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Abstract. Fertiliser nitrogen (N) has been, and will continue to be, essential in nourishing, clothing and providing
bioenergy for the human family. Yet, emissions of ammonia (NH3) and nitrous oxide (N2O), and losses of nitrate-N (NO3-
N) to surface and groundwater resources are risks associated with fertiliser N use that must be better managed to help meet
expanding societal expectations. Nitrogen fertilisers with polymer coatings, or with the addition of urease and/or
nitrification inhibitors, or those possessing other characteristics that afford them either improved agronomic response
and/or lessened loss of N to the environment (compared with a reference water-soluble fertiliser) may be considered
enhanced-efficiency N fertilisers (EEFs). Agronomic and horticultural research with these technologies has been performed
for many decades, but it has been primarily in the past decade that research has increasingly also measured their efficacy in
reducing N losses via volatilisation, leaching, drainage, run-off and denitrification. Expanded use of EEFs, within the ‘4R’
concept (right source, right rate, right time, right place) of N management may help increase crop yields while minimising
environmental N losses. Coupling these 4R N management tools with precision technologies, information systems, crop
growth and N utilisation and transformation models, especially weather models, may improve opportunities for refined N
management in the future.
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Introduction

Farmers and the agricultural industry around the world are
increasingly being confronted with large challenges and
opportunities to improve their management of nutrient inputs
in crop production, especially N management. Global food
demand is expected to continue to rise, including meat and
milk consumption, into the next two decades (Mueller et al.
2012; Sattari et al. 2016). Yet, large gaps persist between
typical farmer yields and attainable crop yields (Cassman
et al. 2003). Keys to achieving these critical needs of the
human family while minimising the human environmental
footprint are improving crop recovery and the overall
efficiency and effectiveness of fertiliser N use. Freney (1997)
emphasised that in addition to using the appropriate fertiliser N
rate, there are multiple ways to achieve such improvements,
including: (1) using the correct form and time of application of
fertilisers; (2) the use of continuous soil cover; (3) correct
tillage, drainage and irrigation, (4) greater knowledge of the
effects of biomass burning on grasslands and croplands; (5)
using foliar N fertiliser applications; (6) the use of slow- or
controlled-release fertilisers; and (7) using urease and
nitrification inhibitors. Yet, as noted by Tomich et al. (2011),
‘. . .much more needs to be known about the dynamics and
nutrient-use efficiency of various types of fertilizers used
individually and also for combinations of organic and
synthetic fertilizers’.

In a review of several options to improve the efficiency of
fertiliser N use and to mitigate environmental N losses in
Australia, particularly agricultural nitrous oxide (N2O)
emissions, Dalal et al. (2003) suggested that it is important:

. . .to match the supply of mineral N (from fertilizer
applications, legume-fixed N, organic matter, or manures)
to its spatial and temporal needs by crops/pastures/trees.
Thus, when appropriate, mineral N supply should be
regulated through slow-release (urease and/or nitrification
inhibitors, physical coatings, or high C/N ratio materials)
or split fertilizer application. Also, N use could be
maximised by balancing other nutrient supplies to plants.

In good agreement, Robertson and Vitousek (2009) stated
that ‘[m]ismatched timing of N availability with crop need is
probably the single greatest contributor to excess N loss in annual
cropping systems’. The review by Cameron et al. (2013) also
agreed, stating that ‘[c]areful management of temperate soil/plant
systems using best management practices and newly developed
technologies can increase the sustainability of agriculture and
reduce its impact on the environment’. Appropriate N
management, in the context of good crop and soil system
management to help mitigate greenhouse gas (GHG) emissions
from agricultural cropping systems, has been discussed in reports
by Snyder et al. (2009) and Flynn and Smith (2010). Snyder
and Fixen (2012) also emphasised the effects of balancing N
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fertilisation with the input needs of other essential nutrients to
help optimise crop N recovery, reduce the risks for residual
inorganic soil N build-up and to reduce the risks for nitrate-N
leaching losses.

The objective of all agricultural nutrient use is to ‘increase the
overall performance of cropping systems’ (Fixen et al. 2015).
Cropping system performance in many parts of the world may be
increasingly threatened by climate change and less predictable
weather patterns. In recognition of such weather uncertainties,
it is evident that effective water management and nutrient
management should be collective priorities. This point was
emphasised by Fixen et al. (2015), who reported:

. . .even though nitrogen use efficiency (NUE) generally
decreased as N rates increased, the simultaneous increase
in water use efficiency (WUE) and yield until an
optimum N rate was attained improved over-all system
performance. Efficient and effective use of either water or
crop nutrients requires that both be managed at optimum
levels for the specific system.

