2 η + ζy − 1 − ζx
2

)
dη

χm,r2T,M (ζx, ζy) 2+ζx−ζy

2

∫ 1
−1 φkx

(
2+ζx−ζy

2 η + ζx−ζy

2

)
φky

(
2+ζx−ζy

2 η + ζy−ζx

2

)
dη

χm,r2T,R(ζx, ζy) ζy

2

∫ 1
−1 φkx

(
ζy

2 η + ζx − ζy

2 + 1
)
φky

(
ζy

2 η + ζy

2 − 1
)
dη

3T χm,r3T,L(ζx, ζy) − ζy

2

∫ 1
−1 φkx

(
− ζy

2 η − ζy

2 + ζx + 1
)
φky

(
− ζy

2 η + 1 + ζy

2

)
dη

χm,r3T,M (ζx, ζy) ζy−ζx

2

∫ 1
−1 φkx

(
ζy−ζx

2 η + ζx−ζy

2 + 1
)
φky

(
ζy−ζx

2 η + ζy−ζx

2 − 1
)
dη

χm,r3T,R(ζx, ζy) 2+ζx
2

∫ 1
−1 φkx

(( 2+ζx
2

)
η + ζx

2

)
φky

(( 2+ζx
2

)
η − ζx

2 + ζy

)
dη

3B χm,r3B,L(ζx, ζy) − ζx
2

∫ 1
−1 φkx

(
− ζx

2 η + ζx
2 + 1

)
φky

(
− ζx

2 η + 1 + ζy − ζx
2

)
dη

χm,r3B,M (ζx, ζy) ζx−ζy

2

∫ 1
−1 φkx

(
ζx−ζy

2 η + ζx−ζy

2 − 1
)
φky

(
ζx−ζy

2 η + ζy−ζx

2 + 1
)
dη

χm,r3B,R(ζx, ζy) 2+ζy

2

∫ 1
−1 φkx

(( 2+ζy

2

)
η + ζx − ζy

2

)
φky

(( 2+ζy

2

)
η + ζy

2

)
dη

4B χm,r4B,L(ζx, ζy) − ζy

2

∫ 1
−1 φkx

(
− ζy

2 η − ζy

2 + ζx − 1
)
φky

(
− ζy

2 η + 1 + ζy

2

)
dη

χm,r4B,M (ζx, ζy) ζy−ζx+2
2

∫ 1
−1 φkx

((
1 + ζy−ζx

2

)
η + ζx−ζy

2

)
φky

((
1 + ζy−ζx

2

)
η + ζy−ζx

2

)
dη

χm,r4B,R(ζx, ζy) ζx
2

∫ 1
−1 φkx

(
ζx
2 η + ζx

2 − 1
)
φky

(
ζx
2 η + 1 + ζy − ζx

2

)
dη

2



Table S3: Table describing how the shifting of the arguments of the a coefficients vary by region.
Region S

∖
Arguments of aα(qx, qy) P = L P = M P = R

1T (0, 0) (0, 1) (1, 1)
1B (0, 0) (1, 0) (1, 1)
2T (−1, 0) (0, 0) (0, 1)
3T (−1,−1) (−1, 0) (0, 0)
3B (−1,−1) (0,−1) (0, 0)
4B (0,−1) (0, 0) (1, 0)

x axis

y axis

(1T)
(2T)

(3T)
(1B)

(4B)
(3B)

(3)

(1)

(5)

(7)

(4)

(2)

(6)

z

x
y

Figure S1: Partition of domain for both 2D L-SIAC (left) and the octant numbering scheme in 3D (right).
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S1.3 Three-dimensional LSIAC-MRA
In three-dimensions, the tensor product expansion functions are of the form

χm,r,`S,P = C

∫ 1

−1
φm(argx)φr(argy)φ`(argz)

where the row of the table determines the Region S and Position P = {L,LM,RM,R}. The regions are
described in Tables S4 and S5 with visual depictions in Figures S1 and S2. The coefficient C is given in the
coefficient column, and the arguments of the Legendre polynomials are given in the appropriate argument
column. These can be found in Table S6. There are fifteen different forms for the coefficients included in
the 3D L-SIAC case. These coefficients are of the form

aS,Pm,r,` = am,r,`(qx, qy, qz) =
p∑

γ=−p
cγu

i+γ+qx,j+γ+qy,k+γ+qz
m,r,` ,

where the coefficients (qx, qy, qz) are determined by the region S and position P of the filter point. A table
of these dependencies by region and position is provided in Table S7.

