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Pranav Murthy 1, Aatur D. Singhi 2, Mark A. Ross 3, Patricia Loughran 3, Pedram Paragomi 4,

Georgios I. Papachristou 4, David C. Whitcomb 4, Amer H. Zureikat 1, Michael T. Lotze 1,

Herbert J. Zeh III 1,5 and Brian A. Boone 1,6*

1Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States, 2Department

of Pathology, University of Pittsburgh, Pittsburgh, PA, United States, 3Center for Biologic Imaging, University of Pittsburgh,

Pittsburgh, PA, United States, 4Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of

Pittsburgh, Pittsburgh, PA, United States, 5Department of Surgery, UT Southwestern Medical Center, Dallas, TX,

United States, 6Department of Surgery, West Virginia University, Morgantown, WV, United States

Background: Neutrophil extracellular traps (NETs) are generated when activated

neutrophils, driven by PAD4, release their DNA, histones, HMGB1, and other intracellular

granule components. NETs play a role in acute pancreatitis, worsening pancreatic

inflammation, and promoting pancreatic duct obstruction. The autophagy inhibitor

chloroquine (CQ) inhibits NET formation; therefore, we investigated the impact of CQ

mediated NET inhibition in murine models of pancreatitis and human correlative studies.

Methods: L-arginine and choline deficient ethionine supplemented (CDE) diet models

of acute pancreatitis were studied in wild type and PAD4−/− mice, incapable of forming

NETs. Isolated neutrophils were stimulated to induce NET formation and visualized with

fluorescence microscopy. CQ treatment (0.5 mg/ml PO) was initiated after induction of

pancreatitis. Biomarkers of NET formation, including cell-free DNA, citrullinated histone

H3 (CitH3), and MPO-DNA conjugates were measured in murine serum and correlative

human patient serum samples.

Results: We first confirmed the role of NETs in the pathophysiology of acute pancreatitis

by demonstrating that PAD4−/− mice had decreased pancreatitis severity and improved

survival compared to wild-type controls. Furthermore, patients with severe acute

pancreatitis had elevated levels of cell-free DNA and MPO-DNA conjugates, consistent

with NET formation. Neutrophils from mice with pancreatitis were more prone to NET

formation and CQ decreased this propensity to form NETs. CQ significantly reduced

serum cell-free DNA and citrullinated histone H3 in murine models of pancreatitis,

increasing survival in both models.

Conclusions: Inhibition of NETs with CQ decreases the severity of acute pancreatitis

and improves survival. Translating these findings into clinical trials of acute pancreatitis

is warranted.

Keywords: neutrophil extracellular traps, pancreatitis, chloroquine, autophagy, systemic inflammatory response,

citrullinated histone
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INTRODUCTION

Acute pancreatitis (AP) is a common, severe gastrointestinal
disease, assessed as the fifth leading cause of in-hospital
mortality and an annual incidence that has increased by 30%
since 2000 (1, 2). AP is characterized by elevated digestive
enzyme concentrations in the blood linked to altered acinar cell
secretion and/or duct obstruction, which promotes autodigestive
injury within the pancreas (2). These events stimulate tissue
injury and activation of the innate immune system, resulting
in recruitment and activation of neutrophils with subsequent
release of pro-inflammatory cytokines and other substances that
lead to systemic inflammation (2, 3). The pathogenesis of severe
AP is still poorly understood, limiting significant treatment
options outside of supportive care including bowel rest, fluid
resuscitation, and pain management (1, 2).

Neutrophils play a central role in severe acute pancreatitis.
In addition to release of cytokines, activated neutrophils release
their DNA, histone proteins, high mobility group box 1
(HMGB1), and granule components into the extracellular space
or circulation to form neutrophil extracellular traps (NETs).
This process was initially considered primarily as a means
for neutrophils to trap bacteria and combat infection (4–6).
Although NETs are generally immuno-protective in the setting of
bacterial or fungal infections (4), several studies have implicated
NETs in the pathophysiology of sterile inflammatory conditions,
such as lupus (7, 8), rheumatoid arthritis (9), and pancreatic
cancer (10). Recent evidence demonstrates that NETs are also
involved in the pathogenesis of AP by inducing trypsin activation,
inflammation, and tissue damage (11) following inspissation and
occlusion of pancreatic ducts (12). Moreover, NETs surround
necrotic tissue in patients with severe AP and promote the
subsequent systemic inflammatory response syndrome (13).