Appropriate fertiliser N use fosters carbon dioxide (CO2)
capture by crops (International Fertilizer Industry Association
(IFA) 2009b) and helps build and sustain soil organic
matter (Dourado-Neto et al. 2010; Powlson et al. 2010). Yet,
the benefits of soil carbon sequestration should not be
overemphasised to the disadvantage of other measures also
important to combating climate change, and should be
weighed in the balance of GHG emissions associated with
the production and use of fertiliser N (Powlson et al. 2011).
Meta-analyses by scientists in Australia have shown that
elevated atmospheric CO2 levels affect the N cycle and result
in increased biological N fixation by legumes (38%), increased
above- and below-ground biomass production (24% and 33%
respectively), increased plant uptake of fertiliser N (17%), no
significant effect on soil–plant system total N recovery and
increased N2O emissions (27%; Lam et al. 2012). These
findings exposed the potential for aggravating the effects of
elevated atmospheric CO2 on N2O emissions from soils, which
is especially concerning in view of the large radiative forcing of
N2O (298-fold greater than that of CO2), its ozone-depleting
effects and its �100-year lifespan in the atmosphere (United
Nations Environment Programme (UNEP) 2013).

Renewed and sustained research, education and outreach
with an emphasis on crop nutrition are needed to improve
site-specific, knowledgeable nutrient management for major
cropping systems around the world, relying on all available
nutrient management technologies, tools and science. With these
looming complex challenges, we face grand opportunities to:
(1) lessen crop yield gaps; (2) decrease nutrient management
knowledge gaps; and (3) implement actions that lessen
environmental N losses.

This paper highlights opportunities to improve crop recovery
of applied fertiliser N and to reduce losses of N to the
environment by sharing recent (over approximately the past
5 years) examples of published research results addressing
management of different N sources, rates, timing and place of
application (i.e. the 4Rs (right source, right rate, right time,
right place) of fertiliser N stewardship; Bruulsema et al. 2009;
International Plant Nutrition Institute (IPNI) 2012; Johnston and

Bruulsema 2014), with a focus on enhanced-efficiency N
fertilisers (EEFs). Relevant literature was identified using
Google Scholar and ScienceDirect, with searches on various
fertiliser technologies and use of terms similar to those used in
searches by Abalos et al. (2014), as well as through personal
communications with leading researchers in the field. Examples
of recent industry N management actions and outcomes, as
well as emerging opportunities for crop sensor-based N
management, are briefly mentioned.

Improving crop nitrogen recovery and reducing losses

4R nitrogen management: gaining global
industry adoption

Inadequate and imbalanced plant nutrition and soil fertility affect
agronomic NUE and constrain food production in many parts
of the world, perhaps most notably in sub-Saharan Africa
(Sanchez 2002; Chikowo et al. 2010; Vanlauwe et al. 2011).
Many partners have aligned through the United Nations
Environment Program, ‘. . .steering dialogues and actions to
promote effective nutrient management’ (Global Partnership
on Nutrient Management (GPNM) 2014), to address both the
challenges of global crop production and natural resource
protection. Some global industry-led actions were initiated in
2009 around the framework of 4R nutrient stewardship
(Bruulsema et al. 2009; IFA 2009a, 2009b) to provide more
consistent fertiliser producer, wholesaler or retailer and
agricultural crop adviser, farmer or consumer alignment on
the principles of science-based nutrient management that
underscore production and sustainability. Those industry 4R
outreach initiatives also communicate a common vision for the
development of fertiliser best management practices (BMPs).
These 4R nutrient management principles are also being
extended to smallholder farmers in Africa (Zingore et al.
2014), to canola producers in Australia (Norton 2013), to
farmers in China (http://china.ipni.net/topic/4r-publications,
accessed 14 May 2017) and other regions where IPNI
educational programs are active (http://www.ipni.net/
regionalprograms, accessed 14 May 2017).