Table S4: Regions present by octant
Octant Regions Present

1 1A, 1B, 1C, 1D, 1E, 1F
2 2E, 2F
3 3A, 3B
4 4B, 4F
5 5C, 5D
6 6D, 6E
7 7A, 7C
8 8A, 8B, 8C, 8D, 8E, 8F

Table S5: Classification of regions.
Class Filtering Coordinate Inequality
(A) ζx ≤ ζy ≤ ζz
(B) ζx ≤ ζz < ζy
(C) ζy < ζx ≤ ζz
(D) ζy ≤ ζz < ζx
(E) ζz < ζy ≤ ζx
(F) ζz < ζx < ζy

4



Algorithm S1 Calculate uf from u using L-SIAC kernel
1: Input: Number of elements in one direction N , and polynomial degree p.
2: Output: Fine mesh modal coefficients uf
3:
4: % Compute modal projection on coarse mesh
5: u = Initialize(N, p,Ω, u0)
6:
7: % Compute projection matrices by region
8: [P1TL, P1TM,P1TR] = ProjMatrixL(N, p,Q1T )
9: [P1BL,P1BM,P1BR] = ProjMatrixL(N, p,Q1B)

10: [P2TL, P2TM,P2TR] = ProjMatrixL(N, p,Q2T )
11: [P3TL, P3TM,P3TR] = ProjMatrixL(N, p,Q3T )
12: [P3BL,P3BM,P3BR] = ProjMatrixL(N, p,Q3B)
13: [P4BL,P4BM,P4BR] = ProjMatrixL(N, p,Q4B)
14:
15: % Loop through mesh elements
16: for i← 1, N do
17: for j ← 1, N do
18:
19: % Construct filtering/sifting matrices
20: K11 = FiltMatrixL(p, 1, 1, i, j)
21: K01 = FiltMatrixL(p, 0, 1, i, j)
22: K10 = FiltMatrixL(p, 1, 0, i, j)
23: K00 = FiltMatrixL(p, 0, 0, i, j)
24: Kn10 = FiltMatrixL(p,−1, 0, i, j)
25: K0n1 = FiltMatrixL(p, 0,−1, i, j)
26: Kn1n1 = FiltMatrixL(p,−1,−1, i, j)
27:
28: % Compute local fine mesh coefficients
29: uftensor(:, 2i, 2j) =

((P1TL+ P1BL) ∗K00+
(P1TR+ P1BR) ∗K11+

(P1TM ∗K01 + P1BM ∗K10) ∗ u
30: uftensor(:, 2i− 1, 2j) =

(P2L ∗Kn10 + P2M ∗K00 + P2R ∗K01) ∗ u
31: uftensor(:, 2i− 1, 2j − 1) =

((P3TL+ P3BL) ∗Kn1n1+
(P3TR+ P3BR) ∗K00+
P3TM ∗Kn10 + P3BM ∗K0n1) ∗ u

32: uftensor(:, 2i, 2j − 1) =
(P4L ∗K0n1 + P4M ∗K00 + P4R ∗K10) ∗ u

33: end for
34: end for
35:
36: % Reshape fine modal array into original array form
37: uf = ReshapeArray(p,N, uftensor)

5



Figure S2: Depiction of how the domain of dependence of the filtered approximation form varies from octant
to octant. Octants 1 and 8 have six regions (Top), while octants 2 through 7 have only a pair of regions each
(Bottom). The form of these regions is a consequence of the filtering coordinate inequalities given in Table
S5 coupled with the relative location of each octant in the reference element.
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Table S6: Three-dimensional L-SIAC basis functions. For notational convenience suppose that x belong to element (i, j, k) and that the region S and
position P of the function are as indicated in the table rows.

Region S Basis Function Parameters
Basis Function Coefficient argx argy argz

1A χS,L (2− ζz)/4 w + ζx − ζz/2− (w ∗ ζz)/2 w + ζy − ζz/2− (w ∗ ζz)/2 w − ((−1 + w) ∗ ζz)/2
1A χS,LM (−ζy + ζz)/4 (2 + 2 ∗ ζx − (1 + w) ∗ ζy − ζz + w ∗ ζz)/2 (2 + ζy − w ∗ ζy + (−1 + w) ∗ ζz)/2 (−2− (1 + w) ∗ ζy + ζz + w ∗ ζz)/2
1A χS,RM (−ζx + ζy)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζy)/2 (−2− (1 + w) ∗ ζx + ζy + w ∗ ζy)/2 −1− ((1 + w) ∗ ζx)/2 + ((−1 + w) ∗ ζy)/2 + ζz
1A χS,R ζx/4 (−2 + ζx + w ∗ ζx)/2 −1 + ((−1 + w) ∗ ζx)/2 + ζy −1 + ((−1 + w) ∗ ζx)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