Chloroquine (CQ), is an orally available and inexpensive drug
historically used to treat malaria (14) that also inhibits autophagy
(15). We and others have shown that heightened autophagy
promotes NET generation (16–19) and that CQ prevents NET
formation (10, 20). Given the recent discovery of the role of NETs
in AP, we studied whether targeted inhibition of NETs with CQ
could ameliorate AP in murine models. We evaluated the role of
CQ in the treatment of acute pancreatitis by observing its effect
on NET formation, and impact on the severity and survival rate
in murine models of pancreatitis. Furthermore, we performed
correlative studies on the impact of NETs on the severity of
human pancreatitis.

MATERIALS AND METHODS

Murine Models and Treatments
All experimental procedures were approved by the Institutional
Animal Care and Use Committee of the University of Pittsburgh
(Protocol # 14084123) and performed in accordance with
the policies and regulations established by the University

Abbreviations: AP, acute pancreatitis; CQ, chloroquine; NETs, neutrophil

extracellular traps; CitH3, citrullinated histone H3; cf-DNA, cell free-DNA; IL-6,

interleukin-6; PAF, platelet activating factor.

of Pittsburgh Division of Laboratory Animal Services, the
Guide for the Care and Use of Laboratory Animals, and the
Animal Research Reporting on in vivo Experiments (ARRIVE)
guidelines. Euthanasia was performed under anesthesia using
cardiac puncture resulting in exsanguination followed by cervical
dislocation. Mice were housed in ventilated caging units in the
Hillman Cancer Center Specific Pathogen Free (SPF) animal
facility with standard housing, husbandry, and free access to
food and water. C57/BL6 wild type mice (4 and 10–12 weeks)
were purchased from Taconic Farms (Hudson, New York). PAD4
knockout (PAD4−/−) mice, incapable of forming NETs, were
obtained as a kind gift from the late Dr. Kerri Mowen (21)
and were generated on a C57/Bl6 background. Induction of
AP using L-arginine (22) or choline deficient ethionine (CDE)
supplemented diet (23) was performed as previously described
in age and gender matched mice (24). Briefly, a sterile solution
of 8% L-arginine hydrochloride (A92600, Millipore Sigma,
Burlington, MA) was prepared in normal saline and adjusted to
pH 7.0. Mice received 2 hourly intraperitoneal (IP) injections of
L-arginine (4 g/kg), while controls were administered saline IP.
Animals were treated with oral chloroquine (CQ) (0.5 mg/ml)
administered in the drinking water ad libitum upon completion
of second L-arginine injection. Isoflurane anesthetized mice were
sacrificed via cardiac puncture at 48 or 72 h post injection. Serum
was collected after blood was allowed to clot for 30min and then
spun at 10,000 g for 10min.

For survival experiments, age and gender matched mice
underwent two intra-peritoneal L-arginine (4 g/kg) injections
an hour apart once a week for a total of 3 weeks. Survival was
assessed over a 6 week period. A choline deficient ethionine
(CDE) supplemented diet model of AP was also utilized as
previously described (23, 25). Briefly, 4 week-old female mice
were fasted for 24 h and then fed a CDE diet (960214, MP
Biomedicals, Solon, OH) for 6 days. For CDE experiments,
animals were treated with oral CQ (0.5 mg/ml) administered in
the drinking water ad libitum at the start of the CDE diet (CDE
CQ).

Human Samples
Blood was collected from patients with acute pancreatitis as part
of a protocol approved by the Institutional Review Board at
the University of Pittsburgh (#PRO08010374, PRO14060166).
Severity of acute pancreatitis was classified by the revised Atlanta
classification (26). Blood samples were drawn within 72 h of
presentation, spun at 14,000 g for 10min and serumwas collected
and frozen at −80◦C using strict standard operating protocols
as previously described (27). Serum samples from 5 healthy
volunteers were also evaluated as controls.