A prominent example of that voluntary, industry-led 4R-
based education and outreach in the US is the ‘N-Watch’ project
(Payne and Nafziger 2015) in coordination with the Illinois
Fertilizer and Agrichemical Association’s ‘Keep it 4R Crop
2025’ agricultural retailer program (http://www.keepit4rcrop.
org/, accessed 14 May 2017).The goal of ‘N-Watch’ and its
partnering and networking approaches is to enable farmers and
their professional advisers to improve N management for
maximised crop utilisation of applied N. The program also
strives to connect public land-grant university research-based
N recommendations, seasonal and current cropping system N
dynamics and the State of Illinois’ Nutrient Loss Reduction
Strategy (http://www.epa.illinois.gov/topics/water-quality/
watershed-management/excess-nutrients/nutrient-loss-reduction-
strategy/index, accessed 14 May 2017) while complying with
the Illinois Environmental Protection Agency’s water quality
guidance and rules (http://epa.illinois.gov/topics/water-quality/
standards/index, accessed 17 May 2017). A recent paper by
McIsaac et al. (2016) indicates that there has been a >50%
decline in flow-weighted nitrate-N concentrations and loads in
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the Illinois River since 1990, whereas river flow declined >15%,
and the former may reflect increasing NUE in agriculture and a
depletion of legacy N stored in the watershed. However, it is not
known how much the industry-led 4R N stewardship actions in
Illinois since approximately 2010 may have contributed to these
most recent water quality improvements.

Benefits of EEFs

EEFs encompass ‘right source’, ‘right time’ and ‘right place’
components of the 4R nutrient stewardship concept. Slow- and
controlled-release N fertiliser (coated or encapsulated), nitrification
inhibitor-treated N fertiliser, urease inhibitor-treated N fertiliser
or products treated with both nitrification and urease inhibitors
are considered EEF products. Inhibitor-treated N products
are sometimes referred to as ‘stabilised’ N fertilisers (Trenkel
2010; Halvorson et al. 2014). The representative products,
manufacturing, characteristics and effects of EEFs on nutrient
use efficiency have been covered in the review by Trenkel
(2010) and will not be repeated here. An agribusiness
magazine has recently produced a summary article to
categorise the technologies, list the country of origin, and the
producing company for many different EEFs used around the
world (Wu 2016). Trenkel (2010) cited Grant (2005) in stating
that if the economic benefits of EEFs to society are substantial,
‘some costs should perhaps be borne by society, possibly
through incentives for development and advisory work on
slow- and controlled-release and stabilised fertilisers, and for
encouraging their wider adoption by farmers’.

As reported by Snyder et al. (2014):
In the last 5–10 years, there has been increased research
into, and farmer adoption of, enhanced efficiency
nitrogen fertilizers (EENFs, or EEFs for simplicity
here). These EEFs are defined by the Association of
American Plant Food Control Officials (AAPFCO) as
‘fertilizer products with characteristics that allow
increased plant uptake and reduce the potential of
nutrient losses to the environment (e.g. gaseous losses,
leaching, or runoff) when compared with an appropriate
reference product’ (Halvorson et al. 2014). Such reference
products are ‘soluble fertilizer products (before treatment
by reaction, coating, encapsulation, addition of inhibitors,
compaction, occlusion, or by other means) or the
corresponding product used for comparison to substantiate
enhanced efficiency claims’.

Nationwide projects to evaluate the effects of improved
cropping system conservation and nutrient management,
including the potential benefits of EEFs on GHG emissions,
have been established in Australia (e.g. Nitrous Oxide Research
Program (NORP; 2009–12) and the National Agricultural
Nitrous Oxide Research Program (NANORP; 2013–16)), as
well as in the US (USDA Agricultural Research Service;
Greenhouse Gas Reduction through Agricultural Carbon
Enhancement network (GRACEnet; 2005 to present; Del
Grosso et al. 2013; Grace 2016).

In a meta-analysis and review of studies from the early 1970s
to 2001, Wolt (2004) reported that the nitrification inhibitor
nitrapyrin on average increased crop yield 7%, increased soil N
retention 28%, decreased nitrate-N leaching by 16% and

decreased GHG emissions by 51%, but had no effect on
agronomic or environmental N performance approximately
25% of the time, compared with N fertilisation without
nitrapyrin. A recent global literature synthesis by Pan et al.
(2016) showed that use of nitrification inhibitors may increase
the risks of ammonia volatilisation from some fertiliser N
sources. Although nitrification inhibitor use may not increase
grain yield, or modestly (7%) increases grain yield (Thapa et al.
2016), better cropping system performance may be reflected in
indicators of increased NUE (Burzaco et al. 2014), such as plant
N uptake, apparent crop N recovery (differential ratio of plant
N uptake to N applied) or internal crop N efficiency (the
differential ratio of grain yield to plant N uptake).