1B χS,L (2− ζy)/4 w + ζx − ζy/2− (w ∗ ζy)/2 (−(w ∗ (−2 + ζy)) + ζy)/2 w − ζy/2− (w ∗ ζy)/2 + ζz
1B χS,LM (ζy − ζz)/4 (2 + 2 ∗ ζx + (−1 + w) ∗ ζy − ζz − w ∗ ζz)/2 (−2 + (1 + w) ∗ ζy − (1 + w) ∗ ζz)/2 (2 + (−1 + w) ∗ ζy + ζz − w ∗ ζz)/2
1B χS,RM (−ζx + ζz)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζz)/2 (−2− (1 + w) ∗ ζx + 2 ∗ ζy − ζz + w ∗ ζz)/2 (−2− (1 + w) ∗ ζx + ζz + w ∗ ζz)/2
1B χS,R ζx/4 (−2 + ζx + w ∗ ζx)/2 −1 + ((−1 + w) ∗ ζx)/2 + ζy −1 + ((−1 + w) ∗ ζx)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

1C χS,L (2− ζz)/4 w + ζx − ζz/2− (w ∗ ζz)/2 w + ζy − ζz/2− (w ∗ ζz)/2 w − ((−1 + w) ∗ ζz)/2
1C χS,LM (−ζx + ζz)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζz)/2 (2− (1 + w) ∗ ζx + 2 ∗ ζy − ζz + w ∗ ζz)/2 (−2− (1 + w) ∗ ζx + ζz + w ∗ ζz)/2
1C χS,RM (ζx − ζy)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζy)/2 (2 + (−1 + w) ∗ ζx + ζy − w ∗ ζy)/2 −1 + ((−1 + w) ∗ ζx)/2− ((1 + w) ∗ ζy)/2 + ζz
1C χS,R ζy/4 −1 + ζx + ((−1 + w) ∗ ζy)/2 (−2 + ζy + w ∗ ζy)/2 −1 + ((−1 + w) ∗ ζy)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

1D χS,L (2− ζx)/4 (−(w ∗ (−2 + ζx)) + ζx)/2 w − ζx/2− (w ∗ ζx)/2 + ζy w − ζx/2− (w ∗ ζx)/2 + ζz
1D χS,LM (ζx − ζz)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζz)/2 (2 + (−1 + w) ∗ ζx + 2 ∗ ζy − ζz − w ∗ ζz)/2 (2 + (−1 + w) ∗ ζx + ζz − w ∗ ζz)/2
1D χS,RM (−ζy + ζz)/4 (−2 + 2 ∗ ζx − (1 + w) ∗ ζy − ζz + w ∗ ζz)/2 (2 + ζy − w ∗ ζy + (−1 + w) ∗ ζz)/2 (−2− (1 + w) ∗ ζy + ζz + w ∗ ζz)/2
1D χS,R ζy/4 −1 + ζx + ((−1 + w) ∗ ζy)/2 (−2 + ζy + w ∗ ζy)/2 −1 + ((−1 + w) ∗ ζy)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

1E χS,L (2− ζx)/4 (−(w ∗ (−2 + ζx)) + ζx)/2 w − ζx/2− (w ∗ ζx)/2 + ζy w − ζx/2− (w ∗ ζx)/2 + ζz
1E χS,LM (ζx − ζy)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζy)/2 (2 + (−1 + w) ∗ ζx + ζy − w ∗ ζy)/2 1 + ((−1 + w) ∗ ζx)/2− ((1 + w) ∗ ζy)/2 + ζz
1E χS,RM (ζy − ζz)/4 (−2 + 2 ∗ ζx + (−1 + w) ∗ ζy − ζz − w ∗ ζz)/2 (−2 + (1 + w) ∗ ζy − (1 + w) ∗ ζz)/2 (2 + (−1 + w) ∗ ζy + ζz − w ∗ ζz)/2
1E χS,R ζz/4 −1 + ζx + ((−1 + w) ∗ ζz)/2 −1 + ζy + ((−1 + w) ∗ ζz)/2 (−2 + ζz + w ∗ ζz)/2