Biochemical Pancreatitis and Systemic
Inflammatory Assays
Trypsin and amylase activity levels, HMGB1, and interleukin-6
(IL-6) levels in murine serum diluted 1:10 were measured using
ELISA and quantified using a Tecan Saphire microplate reader.
The colorimetric mouse trypsin activity ELISA assay (E4362-
100, BioVision, San Francisco, CA), mouse amylase assay kit
(ab102523, Abcam, Cambridge, MA), human/mouse HMGB1
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ELISA (ST51011, IBL International, Hamburg, Germany), and
mouse IL-6 uncoated ELISA (88-7064, Invitrogen, Carlsbad, CA)
were used according to manufacturer protocols.

Ex vivo NET Formation and Quantification
Under sterile conditions, bone marrow neutrophils were isolated
from the femur and tibia of euthanized mice by the previously
described protocol (28). Neutrophils were plated in a 24-well
plate at 1.5 × 104 cells per well in Hank’s Balanced Salt
Solution (14025076, ThermoFisher Scientific, Waltham, MA).
Neutrophils were then stimulated with 40µm, platelet activating
factor (PAF) (511075, Millipore Sigma) for 120min. Cells
were fixed with 3% paraformaldehyde and stained for DNA
with Hoechst 33342 (H-3570, Molecular Probes, Grand Island,
NY). Representative neutrophils were stained for citrullinated
histone H3 (anti-Histone H3 (citrulline 2 + 8 + 17) antibody,
Abcam, Cambridge, MA) to confirm that NETs were being
visualized rather than DNA released from necrosis. NETs were
visualized using a Zeiss Axiovert 40 microscope under 10x−40x
magnification. Supernatant was collected, spun at 14 g for 10min
and the level of DNA measured using Quant-iT Picogreen
(MP07581, Invitrogen, Grand Island, NY).

Measures of in vivo NET Formation
After 1:10 dilution, murine serum samples were measured for
cell-free DNA (cf-DNA) with Quant-iT Picogreen (MP07581,
Invitrogen) and citrullinated histone H3 was measured with
the citrullinated histone H3 ELISA (501620, Cayman Chemical,
Ann Arbor, MI) according to the manufacturer’s protocol.
Cell-free DNA was measured in the patient serum with the
Quant-iT Picogreen (MP07581, Invitrogen). To show that
circulating nucleosomes in sera are derived from NETs, we
tested myeloperoxidase, a prominent granular component of
neutrophils, attached to nucleosomes as described previously
(29). MPO-DNA complexes were identified using a capture
ELISA (component No.1, Hycult biotech, HK210-01, Uden,
Netherlands). A 1:2 dilution of sample was added to the
wells and incubated for 1 h. After washing three times, 100
µl incubation buffer containing a peroxidase-labeled anti-DNA
mAb (component No.2, Cell Death ELISAPLUS, Roche; Cat. No:
11774424001, Basel, Switzerland) was used according to the
manufacturer’s protocol.

Resected pancreatic tissue was fixed in OCT medium and
stored in −80◦C until further analysis. After sectioning to 6µm,
the pancreas section was permeabilized with 0.1% Triton X-
100 in Phosphate Buffered Saline (PBS) for 15min, blocked
with 20% normal donkey serum (NDS) for 45min, and washed
1x with 0.5% BSA in PBS. The sections were incubated
with anti-Histone H3 (Rabbit, 1:200, citrulline R2 + R8 +

R17, Abcam, ab5103) and anti-Ly6G (Rat, 1:100, RB6-8C5,
Invitrogen). After three washes, donkey anti-rabbit Alexa 488
(A21206, 1:500, Jackson ImmunoResearch Laboratories, West
Grove, PA) to recognize the anti-Histone H3 was combined
with the donkey anti-rat Cy3 IgG-Cy3 conjugated (712-165-
153, 1:1000, JacksonImmunoResearch Laboratories, West Grove,
PA) that paired with the Ly6G were both incubated for 1 h. A
Hoechst nuclear stain (B-2883, Millipore Sigma) was applied

at room temperature for 30 s followed by a single rinse of
PBS to remove excess dye. Imaging conditions were maintained
at identical settings within each antibody-labeling experiment
with original gating conditions compared to sample that was
a “primary delete,” processed with all reagents except primary
antibody. Imaging was performed using a Nikon A1 confocal
microscope (purchased with 1S10OD019973-01, awarded to Dr.
Simon C. Watkins) at 20x and analyzed with Nikon Elements
imaging software (NIS Elements 4.4, Tokyo, Japan).