Citing Singh et al. (2008), Saggar et al. (2013) provided a
good overview of urease-inhibiting compounds and their
classification according to their structures and binding modes
with the urease enzyme. Saggar et al. (2013) also provided
additional details on one of the more widely used and
effective compounds, namely N-(n-butyl)thiophosphoric
triamide (NBPT; tradename Agrotain; Koch Agronomic
Services, Wichita, KS, USA), and summarised multiple
studies on reduced ammonia emissions with NBPT in grazed
pastures (primarily in New Zealand) that were fertilised with
urea or with animal urine.

Newer production processes and the increased scale of farmer
demand have helped make it possible for the industry to provide
polymer-coated urea (PCU) fertilisers more economically.
Generally, PCU sources are water soluble and have urea
release rates that are affected by the polymer chemistry, the
coating process, the coating thickness and the temperature of
the environment where they are applied. The timing of urea N
release is important and can be an issue, especially if the PCU
source does not release the N synchronous with crop demand
and the prevailing environmental conditions (Golden et al.
2011; Suter et al. 2013; Maharjan et al. 2016). Hatfield and
Venterea (2014) provided a synopsis of the special section on
EEFs that was published in the Agronomy Journal, noting that
the EEFs had an inconsistent effect on crop production,
increased crop NUE and had mixed effects on N2O. Hatfield
and Venterea (2014) observed that reduced N2O emissions
often occurred immediately following fertiliser application
compared with the reference non-EEF material, and noted
that the rainfall pattern during the remainder of the growing
season may determine the overall efficacy of these materials in
different cropping systems and soils.

Recent field effectiveness and prospects with EEFs
and other 4R tools

Tables 1–3 list the wide range in crop yield responses to EEFs in
recently published reports and expose the challenges of
simultaneous measurement of three environmental N losses in
the same study. Table 1 lists recent data on the effects of
nitrification and urease inhibitor EEFs, Table 2 includes
results from recent studies involving polymer-coated EEFs
and related technologies and Table 3 contrasts fertiliser N
(with or without EEF technologies) with manure N, and
includes examples of some other improved fertiliser N
technologies and/or fertiliser management combinations.
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Sizeable, but variable, environmental N loss reduction
opportunities exist with the noted EEF technologies. The list
of recent results in Tables 1–3 should not be considered
comprehensive, and readers are encouraged to consider the
full body of science to include previously published results of
other authors as well as more recent research results. Research is
increasingly revealing that reductions in N losses to the
environment, and crop NUE improvements with EEFs used
in a 4R approach, will be site specific, with benefits varying
depending on soil characteristics, cropping system and climatic
or weather conditions (Hatfield and Venterea 2014; Venterea
et al. 2016). The purchase and use of EEFsmay depend to a great

extent on: (1) the farmer’s cropping system management
abilities; (2) the agronomic and environmental knowledge of
the agricultural retailer and professional crop adviser; (3)
regional crop and fertiliser economics; (4) the soil and water
conservation practices also implemented by the farmer on each
field; (5) the availability and costs of nutrient management
technology; (6) risks and magnitudes of the dominant
environmental N losses; and (7) any governmental support or
regulatory policies that may affect crop or cropping system
choices (Weber and McCann 2015) and/or record-keeping (i.e.
tracking) of nutrient performance over time (IPNI Scientists
2014; Norton et al. 2015).

Table 1. Examples of recently reported effects of nitrification and urease inhibitor enhanced-efficiency nitrogen fertiliser (EEF) on crop yield,
nitrate leaching, ammonia volatilisation and direct nitrous oxide (N2O) emissions

Negative values indicate decreased yield or increased N loss relative to reference conventional sources. R, review or meta-analysis; O, original study; NBPT,
N-(n-butyl)thiophosphoric triamide

EEF N technology Range or mean effect of EEF or technology vs reference conventional
source (%)

Reference Type of study

Crop yield
increase

Nitrate
leaching
reduction

Ammonia
volatilisation
reduction

Direct N2O
emission
reduction

Nitrification inhibitor 0–13 Gagnon et al. (2012) O
–6 to 3 24 Burzaco et al. (2013 O

