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Abstract: Aromatic hydrocarbons along with sulfur compounds in diesel fuel pose a significant

threat to catalytic performances, due mainly to carbon deposition on the catalytic surface. In order

to investigate the influence of an aromatic hydrocarbon on the autothermal reforming of diesel

fuel, 1-methylnaphthalene (C11H10) was selected as an aromatic hydrocarbon. Two types of diesel

surrogate fuel, i.e., DH (dodecane (C12H26) and hexadecane (C16H34) mixture) as well as DHM (DH

fuel and C11H10 mixture) fuel, were prepared. A Rh-Al-based catalyst (R5A-I) was prepared using a

conventional impregnation method. Various Ni-Al-based catalysts with Fe and Rh promoters were

prepared via a polymer modified incipient method to improve the carbon coking resistance. These

catalysts were tested under conditions of S/C = 1.17, O2/C = 0.24, 750 ◦C, and GHSV = 12,000 h−1

at DH or DHM fuel. R5A-I exhibited excellent catalytic performance in both DH and DHM fuels.

However, carbon coking and sulfur poisoning resistance were observed in our previous study for the

Ni-Al-based catalyst with the Fe promoter, which became deactivated with increasing reaction time

at the DHM fuel. In the case of the Rh promoter addition to the Ni-Al-based catalysts, the catalytic

performances decreased relatively slowly with increasing (from 1 wt.% (R1N50A) to 2 wt.% (R2N50A))

content of Rh2O3 at DHM fuel. The catalysts were analyzed via scanning electron microscopy

combined with energy dispersive X-ray, X-ray diffraction, and X-ray photoelectron spectroscopy. Gas

chromatography-mass spectrometry detected various types of hydrocarbons, e.g., ethylene (C2H4),

with catalyst deactivation. The results revealed that, among the produced hydrocarbons, C2H4 played

a major role in accelerating carbon deposition that blocks the reforming reaction. Therefore, Rh metal

deserves consideration as a carbon coking inhibitor that prevents the negative effects of the C2H4 for

autothermal reforming of diesel fuel in the presence of aromatic hydrocarbons.

Keywords: autothermal reforming; dodecane; hexadecane; 1-methylnaphthalene; nickel; rhodium;

diesel; aromatic hydrocarbon

1. Introduction

Compared with other energy sources, hydrogen energy represents a cleaner and more sustainable

energy, and has become one of the clean fuel options for reducing motor vehicle emissions. Hydrogen

can be produced from a mixture of clean coal, fossil fuels, and nuclear power [1]. A hydrogen energy
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system is a complex system that includes production, utilization, and storage parts, and hydrogen

utilization is difficult, due to the lack of hydrogen-supply infrastructure. In particular, hydrogen

storage in safe, inexpensive, and lightweight storage vessels has been accomplished [2,3]. Furthermore,

auxiliary power unit (APU) systems have been considered as on-board fuel processors. Hydrocarbon

fuels, such as gasoline and diesel fuel, are used to operate the engines of most vehicles. Hydrogen,

which is attainable through a catalytic reforming process performed on hydrocarbon fuels, can be

used to generate electrical energy for fuel cells [4–6]. Notably, solid oxide fuel cell (SOFC)-based APU

systems that use diesel fuel are unique alternatives because this fuel takes advantage of the high

hydrogen density and existing fuel infrastructure [7–9]. Various reforming methods, including steam

reforming (SR), partial oxidation (POX), and autothermal reforming (ATR), may be used to generate

hydrogen-rich gases for APU systems. A water gas shift reaction (WGSR) may occur in the presence of

CO and excessive steam. The corresponding reforming reactions are given as follows:

(1) SR: CnHm + nH2O→ (m/2+n)H2 + nCO

(2) POX: CnHm + (n/2)O2 → (m/2)H2 + nCO

(3) ATR: CnHm + (n/2)H2O + (n/4)O2 → (m+n)/2H2 + nCO

(4) WGSR: CO + H2O↔ H2 + CO2

ATR combines endothermic SR with exothermic POX. In other words, hydrocarbon fuels react with

air and steam, which generates hydrogen-rich gas. Compared with the conventional reforming methods,

ATR as a potential reforming method exhibits higher energy efficiency and thermal stability [10–17].