Statistical Analysis
Data are expressed as mean ± standard deviation. Results are
reported from at least two independent experiments performed
with at least triplicate samples. Statistical analysis was performed
using Student’s two tailed t-test for comparisons of two groups
or 1-way ANOVA with Tukey’s post-hoc tests for multiple
groups (GraphPad Prism, SanDiego, CA, United States). Survival
analyses were conducted using the Kaplan-Meier method and
Grehan-Breslow-Wilcoxon test between curves. p < 0.05 were
considered statistically significant.

RESULTS

NETs Are a Critical Mediator of Murine and
Human Acute Pancreatitis
To confirm the impact of NET formation on the pathophysiology
of severe AP, we utilized mice unable to form NETs due
to a genetic ablation of protein arginine deiminase, type IV
(PAD4), an enzyme responsible for chromatin decondensation
and subsequent expulsion during NETosis (30). PAD4−/− mice
with pancreatitis had decreased trypsin (7.25 ± 1.5 vs. 15.7
± 2.3 µU/ml, p < 0.0001) and amylase (472 ± 242 vs. 1365
± 322 µU/ml, p < 0.0001) activity levels compared to wild-
type controls (Figures 1A,B). To evaluate the impact of NETs
on survival from severe acute pancreatitis, mice were injected
with L-arginine weekly for 3 weeks. Survival was significantly
improved in PAD4−/− mice with pancreatitis compared to wild-
type controls (median survival unreached vs. 15 days, p< 0.0001,
Figure 1C).

We next investigated the clinical relevance of NETs in
patients with AP. Serum was isolated from patients with mild
or severe acute pancreatitis, as determined by the revised
Atlanta classification (26). Patient demographics and clinical
characteristics are reported in Supplemental Table 1. Serum cell-
free DNA (642 ± 193 vs. 281 ± 127 and 140 ± 32 ng/ml,
p < 0.001, Figure 1D) and MPO-DNA complexes, markers
of NET formation, were significantly elevated in patients with
severe AP in comparison with mild AP and healthy controls
(0.258± 0.06 vs. 0.168± 0.05 and 0.123± 0.01 OD450, p< 0.001,
Figure 1E). There was a significant correlation between levels
of cf-DNA and MPO-DNA (Supplemental Figure 1, Pearson
r = 0.868, 95% CI: 0.719–0.940, p < 0.0001).

Chloroquine Inhibits NET Formation in
Acute Pancreatitis
Isolated bone marrow neutrophils from wild type mice were
plated and stained with Hoechst to evaluate their propensity
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FIGURE 1 | NETs are critical mediators of murine and human acute pancreatitis (AP). Induction of pancreatitis with L-arginine resulted in an increase in amylase

(A) and trypsin (B) activity in wild-type mice that was statistically diminished in PAD4−/− mice, incapable of forming NETs. PAD4−/− mice had significantly improved

survival compared with wild type mice in recurrent L-arginine induced murine acute pancreatitis (median survival unreached vs. 15 days, p < 0.0001, n = 12 per

group) (C). Patients with pancreatitis had elevated levels of circulating cell-free DNA (D) and MPO-DNA conjugates (E), biomarkers of NET formation that correlated

with disease severity based on the revised Atlanta classification. *p < 0.05.

to form NETs. As previously described (10), citrullinated
histone H3 was identified within NETs on this ex vivo assay
(Supplemental Figure 2), confirming that DNA visualized from
neutrophils was due to NET formation and not cell necrosis.
At baseline, untreated neutrophils from sham control mice
produced no NETs. Neutrophils from mice with L-arginine
induced pancreatitis produced spontaneous NETs (Figure 2A).
Isolated neutrophils were stimulated with PAF, a known inducer
of NET formation. Mice with pancreatitis had a greater
propensity for NET formation, demonstrated by numerous
large, intricately connected NETs. Treatment with CQ markedly
decreased the propensity to form NETs in response to PAF
stimulation and prevented spontaneous NET formation in mice
with pancreatitis.