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

1F χS,L (2− ζy)/4 w + ζx − ζy/2− (w ∗ ζy)/2 (−(w ∗ (−2 + ζy)) + ζy)/2 w − ζy/2− (w ∗ ζy)/2 + ζz
1F χS,LM (−ζx + ζy)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζy)/2 (−2− (1 + w) ∗ ζx + ζy + w ∗ ζy)/2 1− ((1 + w) ∗ ζx)/2 + ((−1 + w) ∗ ζy)/2 + ζz
1F χS,RM (ζx − ζz)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζz)/2 (−2 + (−1 + w) ∗ ζx + 2 ∗ ζy − ζz − w ∗ ζz)/2 (2 + (−1 + w) ∗ ζx + ζz − w ∗ ζz)/2
1F χS,R ζz/4 −1 + ζx + ((−1 + w) ∗ ζz)/2 −1 + ζy + ((−1 + w) ∗ ζz)/2 (−2 + ζz + w ∗ ζz)/2
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Region Basis Function Parameters
Basis Function Coefficient argx argy argz

2E χS,L −ζz/4 −1 + ζx − ((1 + w) ∗ ζz)/2 −1 + ζy − ((1 + w) ∗ ζz)/2 (2 + ζz − w ∗ ζz)/2
2E χS,LM (2− ζx + ζz)/4 (ζx − ζz + w ∗ (2− ζx + ζz))/2 (−ζx + 2 ∗ ζy − ζz + w ∗ (2− ζx + ζz))/2 (−ζx + ζz + w ∗ (2− ζx + ζz))/2
2E χS,RM (ζx − ζy)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζy)/2 (2 + (−1 + w) ∗ ζx + ζy − w ∗ ζy)/2 1 + ((−1 + w) ∗ ζx)/2− ((1 + w) ∗ ζy)/2 + ζz
2E χS,R ζy/4 −1 + ζx + ((−1 + w) ∗ ζy)/2 (−2 + ζy + w ∗ ζy)/2 1 + ((−1 + w) ∗ ζy)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

2F χS,L −ζz/4 −1 + ζx − ((1 + w) ∗ ζz)/2 −1 + ζy − ((1 + w) ∗ ζz)/2 (2 + ζz − w ∗ ζz)/2
2F χS,LM (2− ζy + ζz)/4 (2 ∗ ζx − ζy − ζz + w ∗ (2− ζy + ζz))/2 (ζy − ζz + w ∗ (2− ζy + ζz))/2 (−ζy + ζz + w ∗ (2− ζy + ζz))/2
2F χS,RM (−ζx + ζy)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζy)/2 (−2− (1 + w) ∗ ζx + ζy + w ∗ ζy)/2 1− ((1 + w) ∗ ζx)/2 + ((−1 + w) ∗ ζy)/2 + ζz
2F χS,R ζx/4 (−2 + ζx + w ∗ ζx)/2 −1 + ((−1 + w) ∗ ζx)/2 + ζy 1 + ((−1 + w) ∗ ζx)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

3A χS,L −ζx/4 (2 + ζx − w ∗ ζx)/2 −1− ((1 + w) ∗ ζx)/2 + ζy −1− ((1 + w) ∗ ζx)/2 + ζz
3A χS,LM (2 + ζx − ζz)/4 (ζx + w ∗ (2 + ζx − ζz)− ζz)/2 (−ζx + 2 ∗ ζy + w ∗ (2 + ζx − ζz)− ζz)/2 (−ζx + w ∗ (2 + ζx − ζz) + ζz)/2
3A χS,RM (−ζy + ζz)/4 (2 + 2 ∗ ζx − (1 + w) ∗ ζy − ζz + w ∗ ζz)/2 (2 + ζy − w ∗ ζy + (−1 + w) ∗ ζz)/2 (−2− (1 + w) ∗ ζy + ζz + w ∗ ζz)/2
3A χS,R ζy/4 1 + ζx + ((−1 + w) ∗ ζy)/2 (−2 + ζy + w ∗ ζy)/2 −1 + ((−1 + w) ∗ ζy)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