The production technologies of green diesel have studied for combustion engines with remarkable

properties and significantly lower emissions [18]. The complexity of a typical commercial diesel fuel

composition prevents exact modeling of such compositions. Due to sulfur poisoning and carbon

deposition, low aromatic and sulfur compounds in diesel fuels lead to significant deterioration of

the catalytic performance [19–21]. Many catalysts have been prepared and tested for reforming

hydrocarbon fuel. Methane, biogas, and glycerol were employed as feedstock for the production

of syngas (CO + H2) as well as gasoline and diesel fuel [22–25]. Additionally, the role of the

oxide support in the catalytic performance of ATR performed on a gasoline surrogate fuel was

determined by testing Rh catalysts with various supports (Gd-CeO2, Y-ZrO2, γ-Al2O3, La-Al2O3, and

CaAl12O19) [26]. Ni-catalysts supported on modified alumina (-La, -Ba, and -Ce) were studied with

the aim to improve the catalytic performance associated with steam reforming of diesel fuel [27].

Pt/CeO2-Al2O3 was investigated for numerical simulation of diesel reforming [28]. Rh-Ni-based

catalysts showed high activity and stability for methane reforming by the addition of Rh [29,30]. Jet fuel

in the absence and presence of sulfur was conducted by Rh and Rh–Ni loaded on CeO2-modified Al2O3

support for steam reforming [31]. Furthermore, novel-metal-based (RhPt/ZrO2, Al2O3, CeO2-ZrO2,

SiO2, and TiO2, Rh-Ni/Al2O3) catalysts were evaluated for reforming diesel fuel in the presence of

sulfur compounds [32–36]. Rh-based catalysts were prepared via microemulsion and a zone-coating

preparation method for diesel reforming [37,38] and also sorption-hydrolytic deposition conducted for

highly dispersed Rh-, Pt-, and Ru/Ce0.75Zr0.25O2–δ catalysts [39]. Rh/Ce0.75Zr0.25O2-δ-η-Al2O3/FeCrAl

were tested in pilot scale reactors with autothermal reforming of n-hexadecane. The produced syngas

can be supplied as a fuel for power generation units based on SOFC [40]. In our previous studies,

a polymer modified incipient method (PM) was introduced as a timesaving and promising alternative

preparation method to conventional preparation methods, such as impregnation or co-precipitation

methods [41]. Moreover, sulfur-resistant Ni-Al-based catalysts with added Fe promoters were prepared

by means of the PM method for autothermal reforming of dodecane [42]. The role of these catalysts in

diesel surrogate fuel containing aromatic hydrocarbons has, however, remained unexplored. Therefore,

in this study, Ni-Al-based catalysts were tested in the presence of aromatic hydrocarbon such as

1-methylnaphthalene (C11H10) and, ultimately, attempt to enhance catalytic performances. The ethylene

(C2H4) was considered a major contributor to catalyst deactivation that results in rapid coke formation

during the reforming process [43,44]. The produced hydrocarbons (e.g., C2H4) were detected via
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GC-MS to identify the hydrocarbon that plays the major role in this deactivation in the presence of

aromatic hydrocarbon. Furthermore, the catalysts were characterized by means of field emission

scanning electron microscopy (FE-SEM) in conjunction with energy dispersive X-ray (EDX), X-ray

diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

2. Results and Discussion

2.1. Catalytic Performances in the Absence and Presence of Aromatic Hydrocarbon

The experiments were performed at S/C = 1.17, O2/C = 0.24, 750 ◦C, and GHSV = 12,000 h−1, for

comparison with the catalytic performances realized in the presence of aromatic hydrocarbons such

as 1-methylnaphthalene (C11H10). Figure 1 shows the conversions obtained for the blank test, R5A-I,

N10A, and F10N10A at DH (dodecane (C12H26) and hexadecane (C16H34) mixture) and DHM (DH

fuel and C11H10 mixture) fuels. A conversion of ~33% was obtained for the blank test, with/without

C11H10 in the diesel surrogate fuel. As shown in Figure 1a, conversions of ~80% were obtained for

5-hour periods of each catalyst at the DH fuel. However, the catalytic performances varied with the

addition of C11H10 to the diesel surrogate fuel (see Figure 1b). The catalytic performances of N10A and

F10N10A deteriorated significantly within 1 hour and, thereafter, the conversions remained the same

as that of the blank test, which suggests that the catalysts were completely deactivated. The addition of

Fe as a promoter to Ni-Al-based catalysts enhances carbon coking and the sulfur poisoning resistance,

as reported in our previous study [42]. However, this addition had a negative effect in the presence of

the aromatic hydrocarbon. Although the conversion of R5A-I at DHM fuel was 10% lower than that at

the DH fuel, the catalytic performance of R5A-I was maintained for 5 hours. This indicated that R5A-I

including Rh metal acted as an excellent catalyst at the DHM fuel.
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Figure 1. Conversions corresponding to the blank test, R5A-I, N10A, and F10N10A at: (a) DH and (b)

DHM fuel.