To objectively quantify the increased extracellular DNA
visualized during ex vivo NET formation, supernatant cell-free
DNA was measured. L-arginine pancreatitis resulted in a 6-fold
increase in cell-free DNA compared to sham controls (18.4 ±

4.2 vs. 2.9 ± 0.4 ng/ml, p = 0.0004), indicative of increased
NET formation during AP (Figure 2B). Treatment of CQ in
pancreatitis mice decreased supernatant cell-free DNA levels in
unstimulated (9.87 ± 4.3 vs. 18.37 ± 4.2 ng/ml, p = 0.03) and
PAF stimulated neutrophils (40.99 ± 1.2 vs. 59.39 ± 3.6 ng/ml,
p < 0.0001).

In vivo NET formation was next assessed in mice with
severe acute pancreatitis. Serum levels of circulating cf-DNA
were measured as a biomarker of NET formation (10). Serum
cf-DNA was elevated in pancreatitis mice and was decreased
with CQ treatment after 48 h (100 ± 11 vs. 122 ± 12 ng/ml,
p = 0.0011, Figure 2C) and after 72 h (211 ± 28 vs. 115 ±

59 ng/mL, p < 0.001). Citrullinated histone 3 (CitH3), one of
the histone proteins formed and released during NET formation,

was elevated in pancreatitis at 48 h (6,228 ± 471 vs. 2,071
± 564 pg/ml, p < 0.0001, Figure 2D) and further increased
at 72 h (8,198 ± 700 vs. 6,228 ± 471 pg/ml, p = 0.0002).
CitH3 levels correlated significantly with cf-DNA (Pearson r
= 0.676, 95% CI 0.375–0.848, p = 0.0003). Treatment with
CQ significantly reduced CitH3 levels at both time points
(3,878 ± 962 vs. 6,228 ± 471 pg/ml, p < 0.0001 and 5,120 ±

876 vs. 8,198 ± 700 pg/ml, p = 0.0015). To assess for NET
formation in the pancreas, CitH3 expression was evaluated in
resected murine pancreatitis sections after L-arginine injection.
Pancreatic neutrophil infiltration, as assessed by neutrophil Ly6g,
and CitH3 was increased in pancreatitis mice compared to
sham controls (Figure 2E). Unmerged images are available for
review in Supplemental Figure 3. CitH3 expression co-localized
with Ly6g, a neutrophil GPI-anchoring protein, suggesting that
CitH3 was released from infiltrating neutrophils. Treatment of
CQ markedly reduced pancreatic neutrophil infiltration and
NET formation, as demonstrated by decreased CitH3/Ly-6g co-
localization (Figure 2E).

Chloroquine Treatment Reduces Local and
Systemic Inflammation From Pancreatitis
Treatment with CQ in mice with pancreatitis reduced amylase
(561 ± 348 vs. 2,051 ± 320 mU/ml, p < 0.0001) and trypsin
activity (5.58 ± 1.5 vs. 8.44 ± 2.1 µU / ml, p = 0.006)
(Figures 3A,B). As part of the systemic inflammatory response
to AP, activated neutrophils and other leukocytes release
pro-inflammatory compounds, further propagating local and
systemic inflammation. Serum HMGB1 and IL-6 significantly
increased with L-arginine induction of pancreatitis (95.9 ± 21.7
vs. 18.2 ± 9.7 ng/ml, p < 0.0001; 11.66 ± 2.82 vs. 3.85 ±

0.04 nmol) (Figures 3C,D). Administration of CQ significantly
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FIGURE 2 | Chloroquine inhibits NET formation in acute pancreatitis. Neutrophils harvested from mice with pancreatitis had evidence of spontaneous NET formation

and greater propensity to form NETs upon stimulation with platelet activating factor (PAF), as visualized by staining of DNA with Hoechst (A). CQ treatment

dramatically reduced spontaneous and stimulated NET formation. Supernatant DNA was measured to objectively quantify NETs (B). Serum cell-free DNA (C) and

citrullinated histone H3 (CitH3) (D), biomarkers of in vivo NET formation were elevated with induction of pancreatitis, but significantly reduced with chloroquine

treatment. Co-localization of pancreatic CitH3 (Green), with neutrophils (Ly-6G, Red) is increased in pancreatitis mice compared to sham controls (E), but treatment

with CQ reduced neutrophil CitH3 expression (20x, scale bar = 50µm). These are representative images from at least two independent analyses. *p < 0.05.