3B χS,L −ζx/4 (2 + ζx − w ∗ ζx)/2 −1− ((1 + w) ∗ ζx)/2 + ζy −1− ((1 + w) ∗ ζx)/2 + ζz
3B χS,LM (2 + ζx − ζy)/4 (ζx + w ∗ (2 + ζx − ζy)− ζy)/2 (−ζx + w ∗ (2 + ζx − ζy) + ζy)/2 (−ζx + w ∗ (2 + ζx − ζy)− ζy + 2 ∗ ζz)/2
3B χS,RM (ζy − ζz)/4 (2 + 2 ∗ ζx + (−1 + w) ∗ ζy − ζz − w ∗ ζz)/2 (−2 + (1 + w) ∗ ζy − (1 + w) ∗ ζz)/2 (2 + (−1 + w) ∗ ζy + ζz − w ∗ ζz)/2
3B χS,R ζz/4 1 + ζx + ((−1 + w) ∗ ζz)/2 −1 + ζy + ((−1 + w) ∗ ζz)/2 (−2 + ζz + w ∗ ζz)/2

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

4B χS,L −ζz/4 1 + ζx − ((1 + w) ∗ ζz)/2 −1 + ζy − ((1 + w) ∗ ζz)/2 (2 + ζz − w ∗ ζz)/2
4B χS,LM (−ζx + ζz)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζz)/2 (−2− (1 + w) ∗ ζx + 2 ∗ ζy − ζz + w ∗ ζz)/2 (−2− (1 + w) ∗ ζx + ζz + w ∗ ζz)/2
4B χS,RM (2 + ζx − ζy)/4 (ζx + w ∗ (2 + ζx − ζy)− ζy)/2 (−ζx + w ∗ (2 + ζx − ζy) + ζy)/2 (−ζx + w ∗ (2 + ζx − ζy)− ζy + 2 ∗ ζz)/2
4B χS,R ζy/4 1 + ζx + ((−1 + w) ∗ ζy)/2 (−2 + ζy + w ∗ ζy)/2 1 + ((−1 + w) ∗ ζy)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

4F χS,L −ζx/4 (2 + ζx − w ∗ ζx)/2 −1− ((1 + w) ∗ ζx)/2 + ζy 1− ((1 + w) ∗ ζx)/2 + ζz
4F χS,LM (ζx − ζz)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζz)/2 (−2 + (−1 + w) ∗ ζx + 2 ∗ ζy − ζz − w ∗ ζz)/2 (2 + (−1 + w) ∗ ζx + ζz − w ∗ ζz)/2
4F χS,RM (2− ζy + ζz)/4 (2 ∗ ζx − ζy − ζz + w ∗ (2− ζy + ζz))/2 (ζy − ζz + w ∗ (2− ζy + ζz))/2 (−ζy + ζz + w ∗ (2− ζy + ζz))/2
4F χS,R ζy/4 1 + ζx + ((−1 + w) ∗ ζy)/2 (−2 + ζy + w ∗ ζy)/2 1 + ((−1 + w) ∗ ζy)/2 + ζz
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Region Basis Function Parameters
Basis Function Coefficient argx argy argz

5C χS,L −ζy/4 −1 + ζx − ((1 + w) ∗ ζy)/2 (2 + ζy − w ∗ ζy)/2 −1− ((1 + w) ∗ ζy)/2 + ζz
5C χS,LM (2 + ζy − ζz)/4 (2 ∗ ζx − ζy + w ∗ (2 + ζy − ζz)− ζz)/2 (ζy + w ∗ (2 + ζy − ζz)− ζz)/2 (−ζy + w ∗ (2 + ζy − ζz) + ζz)/2
5C χS,RM (−ζx + ζz)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζz)/2 (2− (1 + w) ∗ ζx + 2 ∗ ζy − ζz + w ∗ ζz)/2 (−2− (1 + w) ∗ ζx + ζz + w ∗ ζz)/2
5C χS,R ζx/4 (−2 + ζx + w ∗ ζx)/2 1 + ((−1 + w) ∗ ζx)/2 + ζy −1 + ((−1 + w) ∗ ζx)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

5D χS,L −ζy/4 −1 + ζx − ((1 + w) ∗ ζy)/2 (2 + ζy − w ∗ ζy)/2 −1− ((1 + w) ∗ ζy)/2 + ζz
5D χS,LM (2− ζx + ζy)/4 (ζx − ζy + w ∗ (2− ζx + ζy))/2 (−ζx + ζy + w ∗ (2− ζx + ζy))/2 (−ζx − ζy + w ∗ (2− ζx + ζy) + 2 ∗ ζz)/2
5D χS,RM (ζx − ζz)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζz)/2 (2 + (−1 + w) ∗ ζx + 2 ∗ ζy − ζz − w ∗ ζz)/2 (2 + (−1 + w) ∗ ζx + ζz − w ∗ ζz)/2
5D χS,R ζz/4 −1 + ζx + ((−1 + w) ∗ ζz)/2 1 + ζy + ((−1 + w) ∗ ζz)/2 (−2 + ζz + w ∗ ζz)/2