The selectivity of product gas (%) of the blank test, R5A-I, N10A, and F10N10A at DH and

DHM fuel is shown in Figure 2. For the blank test and R5A-I, the percentage of H2, CO, CH4, and

CO2 produced in the absence and presence of C11H10 was almost the same. Additionally, at the

DH fuel, selective percentages of H2, CO, CH4, and CO2 produced by R5A-I was similar to those

generated by N10A and F10N10A. Approximately 59%, 23%, 1%, and 17% of H2, CO, CH4, and CO2

selectivity, respectively, were initially generated by deactivated catalysts such as N10A and F10N10A.

The subsequent selectivity were nearly the same as those obtained for the blank test. In other words,

selectivity of H2 and CO2 produced by N10A and F10N10A decreased with increasing time, while that

of CO and CH4 increased until these catalysts were completely deactivated. Therefore, compared with

the presence of C11H10, reaction conditions, such as S/C, O2/C, and temperature, played a greater role

in selectivity of product gas (%), which is consistent with the findings of our previous study [45].
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Figure 2. The selectivity of product gas (%) of the (a) blank test, (b) R5A-I, (c) N10A, and (d) F10N10A

at DH and DHM fuel.

The hydrocarbons produced after reforming were separately analyzed via GC-MS (see Table 1 for

the blank test, R5A-I, N10A, and F10N10A data corresponding to 30-minute and 60-minute reactions at

the DHM fuel). Small amounts of benzene (C6H6) were produced in the case of R5A-I, but various types

of hydrocarbons, which resulted in catalyst deactivation, were detected in N10A and F10N10A. High

fractions of ethylene (C2H4) formed in N10A and F10N10A after 60 minutes of reaction. The previously
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mentioned results suggested that the hydrocarbons produced after reforming had an adverse effect on

the catalytic performance.

Table 1. Data obtained from the GC-MS of the blank test, R5A-I, N10A, and F10N10A after 30-minute

and 60-minute reactions at the DHM fuel.

Blank Test R5A-I N10A F10N10A

Reaction Time (min) 30 60 30 60 30 60 30 60

Carbon dioxide (CO2) 8.2 8.2 98.3 98.2 39.5 21.2 55.7 25.8
Ethane (C2H6) 2.3 2.3 - - 3.2 2.8 2.9 2.7

Ethylene (C2H4) 32.2 32.2 - - 28.6 30.9 20.7 29.9
Propylene (C3H6) 16.4 16.4 - - 13.1 15.9 7.8 14.7

1,3-Butadiene (C4H6) 9.4 9.4 - - 4.9 8.1 3.0 7.7
1,3-Cyclopentadiene (C5H6) 4.5 4.5 - - 0.9 2.9 0.4 2.6

Benzene (C6H6) 16.2 16.2 0.2 0.3 9.7 11.1 7.9 11.7
Toluene (C7H8) 4.2 4.2 - - - 2.4 1.1 2.1

2.2. Catalyst Analysis before and after Reaction in the Absence and Presence of Aromatic Hydrocarbon

Catalyst deactivation by hydrocarbons production was verified via SEM-EDX, XRD, and XPS

analysis. The morphology and amounts of carbon on the catalytic surface were determined by SEM-EDX

analysis. High-magnification (10,000x) SEM images reveal the wire shape of carbon deposited on the

surface of N10A and F10N10A after a 5-hour reaction at DH and DHM fuel (see Figure 3). Moreover,

the amount of carbon coking at DH fuel was expected to be lower than that at the DHM fuel because

the previously mentioned wire shape occurred more frequently at DHM fuel. The amounts of carbon

on the catalytic surface of R5A-I, N10A, and F10N10A after 5-hour reactions at DH and DHM fuel

are listed in Table 2. In the case of R5A-I, ~21 wt.% of carbon occurred on the surface irrespective of

the diesel surrogate fuel considered. At the DHM fuel, 47.21 wt.% and 45.08 wt.% of carbon were

deposited on the catalytic surface of N10A and F10N10A, respectively, and these amounts were more

than twice those occurring at DH fuel. In our previous study, Ni-Al-based catalyst and Fe-Ni-Al-based

catalyst at D fuel (C12H26) in the presence of DBT were 33.4 wt.% and 8.58 wt.%, respectively [42].