7 Linquist et al. (2013) R
3 17 Quemada et al. (2013) R

<2 Burzaco et al. (2014) R, O
–5.5 to –1.2 63 De Antoni Migliorati et al. (2014) O

19–100 Snyder et al. (2014) R
37–44 Lam et al. (2015) O

5–14 48 –20 44 Qiao et al. (2015) R
–3 to –7 Suter et al. (2015) O

4.5 Abalos et al. (2014) R
–5 to 1 0–60 Harris et al. (2016) O

0 0 17–56 Jamali et al. (2016) O
–3 to –65 8–57 Lam et al. (2016) R

3 Lester et al. (2016) O
–38 Pan et al. (2016) R

–1.6 to 8 32–83 Scheer et al. (2016) O
7 38 Thapa et al. (2016) R

–433 to 66 van der Weerden et al. (2016) O
–5.5 to 7.8 0 Wang et al. (2016a) O

0 0–36 Wang et al. (2016b) O
Urease inhibitor 68 Franzen et al. (2011) O

5 Linquist et al. (2013) R
25–100 (weighted
mean 63 with

�0.02% w/w NBPT

Saggar et al. (2013) R

–17 to –5 23–70 Suter et al. (2013) O
0–5 Snyder et al. (2014) R

–4 to 6 Suter et al. (2015) O
10 Abalos et al. (2014) R

54 Pan et al. (2016) R
<2 0–36 Thapa et al. (2016) R

–400 to 6 van der Weerden et al. (2016) O
Urease inhibitor plus

nitrification inhibitor
3 Linquist et al. (2013) R

–11 –28 18 Maharjan et al. (2014) O
0–5 25–42 Gao et al. (2015) O

37–46 Snyder et al. (2014) R
9 Abalos et al. (2014) R
0 30–34 Thapa et al. (2016) R
–2 17 Venterea et al. (2016) O
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EEF consumption trends
Trenkel (2010) reported that world consumption of slow- and
controlled-release fertilisers increased from an estimated
325 000 tons in 1983 to >2.2million tons in 2006–07, with
tonnage proportions as follows: China 59%, US 26%, Canada
6%, Western Europe 5% and Japan <5%. The US consumption
of sulfur-coated urea and PCU increased from approximately
110 000 tons in 1990 to >400 000 tons in 2009 (Landels 2010).
Relying on data from the USDA Resource Management Survey,
Weber and McCann (2015) reported that only 10% of the
surveyed corn farmers used ‘N transformation inhibitor’ or
controlled-release N fertiliser (sources were not separated) in
2010. According to communications with E. Apostolopoulou
(Senior Consultant, IHS Chemical, London, UK) and
P. Heffer (IFA, Paris, France), world consumption of slow-
and controlled-release fertilisers in 2014 had risen to
approximately 2.9million tons, with consumption in China
alone accounting for >60%; an additional 1million tons of
stabilised fertilisers was consumed in China in 2014.
Environmental concerns and labour shortages are affecting
EEF consumption in several regions (E. Apostolopoulou,
pers. comm.). As rural workers leave farms for higher-paying
employment in cities, less labour may be available on farms to

make timely split or multiple applications of N in a manner
synchronous with crop uptake demand during the crop growing
season. This may be causing some farm managers to
consider EEFs as a new tool to help address those N timing
challenges.

Because of the growing regional demand for EEFs and
the advent of new and improved EEF technologies, the
4th International Conference on Slow-and Controlled-
Release and Stabilised Fertilizers was held in Beijing,
China, on 4–6 April 2016 (https://www.newaginternational.
com/index.php/conferences/our-conferences/86-2016-new-ag-
international-conferences-beijing-china, accessed 14 May
2017). There has been increased research with 100% PCU,
or different proportions of blends with regular urea, in several
different provinces in China over the past 7 years. Crop yield
increases and improved N recovery efficiency have been
evaluated with rice, maize, potato, banana, cotton and
sugarcane. Results of work reported at the 2016 conference
in Beijing by Tu (2016) indicate that optimal combinations
of controlled-release urea (PCU) with regular urea may
allow current N rates to be reduced by 25% with most of
those crops, but not with cotton or sugarcane, in the
provinces investigated.