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

6D χS,L −ζz/4 −1 + ζx − ((1 + w) ∗ ζz)/2 1 + ζy − ((1 + w) ∗ ζz)/2 (2 + ζz − w ∗ ζz)/2
6D χS,LM (−ζy + ζz)/4 (−2 + 2 ∗ ζx − (1 + w) ∗ ζy − ζz + w ∗ ζz)/2 (2 + ζy − w ∗ ζy + (−1 + w) ∗ ζz)/2 (−2− (1 + w) ∗ ζy + ζz + w ∗ ζz)/2
6D χS,RM (2− ζx + ζy)/4 (ζx − ζy + w ∗ (2− ζx + ζy))/2 (−ζx + ζy + w ∗ (2− ζx + ζy))/2 (−ζx − ζy + w ∗ (2− ζx + ζy) + 2 ∗ ζz)/2
6D χS,R ζx/4 (−2 + ζx + w ∗ ζx)/2 1 + ((−1 + w) ∗ ζx)/2 + ζy 1 + ((−1 + w) ∗ ζx)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

6E χS,L −ζy/4 −1 + ζx − ((1 + w) ∗ ζy)/2 (2 + ζy − w ∗ ζy)/2 1− ((1 + w) ∗ ζy)/2 + ζz
6E χS,LM (ζy − ζz)/4 (−2 + 2 ∗ ζx + (−1 + w) ∗ ζy − ζz − w ∗ ζz)/2 (−2 + (1 + w) ∗ ζy − (1 + w) ∗ ζz)/2 (2 + (−1 + w) ∗ ζy + ζz − w ∗ ζz)/2
6E χS,RM (2− ζx + ζz)/4 (ζx − ζz + w ∗ (2− ζx + ζz))/2 (−ζx + 2 ∗ ζy − ζz + w ∗ (2− ζx + ζz))/2 (−ζx + ζz + w ∗ (2− ζx + ζz))/2
6E χS,R ζx/4 (−2 + ζx + w ∗ ζx)/2 1 + ((−1 + w) ∗ ζx)/2 + ζy 1 + ((−1 + w) ∗ ζx)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

7A χS,L −ζy/4 1 + ζx − ((1 + w) ∗ ζy)/2 (2 + ζy − w ∗ ζy)/2 −1− ((1 + w) ∗ ζy)/2 + ζz
7A χS,LM (−ζx + ζy)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζy)/2 (−2− (1 + w) ∗ ζx + ζy + w ∗ ζy)/2 −1− ((1 + w) ∗ ζx)/2 + ((−1 + w) ∗ ζy)/2 + ζz
7A χS,RM (2 + ζx − ζz)/4 (ζx + w ∗ (2 + ζx − ζz)− ζz)/2 (−ζx + 2 ∗ ζy + w ∗ (2 + ζx − ζz)− ζz)/2 (−ζx + w ∗ (2 + ζx − ζz) + ζz)/2
7A χS,R ζz/4 1 + ζx + ((−1 + w) ∗ ζz)/2 1 + ζy + ((−1 + w) ∗ ζz)/2 (−2 + ζz + w ∗ ζz)/2

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

7C χS,L −ζx/4 (2 + ζx − w ∗ ζx)/2 1− ((1 + w) ∗ ζx)/2 + ζy −1− ((1 + w) ∗ ζx)/2 + ζz
7C χS,LM (ζx − ζy)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζy)/2 (2 + (−1 + w) ∗ ζx + ζy − w ∗ ζy)/2 −1 + ((−1 + w) ∗ ζx)/2− ((1 + w) ∗ ζy)/2 + ζz
7C χS,RM (2 + ζy − ζz)/4 (2 ∗ ζx − ζy + w ∗ (2 + ζy − ζz)− ζz)/2 (ζy + w ∗ (2 + ζy − ζz)− ζz)/2 (−ζy + w ∗ (2 + ζy − ζz) + ζz)/2
7C χS,R ζz/4 1 + ζx + ((−1 + w) ∗ ζz)/2 1 + ζy + ((−1 + w) ∗ ζz)/2 (−2 + ζz + w ∗ ζz)/2
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Region Basis Function Parameters
Basis Function Coefficient argx argy argz