In particular, the amount of carbon increased more in the case of Fe-Ni-Al-based catalyst at DHM fuel,

compared to those at D fuel in the presence of DBT and DH fuel. Thus, it was concluded that the

addition of Fe to Ni-Al-based catalyst had no effect to prevent carbon deposition on the catalytic surface.

Moreover, SEM-EDX analysis revealed that hydrocarbon production promotes carbon deposition on

the catalytic surface.

 

 

Figure 3. Scanning electron micrographs of (a) R5A-I, (b) N10A, and (c) F10N10A.
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Table 2. Amounts of carbon on the catalytic surface of R5A-I, N10A, and F10N10A after 5-hour reactions

at DH and DHM fuel.

R5A-I N10A F10N10A

Fuel DH DHM DH DHM DH DHM

Carbon (wt.%) 21.59 20.89 19.96 47.21 20.78 45.08

The crystal structure of R5A-I, N10A, and F10N10A were characterized via X-ray diffraction (XRD)

analysis (see Figure 4). Rh2O3, NiO, and Fe2O3 were undetected in the fresh state. The incorporation of

Ni2+ ions into –Al2O3 (NiAl2O4) resulted in the lattice expansion of –Al2O3 and, hence, the diffraction

peak of NiAl2O4 is shifted to a lower diffraction angle, i.e., 66.84◦, compared with that of –Al2O3.

The NiAl2O4 phase is inactive in the reforming reaction of hydrocarbons [45–47]. As shown in

Figure 4b,c, the Ni and FeNi phase were observed after the H2 pre-reduction treatment and 5-hour

reaction at DH fuel. However, these phases were absent from the XRD pattern associated with the

5-hour reaction at DHM fuel. The XRD pattern of each catalyst was almost identical to those of the

fresh state, which suggests that detection of active metals (e.g., Ni or FeNi) was difficult, due to carbon

deposition on the catalytic surface.
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Figure 4. Results of XRD analysis performed on (a) R5A-I, (b) N10A, and (c) F10N10.

The phases comprising R5A-I, N10A, and F10N10A were investigated further via XPS analysis

(see Figure 5). Rh2O3, NiO, and Fe2O3 phases, which were undected by XRD, were observed in

the fresh state. The XPS peaks corresponding to Rh3d5/2, Rh2O3, and Rh3d3/2 occurred at binding

energies of 307.6 eV, 308.3 eV, and 312 eV (see Figure 5a), respectively [48]. The peaks of Rh3d5/2

and Rh3d3/2 appeared after the H2 pre-reduction treatment and the 5-hour reaction at DH and DHM

fuel. The Rh3d5/2 and Rh3d3/2 peaks appearing after this reaction were relatively sharper than those

observed after the H2 pre-reduction treatment. The peaks of Ni, NiO, and NiAl2O4 are associated with

binding energies of 853 eV, 854 eV, and 856 eV, respectively [49], as shown in Figure 5b. However,

the 5-hour reaction at DH and DHM fuels yielded indistinguishable Ni peaks. The peaks of FeNi and

Fe2O3 occurred at binding energies of 710 eV and 711 eV (see Figure 5c), respectively [50]. The FeNi

peak after the 5-hour reaction at DHM fuel was slightly smaller than that associated with the 5-hour

reaction at DH fuel. The results indicated that the changes in the Ni and FeNi peaks result from carbon

deposition on the catalytic surface during the reaction. Therefore, the produced hydrocarons such as

C2H4 accelerated carbon deposition and inhibited the reforming reaction required for autothermal

reforming of the diesel surrogate fuel.
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Figure 5. Results of XPS analysis performed on (a) R5A-I, (b) N10A, and (c) F10N10A.