reduced serum HMGB1 (54.35 ± 14.7 vs. 95.99 ± 21.7 ng/ml,
p < 0.0001, Figure 3C) and IL-6 (6.69 ± 1.07 vs. 11.66 ± 2.82
nmol, p < 0.0001, Figure 3D).

Chloroquine Treatment Improves Survival
in Severe Acute Pancreatitis
In a survival model of recurrent L-arginine induced pancreatitis,
CQ treatment significantly improved survival compared
to untreated mice (median survival unreached vs. 15
days, p = 0.0001, Figure 4A). To confirm these findings
in another model of murine acute pancreatitis, a choline
deficient, ethionine (CDE) supplemented diet was also
utilized to test the efficacy of CQ treatment. Treatment
with CQ also significantly improved survival in CDE diet

induced pancreatitis (median survival unreached vs. 4 days,
p = 0.016, Figure 4B). Importantly, CQ did not have a
significant effect on survival from severe acute pancreatitis
in PAD4−/− mice, suggesting that NET inhibition may be a
central mechanism for CQ mediated improvement in survival
(Supplemental Figure 4).

DISCUSSION

Acute pancreatitis (AP) is the most common disease involving
the gastrointestinal tract with a mortality rate in the most severe
cases, ranging from 20 to 30% (31). This mortality rate has
not improved in the last three decades. No effective therapies
have been developed for patients with AP outside of supportive
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FIGURE 3 | Chloroquine reduces local and systemic inflammation in acute pancreatitis. Chloroquine treatment led to a significant reduction in amylase (A) and trypsin

(B) activity. The systemic inflammatory response to acute pancreatitis was assessed by measuring HMGB1 (C) and IL-6 (D). Chloroquine treatment led to a significant

reduction in both of these circulating inflammatory markers. *p < 0.05.

FIGURE 4 | NET inhibition with chloroquine improves survival in murine acute pancreatitis. Chloroquine treatment led to significantly improved survival in murine

severe acute pancreatitis (A, median survival unreached vs. 15 days, p = 0.0001, n = 10 per group). These profound findings were confirmed in a second model of

murine pancreatitis utilizing administration of choline deficient, ethionine (CDE) supplemented diet (B, median survival unreached vs. 4 days, p = 0.016, n = 20 per

group). *p < 0.05.

care, highlighting the critical need for novel therapies that target
the underlying pathophysiology of the disease (1). Neutrophils
are critical to the development of severe AP, further promoting
trypsinogen activation, recruitment of immune cells to the
pancreas, and propagating tissue inflammation and damage (3).
In the studies reported here, we demonstrate that NETs correlate
with the severity of murine and human acute pancreatitis and
that treatment with the drug chloroquine inhibits NETs and is
associated with improved outcomes for severe AP.

Neutrophil extracellular traps (NETs) have emerged as a
critical mediator of the innate immune response to sterile
inflammatory disease (4, 7–9, 16). NETs have been identified in

the pathogenesis of AP (11–13). In murine pancreatitis induced
following taurocholate injection, NETs were identified within the
pancreatic tissue using scanning electron microscopy to visualize
co-localized DNA, histones and neutrophil elastase (11). NETs
were also shown to induce trypsin activation (11). Aggregates
of NET components occlude pancreatic ducts in murine IL-17
induced pancreatitis to propagate pancreatic inflammation (12).
Importantly, protein arginine deiminase, type IV (PAD4), an
enzyme required for NET formation that citrullinates histones
to allow for decondensation, was necessary for induction of
pancreatitis in this model. Herein, we expand on previous
findings that NETs are a critical mediator of acute pancreatitis in
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two additional models of murine pancreatitis; using L-arginine
(22) and a choline deficient, ethionine supplemented (CDE)
diet (23) to induce pancreatitis. We found that pancreatitis
primes neutrophils to increase their propensity to form NETs
in an ex vivo assay. Furthermore, PAD4−/− mice, incapable of
NET formation, had reduced severity and improved survival
compared to wild-type controls, implicating NETs in the
pathophysiology of severe pancreatitis in these models.