8A χS,L −ζz/4 1 + ζx − ((1 + w) ∗ ζz)/2 1 + ζy − ((1 + w) ∗ ζz)/2 (2 + ζz − w ∗ ζz)/2
8A χS,LM (−ζy + ζz)/4 (2 + 2 ∗ ζx − (1 + w) ∗ ζy − ζz + w ∗ ζz)/2 (2 + ζy − w ∗ ζy + (−1 + w) ∗ ζz)/2 (−2− (1 + w) ∗ ζy + ζz + w ∗ ζz)/2
8A χS,RM (−ζx + ζy)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζy)/2 (−2− (1 + w) ∗ ζx + ζy + w ∗ ζy)/2 −1− ((1 + w) ∗ ζx)/2 + ((−1 + w) ∗ ζy)/2 + ζz
8A χS,R (2 + ζx)/4 (ζx + w ∗ (2 + ζx))/2 w − ζx/2 + (w ∗ ζx)/2 + ζy w − ζx/2 + (w ∗ ζx)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

8B χS,L −ζy/4 1 + ζx − ((1 + w) ∗ ζy)/2 (2 + ζy − w ∗ ζy)/2 1− ((1 + w) ∗ ζy)/2 + ζz
8B χS,LM (ζy − ζz)/4 (2 + 2 ∗ ζx + (−1 + w) ∗ ζy − ζz − w ∗ ζz)/2 (−2 + (1 + w) ∗ ζy − (1 + w) ∗ ζz)/2 (2 + (−1 + w) ∗ ζy + ζz − w ∗ ζz)/2
8B χS,RM (−ζx + ζz)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζz)/2 (−2− (1 + w) ∗ ζx + 2 ∗ ζy − ζz + w ∗ ζz)/2 (−2− (1 + w) ∗ ζx + ζz + w ∗ ζz)/2
8B χS,R (2 + ζx)/4 (ζx + w ∗ (2 + ζx))/2 w − ζx/2 + (w ∗ ζx)/2 + ζy w − ζx/2 + (w ∗ ζx)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

8C χS,L −ζz/4 1 + ζx − ((1 + w) ∗ ζz)/2 1 + ζy − ((1 + w) ∗ ζz)/2 (2 + ζz − w ∗ ζz)/2
8C χS,LM (−ζx + ζz)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζz)/2 (2− (1 + w) ∗ ζx + 2 ∗ ζy − ζz + w ∗ ζz)/2 (−2− (1 + w) ∗ ζx + ζz + w ∗ ζz)/2
8C χS,RM (ζx − ζy)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζy)/2 (2 + (−1 + w) ∗ ζx + ζy − w ∗ ζy)/2 −1 + ((−1 + w) ∗ ζx)/2− ((1 + w) ∗ ζy)/2 + ζz
8C χS,R (2 + ζy)/4 w + ζx − ζy/2 + (w ∗ ζy)/2 (ζy + w ∗ (2 + ζy))/2 w − ζy/2 + (w ∗ ζy)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

8D χS,L −ζx/4 (2 + ζx − w ∗ ζx)/2 1− ((1 + w) ∗ ζx)/2 + ζy 1− ((1 + w) ∗ ζx)/2 + ζz
8D χS,LM (ζx − ζz)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζz)/2 (2 + (−1 + w) ∗ ζx + 2 ∗ ζy − ζz − w ∗ ζz)/2 (2 + (−1 + w) ∗ ζx + ζz − w ∗ ζz)/2
8D χS,RM (−ζy + ζz)/4 (−2 + 2 ∗ ζx − (1 + w) ∗ ζy − ζz + w ∗ ζz)/2 (2 + ζy − w ∗ ζy + (−1 + w) ∗ ζz)/2 (−2− (1 + w) ∗ ζy + ζz + w ∗ ζz)/2
8D χS,R (2 + ζy)/4 w + ζx − ζy/2 + (w ∗ ζy)/2 (ζy + w ∗ (2 + ζy))/2 w − ζy/2 + (w ∗ ζy)/2 + ζz