2.3. Catalytic Performances of Ni-Al-Based Catalysts with Fe and Rh Promoters in the Presence of
Aromatic Hydrocarbon

The resistance properties of aromatic hydrocarbon were investigated under the previously

mentioned conditions. The catalytic performance of Ni-Al-based catalysts improved with increasing

content of Ni metal (Supplementary Materials Figure S1). Research regarding the content of Ni metal

for autothermal reforming of a diesel surrogate fuel will be presented in another study. Ni-Al-based

catalysts with a NiO content of 50 wt.% were prepared and various amounts of Fe and Rh promoters

were added to these catalysts to improve and prolong the catalytic performances of DHM fuel.

The Ni-Al-based catalysts with different amounts (Fe2O3 10 wt.%, 20 wt.%, and 30 wt.%) of Fe promoter

were tested using DHM fuel. The Fe promoter improves carbon coking and the sulfur poisoning

resistance for autothermal reforming of dodecane [42] and was, hence, expected to prevent carbon

deposition in the presence of aromatic hydrocarbons. Figure 6a reveals initial conversions of 72%,

68%, 68%, and 55% for the N50A, F10N50A, F20N50A, and F30N50A, respectively, using DHM fuel.

Contrary to expectations, these catalysts were deactivated with increasing reaction time. A conversion

of ~33% was obtained for the blank test in Figure 1. This conversion was a similar value with those for

the N50A, F10N50A, F20N50A, and F30N50A at higher times. This conversion was obtained from DHM

fuel thermally decomposed to CO, CO2, and CH4 after catalyst deactivation. Furthermore, catalytic

performances of DHM fuel deteriorated with the increasing amount of Fe promoter, i.e., this promoter

yielded no improvement in the catalytic performance in the presence of aromatic hydrocarbons, such as

C11H10. Small amounts (Rh2O3 1 wt.% and 2 wt.%) of Rh promoter as alternatives to the Fe promoter

were added to the Ni-Al-based catalysts to resolve the problem of catalyst deactivation. Figure 6b

reveals an initial conversion of ~70% for the R5A-I, N50A, R1N50A, and R2N50A using DHM fuel.

The conversion of R5A-I was maintained for 5 hours, but the catalytic performances of N50A, R1N50A,

and R2N50A deteriorated with increasing reaction time. R1N50A and R2N50A were more slowly

deactivated than N50A. The deactivation rate of R2N50A was moderately reduced by increasing the

content of Rh promoter. The addition of Rh to Ni-Al-based catalysts improved the dispersion of Ni and

retarded the sintering of Ni by the strong interaction between Rh and Ni [29,30,33]. Although metallic

Rh is a costly metal, the Rh promoter deserves consideration as a promoter for Ni-Al-based catalysts.

For improved catalytic performance, further studies are required to identify a suitable promoter that

yields autothermal reforming of diesel fuel.
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Figure 6. Conversions of the (a) N50A, F10N50A, F20N50A, and F30N50A and (b) R5A-I, N50A,

R1N50A, and R2N50A of DHM fuel.

The basis for differences in the catalytic performance was investigated via GC-MS analysis of

hydrocarbons such as C2H4. Table 3 shows the data corresponding to R5A-I, N50A, R1N50A, and

R2N50A after the reaction for 30-minute and 300-minute using DHM fuel. The amount of hydrocarbons

increased, in general, with increasing reaction time, whereas the amount of CO2 decreased. At fractions

of 23.8%, 18.2%, and 16.5%, C2H4 accounted for the highest proportion of produced hydrocarbons in

the case of N50A, R1N50A, and R2N50A, respectively, which reacted for 300 minutes. C6H6 accounted

for the second-highest fraction of produced hydrocarbons. Neverthless, C6H6 had a negligible effect on

catalyst deactivation, since R5A-I exhibited excellent catalytic performance, despite the high fraction

of this hydrocarbon. As previously mentioned, we assumed that the produced hydrocarbons were

associated with carbon deposition on the catalytic surface. The results indicated that, compared with

the other hydrocarbons, the produced C2H4 plays a crucial role in catalyst deactivation, which is

consistent with the results of previous studies [43,44]. More importantly, Rh metal seemed to play an

important role in reducing C2H4 production, which accelerates carbon deposition.

Table 3. Data obtained from GC-MS of R5A-I, N50A, R1N50A, and R2N50A after 30-minute and

300-minute reactions of DHM fuel.