Table 2. Examples of recently reported effects of polymer-coated or polymer nanocomposite enhanced-efficiency nitrogen fertiliser (EEF) on crop
yield, nitrate leaching, ammonia volatilisation and direct nitrous oxide (N2O) emissions

Negative values indicate decreased yield or increased N loss relative to reference conventional sources. R, review or meta-analysis; O, original study; PCL,
polycaprolactone

EEF N technology Range or mean effect of EEF or technology vs reference
conventional source (%)

Reference Type of study

Crop yield
increase

Nitrate
leaching
reduction

Ammonia
volatilisation
reduction

Direct N2O
emission
reduction

Polymer-coated urea 0 17–39 Hyatt et al. (2010) O
–20 to 10 18–40 Venterea et al. (2011) O

0–34 Gagnon et al. (2012) O
12–30 –28 to 14 Nash et al. (2012) O
–1 to 20 62–91 Xu et al. (2013) O
12–22 Yang et al. (2012) O
7 Linquist et al. (2013) R
7 Nelson and Motavalli (2013) O

–15 to 12 Nelson et al. (2014) O
–7 34 Quemada et al. (2013) R

–3 to 13 Ye et al. (2013) O
–10 –41 20 Maharjan et al. (2014) O

0 Nash et al. (2014) O
14–42 Snyder et al. (2014) R

–6 to 5 26 Gao et al. (2015) O
3–6 29–45 Fernández et al. (2015) O

–27 to –10 Suter et al. (2015) O
10–59 Maharjan et al. (2016) O

68 Pan et al. (2016) R
0 70 Scheer et al. (2016) O
0 19 Thapa et al. (2016) R

–3.5 to 3.9 0 Wang et al. (2016a) O
–50–31 Wang et al. (2016b) O

Maleic–itaconic acid copolymer –5 to 0 –10 to 0 Franzen et al. (2011) O
0.05; –5 to 10 0 Chien et al. (2014) R

Nanocomposite of polyacrylamide
hydrogel or PCL

70–95 Pereira et al. (2015) O
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Nitrogen sensors and variable rate application

The use of precision agriculture technologies to better manage
the spatial and temporal variations in crop N nutrition
has received considerable global attention. For example,
summaries of national and regional surveys of the broad-acre
grain industry conducted from 2006 to 2009 in Australia showed
that the adoption of variable-rate fertiliser technology (which
included the use of crop sensor-based technologies) had
increased from <5% estimated 6 years earlier to an average
of 20%, ranging from 11% to 35% depending on the region
(Robertson et al. 2012). Issues affecting precision agriculture N
technology adoption by the grain industry in Australia include
the costs of the technologies, the relatively low rates of N
application in some regions, an inability to accurately sense
grain protein on the go (which hampers the development of
accurate N budgets), equipment and software incompatibilities
(Bramley and Trengrove 2013) and much larger variation (i.e.
greater uncertainty) in the predictive performance of crop N
and biomass sensing technologies in broad-acre paddocks
compared with prediction capabilities observed previously in
small-plot research (Perry et al. 2012). Challenges in accurately
assessing the crop and soil moisture status, and large
uncertainties in growing season rainfall predictions, pose both
limitations to and opportunities for the adoption of precision
agriculture N technology. Accurate sensing of the soil and
crop water status may be prerequisite to improving the

efficiency of N applications with variable-rate N technologies
to avoid costly N applications to water-limited crops or under
highly variable rainfall conditions (Tilling et al. 2007).

The 2013 precision agriculture survey of agricultural
retailers in the US by CropLife and Purdue University
(http://agribusiness.purdue.edu/search?q=precisionag+survey,
accessed 14 May 2017) showed that the use of crop N sensors is
relatively low at <10%, although >45% of those same retailers
provide variable-rate fertiliser applications for their farmer
customers. In Western Europe, the Yara N-Sensor (Yara UK
Limited, N E Lincolnshire, UK) is being used on >1.2million
hectares of the total 104million cropland hectares in the EU-27,
which comprises the following European Union member states:
Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands,
Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden,
and United Kingdom (Snyder et al. 2014). Sixteen field-scale
corn studies in Missouri (USA) showed possible N rate
reductions of 10–50 kg ha–1 when using N sensors (Roberts
et al. 2010). Research with N sensor-based N applications on
wheat in Oklahoma (USA) indicated that N rates were reduced
approximately 60% of the time, with average rate reductions
of approximately 20 kg ha–1, compared with typical farmer
practice (Butchee et al. 2011). However, neither of those two
US studies included any measurements of N loss via gaseous