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

8E χS,L −ζx/4 (2 + ζx − w ∗ ζx)/2 1− ((1 + w) ∗ ζx)/2 + ζy 1− ((1 + w) ∗ ζx)/2 + ζz
8E χS,LM (ζx − ζy)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζy)/2 (2 + (−1 + w) ∗ ζx + ζy − w ∗ ζy)/2 1 + ((−1 + w) ∗ ζx)/2− ((1 + w) ∗ ζy)/2 + ζz
8E χS,RM (ζy − ζz)/4 (−2 + 2 ∗ ζx + (−1 + w) ∗ ζy − ζz − w ∗ ζz)/2 (−2 + (1 + w) ∗ ζy − (1 + w) ∗ ζz)/2 (2 + (−1 + w) ∗ ζy + ζz − w ∗ ζz)/2
8E χS,R (2 + ζz)/4 w + ζx − ζz/2 + (w ∗ ζz)/2 w + ζy − ζz/2 + (w ∗ ζz)/2 w + ((1 + w) ∗ ζz)/2

Region Basis Function Parameters
Basis Function Coefficient argx argy argz

8F χS,L −ζy/4 1 + ζx − ((1 + w) ∗ ζy)/2 (2 + ζy − w ∗ ζy)/2 1− ((1 + w) ∗ ζy)/2 + ζz
8F χS,LM (−ζx + ζy)/4 (2 + ζx − w ∗ ζx + (−1 + w) ∗ ζy)/2 (−2− (1 + w) ∗ ζx + ζy + w ∗ ζy)/2 1− ((1 + w) ∗ ζx)/2 + ((−1 + w) ∗ ζy)/2 + ζz
8F χS,RM (ζx − ζz)/4 (−2 + (1 + w) ∗ ζx − (1 + w) ∗ ζz)/2 (−2 + (−1 + w) ∗ ζx + 2 ∗ ζy − ζz − w ∗ ζz)/2 (2 + (−1 + w) ∗ ζx + ζz − w ∗ ζz)/2
8F χS,R (2 + ζz)/4 w + ζx − ζz/2 + (w ∗ ζz)/2 w + ζy − ζz/2 + (w ∗ ζz)/2 w + ((1 + w) ∗ ζz)/2
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Table S7: Table describing how the shifting arguments (qx, qy, qz) of the a coefficients vary by region.
Region S

∖
Arguments of aα(qx,qy,qz) P = L P = LM P = RM P = R

1A (0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1)
1B (0, 0, 0) (0, 1, 0) (0, 1, 1) (1, 1, 1)
1C (0, 0, 0) (0, 0, 1) (1, 0, 1) (1, 1, 1)
1D (0, 0, 0) (1, 0, 0) (1, 0, 1) (1, 1, 1)
1E (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)
1F (0, 0, 0) (0, 1, 0) (1, 1, 0) (1, 1, 1)
2E (0, 0,−1) (0, 0, 0) (1, 0, 0) (1, 1, 0)
2F (0, 0,−1) (0, 0, 0) (0, 1, 0) (1, 1, 0)
3A (−1, 0, 0) (0, 0, 0) (0, 0, 1) (0, 1, 1)
3B (−1, 0, 0) (0, 0, 0) (0, 1, 0) (0, 1, 1)
4B (−1, 0,−1) (−1, 0, 0) (0, 0, 0) (0, 1, 0)
4F (−1, 0,−1) (0, 0,−1) (0, 0, 0) (0, 1, 0)
5C (0,−1, 0) (0, 0, 0) (0, 0, 1) (1, 0, 1)
5D (0,−1, 0) (0, 0, 0) (1, 0, 0) (1, 0, 1)
6D (0,−1,−1) (0,−1, 0) (0, 0, 0) (1, 0, 0)
6E (0,−1,−1) (0, 0,−1) (0, 0, 0) (1, 0, 0)
7A (−1,−1, 0) (−1, 0, 0) (0, 0, 0) (0, 0, 1)
7C (−1,−1, 0) (0,−1, 0) (0, 0, 0) (0, 0, 1)
8A (−1,−1,−1) (−1,−1, 0) (−1, 0, 0) (0, 0, 0)
8B (−1,−1,−1) (−1, 0,−1) (−1, 0, 0) (0, 0, 0)
8C (−1,−1,−1) (−1,−1, 0) (0,−1, 0) (0, 0, 0)
8D (−1,−1,−1) (0,−1,−1) (0,−1, 0) (0, 0, 0)
8E (−1,−1,−1) (0,−1,−1) (0, 0,−1) (0, 0, 0)
8F (−1,−1,−1) (−1, 0,−1) (0, 0,−1) (0, 0, 0)
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