Because no murine model perfectly recapitulates the multiple
etiologies driving human pancreatitis, establishing the relevance
of NETs in human disease is critical. NET aggregates have
been visualized in pancreatic ducts from human benign
and malignancy associated pancreatitis (12). Patients with
pancreatitis have elevated levels of NET biomarkers including
cell-free DNA and DNA-histone conjugates compared with
controls (11). We expanded these observations to demonstrate
that NET biomarkers are not only present in human pancreatitis,
but also correlate with severity of disease. While cell free DNA
is non-specific for NETs and may be released from necrotic
cells in necrotizing pancreatitis, MPO-DNA conjugates are a
much more specific bio-marker for NET formation (32). We
have also shown evidence of NETs in the pancreatic tissue
during acute pancreatitis, with the immunofluorescence staining
of citrullinated histone H3. While a portion of this expression
does not co-localize with the neutrophil marker Ly6G, this could
be due to citrullinated histone deposition from NETs in the
extracellular space with clearance of Ly6G after the neutrophil
dies during NETosis. Additionally, citrullination of histone H3
is a fairly specific marker of NET formation, therefore these
findings do suggest NETs occur within the pancreatic tissue
during acute pancreatitis. Taken together, these data suggest that
NETs are a clinically relevant therapeutic target, since systemic
induction of NETs are likely to contribute to the multi-system
organ dysfunction that defines severe acute pancreatitis (6, 26,
33, 34).

Based on the evidence that NETs appear to be critical to the
pathogenesis of murine severe acute pancreatitis and strongly
associated with human severe acute pancreatitis, we evaluated
NET inhibition as a novel therapeutic target to improve outcomes
for patients with this disease. Strategies to deplete neutrophils
or block adhesion molecules to limit neutrophil infiltration have
limited tissue damage in acute pancreatitis (35–39). However, our
understanding of themolecular mechanisms responsible for NET
formation, allows for development of therapies to specifically
target this process. Administration of DNase for NET inhibition
prior to induction of acute pancreatitis resolved pancreatic tissue
damage and decreased systemic inflammation in taurocholate
and L-arginine induced murine acute pancreatitis (11). DNase
lyses extracellular DNA released from neutrophils to prevent
accumulation of NET aggregates. As a “late” inhibitor of NET
formation, DNase treatment does not prevent NET formation
and does little to counter-act the effects of the release of other
NET components, including histones, HMGB1, elastase and
other factors (40). PAD4 is an enzyme that is essential for
NETosis. PAD4 inhibitors have been developed that prevent
NETs and warrant further exploration in pancreatitis (41–44).
Interestingly, both the receptor for advanced glycation end
productions (RAGE) and HMGB1 have been studied in the

development of pancreatitis (45–48) and linked to the promotion
of NET formation(10, 49). This association suggests that they
may exert their inflammatory effects in pancreatitis through
induction of NETosis and may represent additional upstream
targets for NET inhibition.

Chloroquine (CQ) is an inexpensive drug with an established
safety and toxicity profile that has been discovered to inhibit
NETs in pancreatic cancer, most likely through the inhibition
of neutrophil autophagy, which is required for NET formation
(10, 50). Chloroquine has been utilized for many years to
treat patients with malaria, systemic lupus erythematosus, and
rheumatoid arthritis, but has also been evaluated previously
as a treatment for acute pancreatitis (51–55). Leach et al.
investigated the treatment of CQ in a choline-deficient ethionine-
supplemented (CDE) diet model of severe acute murine
pancreatitis. CQ pre-treatment neutralized the subcellular pH
of lysosomes and decreased 72 h serum amylase and trypsin
activity associated with the diet-induced pancreatitis (54). These
findings were supported by the work of Guillaumes et al. who
showed that high-dose CQ administration improved 1-week
survival in murine CDE diet induced pancreatitis from 40 to
70% (53). Despite these studies supporting the benefit of CQ in
acute pancreatitis, there have also been contradictory findings
(55). Our findings validate the efficacy of CQ as a treatment
for AP in CDE diet induced pancreatitis and another murine
model, L-arginine induced pancreatitis. CQ reduced the serum
biochemical activity and levels of amylase and trypsin and also
reduced systemic levels of inflammatory cytokines HMGB1 and
IL-6. Importantly, CQ improved survival in two different murine
models of severe acute pancreatitis.