Table 3. Examples of recently reported effects of enhanced-efficiency nitrogen fertiliser (EEF) compared with manure, or in combination with some
other 4R (right source, right rate, right time, right place) N management practices or cropping system management, on crop yield, nitrate leaching,

ammonia volatilisation and direct nitrous oxide (N2O) emissions
Negative values indicate decreased yield or increased N loss relative to reference conventional sources. R, review or meta-analysis; O, original study

EEF N technology Range or mean effect of EEF or technology vs
reference conventional source (%)

Reference Type of study

Crop yield
increase

Nitrate
leaching
reduction

Ammonia
volatilisation
reduction

Direct N2O
emission
reduction

Fertiliser N (with or without EEFs)
instead of manure N

0–81 Snyder et al. (2014) R
37–112 van der Weerden et al. (2016) O

Improved fertiliser N technologies and/or
fertiliser management

Quemada et al. (2013) R

Recommended rate and/or reduced
rate and/or optimal timing and/or fertigation

40

Controlled release and/or nitrification inhibitor –1 24
Fertigation –7 7
Urease inhibitor, with irrigation 30 Thapa et al. (2016) R
Urease inhibitor, rain-fed only 0
Urease inhibitor plus nitrification
inhibitor, with irrigation

45

Urease inhibitor plus nitrification
inhibitor, rain-fed only

17

Urease inhibitor plus nitrification inhibitor,
banded subsurface application

45

Urease inhibitor plus nitrification inhibitor,
broadcast application

14

Nitrification inhibitor, single application 0 26
Nitrification inhibitor, split application 7.3 53
Split urea N application, with urease and
nitrification inhibitor and/or 15% reduction
of recommended N rate

1.6–2.1 20 to 53 Venterea et al. (2016) O
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emissions, nitrate leaching or run-off. One earlier study in
Missouri on six grower fields in three different soil regions
showed that applying N at economic optimum rates (as may be
determined using N sensors and addressed with variable-rate
application) resulted in residual soil nitrogen levels at the 0.9m
depth that were at least 12 kg ha–1 lower than with typical
farmer-applied N rates (Hong et al. 2007).

Snyder et al. (2014) anticipated a heightened probability that
N-sensing capabilities by farmers and their service providers
would increase in the near future because of the growth in the
production and sales of unmanned aerial vehicles (UAVs). Such
UAV platforms, when equipped with N-sensing capabilities,
may empower farmers and their crop advisers with a greater
ability to regularly monitor the N nutritional condition of their
crops (i.e. greenness or chlorophyll levels). That could raise
the prospects for more in-season N applications to possibly
supplement pre-planting or side-dressing applications, potentially
improving the opportunity for greater crop N recovery and less
risk of N loss to the environment (Mulla 2016).

Li et al. (2016) performed an environmental life cycle
assessment modelling analysis to estimate the potential effect
of sensor-based N fertilisation by relying on corn grain yield and
N rate data from a sensor-based variable-rate N experiment on
corn in Lincoln County (MO, USA). The modelling experiment
indicated that sensor-based variable-rate N application could
reduce fertiliser N use by 11% with no loss in corn grain yield,
whereas soil N2O emissions were predicted to be reduced by
10%, volatilised ammonia loss was reduced by 23% and
leaching losses of nitrate-N were reduced by 16%.

Discussion

Recent research has shed light on additional N management
opportunities that may help raise crop productivity while
limiting environmental N losses. The wide range in the
effects on crop yields, N recovery and reduced risks of N
loss reflect the importance of regional or site-specific use of
EEFs in 4R N management planning and implementation.
There is some evidence of N loss trade-offs with some EEFs
(e.g. risk of heightened volatilisation of ammonia when using
some nitrification inhibitors), which underscores the need for
studies that simultaneously measure volatilisation, leaching and
N2O emissions. Such studies could better inform and help
ensure accurate parameterisation of existing and future N loss
models. Coupling EEFs and other 4R N management tools with
precision technologies, information systems and crop growth
and N utilisation and transformation models, especially models
with real-time weather sensitivity, may improve opportunities
for refined N management in the future. Many of the EEF
technologies and new tools briefly described herein are still
beyond the reach and implementing abilities of many farmers
and their professional crop advisers. Several of the technologies
mentioned are scale neutral and applicable to both smallholder
farmers and larger-scale operations. Challenges remain to get
the 4R N management and EEF science extended through more
intensive education and outreach programs, which must
demonstrate not only the agronomic benefits, but also the
economic returns to the farmer, social implications and
reductions in environmental N effects.
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