R5A-I N50A R1N50A R2N50A

Reaction Time (min) 30 300 30 300 30 300 30 300

Carbon dioxide (CO2) 98.3 75.5 94.1 23.8 98.7 38.7 98.7 45.6
Ethane (C2H6) - 0.5 - 2.8 - 2.7 - 2.4

Ethylene (C2H4) - 0.3 - 23.8 - 18.2 - 16.5
Propylene (C3H6) - - - 12.2 - 8.8 - 7.9

1,3-Butadiene (C4H6) - - - 5.9 - 4.3 - 4.1
1,3-Cyclopentadiene (C5H6) - - - 3.5 - 2.7 - 2.7

Benzene (C6H6) 0.2 23.7 - 17.9 - 16.6 - 14.1
Toluene (C7H8) - - - 4.8 - 4.1 - 3.2

2.4. Analysis of Rh-Ni-Al Catalyst Before and After Reaction in the Presence of Aromatic Hydrocarbon

The morphology and amounts of carbon on the catalytic surface were observed via SEM-EDX

analysis. High-magnification (10,000x) SEM images are shown in Figure 7. Wire-shaped carbon

occurred in N50A, but classification of the carbon morphology occurring in R5A-I, R1N50A, and

R2N50A was difficult. Table 4 lists the amount of carbon formed on each catalytic surface after 5-hour

reactions as DHM fuel. As shown, 20.89 wt.%, 40.59 wt.%, 22.05 wt.%, and 21.21 wt.% of carbon

were formed on R5A-I, N50A, R1N50A, and R2N50A, respectively. The amount of carbon in N50A

was about two times higher than that of the other catalysts containing Rh metal. Rh metal promoted

the gasification or reforming of adsorbed carbon species on Rh-Ni-Al-based catalysts during steam
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reforming of sulfur-doped n-hexadecane [33]. Therefore, this metal was helpful in resisting deposition

of carbon from the C2H4 product onto the catalytic surface.

 

 

μ

Figure 7. Scanning electron micrographs of (a) R5A-I, (b) N50A, (c) R1N50A, and (d) R2N50A.

Table 4. Amount of carbon on the catalytic surface of R5A-I, N50A, R1N50A, and R2N50A after 5-hour

reactions of DHM fuel.

R5A-I N50A R1N50A R2N50A

Carbon (wt.%) 20.89 40.59 22.05 21.21

3. Materials and Methods

3.1. Catalyst Preparation

In our previous studies, various Ni-Al-based catalysts with Fe and Rh promoters were prepared by

means of a polymer modified incipient method, to demonstrate the potential of this catalyst preparation

method for hydrocarbon fuel reforming [41,42]. The following nomenclature was used for the catalysts:

The letters ‘N’, ‘R’, ‘F’, and ‘A’ represent Ni, Rh, Fe, and Al metal, respectively. In addition, the figures

revealed the content (wt.%) of metal oxide. During the catalyst preparation procedure, known amounts

of Ni(NO3)2·6H2O and Al(NO3)3·9H2O were dissolved in ethylene glycol (15 mL) and methyl alcohol

(15 mL). Fe(NO3)3·9H2O and Rh(NO3)3·xH2O were added as the precursors for Fe and Rh metal.

The solid products were obtained by heating the solutions with PMMA colloidal crystals (1.5 g) on

a hot plate at 100 ◦C and drying at 300 ◦C for 4 hours. Afterward, the products were calcined at

800 ◦C for 4 hours. An Rh-Al-based catalyst (R5A-I) was prepared using a conventional impregnation

method, and the catalytic performance of this catalyst was compared with that of the other catalysts.

Rh(NO3)3·xH2O and γ-Al2O3 were dissolved in water. The resulting solution was stirred at room

temperature and the suspension was then evaporated via vacuum evaporation. Afterward, the powder

was dried at 300 ◦C for 4 hours and then calcined at 800 ◦C for 4 hours as per the above conditions.