Previously, CQ efficacy in AP was thought to be mediated by
stabilization of lysosome function or by inhibiting acidification
of the lysosomes to prevent activation of trypsinogen and
digestive zymogens (52–54). However, controversy regarding
the precise mechanism of CQ in pancreatitis remains (56). We
identified inhibition of NET formation as another potential
mechanism for the beneficial effects of CQ in pancreatitis.
In the ex vivo NET assay, CQ treatment notably prevented
spontaneous NET formation, and reduced the propensity to
form NETs upon neutrophil stimulation. CQ treatment also
lowered in vivo NET formation, reducing serum cell-free
DNA and CitH3, a NET biomarker that allows for unwinding
and expulsion of neutrophil DNA during NET formation.
Immunolabeling of murine pancreatitis specimens showed that
CQ treatment also decreased infiltration of neutrophils in
the pancreas and pancreatic neutrophil-CitH3 co-localization.
Importantly, CQ inhibits autophagy, a cell survival mechanism
that utilizes degradation and recycling of damaged intracellular
materials and is required for NET formation (17, 57–60),
possibly by alkalinization of lysosomes (54). More recently,
autophagy itself has been implicated in the pathogenesis of AP
(61, 62). Other studies suggest that it is impaired, blocked,
or disordered autophagy within acinar cells that initiates
pancreatitis in multiple models of AP, and that restoration of
autophagic flux and clearance of protein aggregates abrogates
pancreatitis in these models (63). CQ also inhibits the function
of activated platelets (64, 65), which are a critical mediator of
the inflammatory response during acute pancreatitis (66–69).
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Taken together, these finding suggests that CQ, in adequate
doses, minimizes the activation of trypsinogen to trypsin in
the pancreatic acinar cell during cell stress (initiation of AP),
and also limits progression to severe acute pancreatitis through
effects on neutrophils and/or other inflammatory cells. While we
demonstrate that CQ reduces NETs and that CQ treatment is
associated with improved inflammatory outcomes and survival
in murine acute pancreatitis, there are multiple other potential
mechanisms through which CQ may be functioning, including
those outlined above. In an attempt to demonstrate NET
inhibition as the primary mechanism for CQ in pancreatitis,
we treated PAD4−/− mice with CQ and did not observe any
difference in survival as compared to wild type mice treated
with CQ. This strengthens the association between CQ induced
improvement in survival and NET inhibition as there is less
impact for CQ when NETs are genetically diminished, however
a direct causal mechanism is difficult to demonstrate. Therefore,
we must interpret our results on the mechanism of CQ in
acute pancreatitis and association with NET inhibition with
caution.

This work is limited by the fact that no murine model of
experimental pancreatitis perfectly recapitulates human disease.
In consideration of this, we utilized two different murine
models to demonstrate the survival benefit associated with
CQ treatment. Additionally, we evaluated patient correlates
to demonstrate that NETs are associated with human severe
acute pancreatitis. In the current study, we initiated CQ
shortly after initiation of pancreatitis to explore it as a
rescue strategy for ill patients, however given the evidence
that NETs may contribute to the early development of acute
pancreatitis, NET inhibition should also be explored as a possible
prophylactic therapeutic treatment strategy for patients at high
risk for AP.

In conclusion, NETs have been identified as a key component
in the pathophysiology of murine and human acute pancreatitis,
driving severity and mortality, and serve as a therapeutic
target to improve outcomes in AP. Chloroquine inhibits
NET formation and ameliorates murine acute pancreatitis.
Further study into the targeted inhibition of NETs with
CQ in patients with severe acute pancreatitis or in patients
at risk for recurrent pancreatitis is warranted, as well

as studies designed to develop parenterally administered
congeners.
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