3.2. Catalytic Reforming Tests

The catalysts (mass: 0.5 g, size: 150 to 250 µm) were supported by quartz wool on either side

and packed in the middle of a fixed-bed quartz reactor. The quartz reactor was generally used to

minimize coke formation on the inner walls. Thermocouple was placed at the center of the catalytic

bed and controlled the temperature of the electric furnace. In addition, the temperature was monitored

in the inlet and outlet of the reactor. The temperature gradient between the inlet and outlet of the

reactor and the catalytic bed was negligible. The mass flow controllers were used to adjust the flow

rate of gases such as H2, N2, and O2. Enough gas was introduced and the line was heated to prevent

condensation. The diesel surrogate fuel was prepared from dodecane (C12H26), hexadecane (C16H34),

and 1-methylnaphthalene (C11H10). This fuel varied depending on whether aromatic hydrocarbons

(e.g., C11H10) were contained in diesel surrogate fuels such as DH (C12H26 and C16H34 mixture)
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and DHM (DH fuel and C11H10 mixture) fuel. The selected diesel surrogate fuel and H2O were

injected by syringe pumps and completely vaporized with N2 at 400 ◦C in the vaporizer. Afterward,

the condensable liquids were completely removed before injection into gas chromatograph (GC, Agilent

6890, Santa Clara, CA, USA). Product gases such as H2, N2, CO, CH4, and CO2 were then analyzed via

GC-TCD (thermal conductivity detector). Supplementary Materials Figure S2 shows the schematic

diagram of experimental apparatus. In addition, CO2 and hydrocarbons, such as ethane (C2H6),

ethylene (C2H4), propylene (C3H6), 1,3-butadiene (C4H6), 1,3-cyclopentadiene (C5H6), benzene (C6H6),

and toluene (C7H8), were detected via GC-MS (Agilent (7890B-5977B GC/MSD), Santa Clara, CA, USA).

The H2 pre-reduction treatments were conducted for 2 hours at 750 ◦C prior to the tests. The catalytic

performance of each catalyst was investigated under the following conditions: S/C = 1.17, O2/C = 0.24,

750 ◦C, and GHSV = 12,000 h−1 at DH or DHM fuel. The diesel surrogate fuel conversions and the

selectivity of product gases were calculated as follows.

Conversion (%) =

(

FCO·Out + FCO2·Out + FCH4· Out

FC12H26·In × 12 + FC16H34·In × 16 + FC11H10·In × 11

)

× 100 (1)

Selectivity of product gas (%) =

(

Fproduct·Out

FH2·Out + FCO·Out + FCH4·Out + FCO2·Out

)

× 100 (2)

3.3. Characterization

The morphology and the amounts of carbon on the catalytic surface were determined via FE-SEM

(S-4300, Hitachi, Tokyo, Japan) and EDX (EDX-350, Hitachi, Tokyo, Japan), respectively. The crystal

structure of each catalyst was determined via XRD using a CuKα radiation source (Phillips XPERT

instrument, Korea Basic Science Institute, Daegu). Furthermore, the phases comprising the mixed

metal oxides were identified via XPS (Quantera SXM, ULVAC-PHI, Chigasaki, Japan).

4. Conclusions

To investigate the effect of aromatic hydrocarbon on the autothermal reforming of diesel,

1-methylnaphthalene (C11H10) was selected and blended as an aromatic hydrocarbon. Two types of

diesel surrogate fuel, i.e., DH (C12H26 and C16H34 mixture) and DHM (DH fuel and C11H10 mixture)

fuels, were prepared. The R5A-I, Ni-Al-based catalyst, and Fe-Ni-Al-based catalyst maintained

catalytic performances for 5 hours using DH fuel, whereas the catalysts except for R5A-I became

deactivated at DHM fuel. Unsurprisingly, the Fe promoter of the Ni-Al-based catalysts yielded no

improvement in the catalytic performance at DHM fuel. When an Rh metal was added to these

catalysts, the resulting catalytic performance was superior to that achieved for the other catalysts.

The extent of catalyst deactivation decreased with greater content of this metal as a promoter. Although

expensive, the Rh metal acted as a remarkable promoter that improved the resistance property of

aromatic carbon for autothermal reforming of diesel fuel. The GC-MS data revealed that, among the

produced hydrocarbons, C2H4 played a major role in deactivating the catalysts, since this hydrocarbon

resulted in carbon deposition that covered the Ni metal active sites. In conclusion, the catalytic

performance of Ni-Al-based catalysts, which are susceptible to accelerated carbon deposition from the

C2H4 product, can be improved through the addition of small amounts of Rh metal.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/7/573/s1.
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of experimental apparatus.
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