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SPECIAL ISSUE: Optical Gain Materials towards Enhanced Light-Matter Interactions
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ABSTRACT As a promising candidate, the fluorooxoborate

has enkindled new explorations of nonlinear optical materials

to meet the deep-ultraviolet criteria. However, big challenges

and open questions still remain facing this exciting new field,

especially the birefringence and dispersion of refractive index

which are fundamental parameters for determining the phase-

matching second harmonic generation wavelength. Here we

designed possible anionic groups in fluorooxoborates, and

analyzed the optical anisotropy to check its influence on bi-

refringence, which was proved further by the response elec-

tronic distribution anisotropy approximation. The functional

modules modulating birefringence in fluorooxoborates were

explored systematically. We developed an approach for eval-

uating the behavior of the refractive index dispersions and

found that the fluorooxoborates had small refractive index

dispersions owing to the introduction of fluorooxoborate

modules. Our results demonstrate that fluorooxoborates can

be utilized to realize short phase-matching wavelength

markedly and offer a path toward novel performance-driven

materials design.

Keywords: nonlinear optical crystal, deep-ultraviolet, borate,

birefringence, phase-matching

INTRODUCTION
Nonlinear optical (NLO) materials are the vital compo-
nents of future photoelectric technologies as they can
achieve the tunable laser output by the frequency-con-
version technology [1–9]. As for deep-ultraviolet (DUV,
wavelength λ < 200 nm) region, the NLO crystals, the
unique materials capable of generating DUV coherent

light through frequency conversion, are of urgent de-
mands in ultrahigh resolution photolithography, photo-
chemical synthesis, and high-precision micro processing
[10–13]. Till now, only KBe2BO3F2 (KBBF) can certainly
generate DUV lasers by direct second harmonic genera-
tion (SHG), but its application is limited because of the
adverse layer growth habit and toxicity issue of containing
beryllium [10]. Therefore, the exploration of new DUV
NLO materials is in great demand. However, the primary
challenge is to balance the three crucial and correlated
requirements in one NLO material [12,13]: (i) wide DUV
transparency window (a cutoff edge far below 200 nm, or
band gap > 6.2 eV); (ii) relatively large second-order
nonlinear coefficient (dij > 1 × commercial KH2PO4,
KDP); (iii) sufficient birefringence to satisfy the phase-
matching (PM) condition in DUV wavelength range.
A promising DUV NLO material should achieve a

subtle balance of the correlated criteria. In view of the
structure-property relationship, fundamental building
units (FBUs) form the ‘backbone’ of inorganic materials,
which, combining their microscopic functionality and
arrangement information, greatly influence or even de-
termine their performances [14–20]. For NLO systems, a
superior FBU with optimized spatial arrangement,
namely a functional module, featured by large HOMO-
LUMO (the highest occupied molecular orbital and the
lowest unoccupied molecular orbital) gap, apparent po-
larizability anisotropy (δ) and high hyperpolarizability,
will bring benefits to crystals for band gaps, SHG re-
sponses, birefringences. In borate systems, a boron atom
usually forms a triangle [BO3] with B-sp

2
hybridization or
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a tetrahedron [BO4] with B-sp
3
hybridization by linking

either three oxygen atoms or four oxygen atoms. As the
FBUs in borates, the [BO3] and [BO4] units may further
form rings, chains, layers and three-dimensional (3D)
networks by sharing oxygen atoms [21,22]. Because of π
electron, the planar [BO3] unit can be easily polarized,
which may render borates a large birefringence or SHG
effect. However, considering that the HOMO of the iso-
lated [BO3] unit is controlled by the lone pair electrons,
one can extend the boron-oxygen framework to increase
the polymerization of [BO3] to remove the lone pair
electrons [23]. Introducing fluorine into borates as a
terminal atom is also proved to be one effective way to
enlarge the band gap. By introducing fluorine into bo-
rates, one can obtain two kinds of compounds: borate
fluorides with the fluorine connecting the metal cations
and fluorooxoborates with the fluorine also connecting
the boron atom. The most typical borate fluorides are
KBBF [10,24], RbBe2BO3F2 (RBBF) [25], BaBe2BO3F3

[26], BaAlBO3F [27], Ba4B11O2F [28], Rb3Al3B3O10F [29],
K3Sr3Li2Al4B6O20F [30], Ca5(BO3)3F [31], NaSr3Be3B3O9F4

[32], NH4Be2BO3F2 [33], γ-Be2BO3F [33], and most of
them have low UV cutoff edges below 200 nm. However,
the KBBF family with the capablility to directly generate
DUV coherent light by an SHG process can hardly grow
large single crystal due to the layer habit, which hinders
the further application. Fluorooxoborates with the
[BOxF4−x] (x = 1, 2, 3) groups (represented by [BOF] for
simplification), on the other hand, have recently been
proved as a new class of promising NLO or optical
crystals [34–37]. Among them, AB4O6F (A = NH4, Cs)
has the ability to generate DUV coherent light [34,35].
Therefore, the [BOF] groups exhibit promising ad-
vantages in the HOMO-LUMO gap and hyperpolariz-
ability, and can further optimize the performance of
crystals when combining high-polymerized [BO3]. As we
know, birefringence reflects optical anisotropy induced by
the structurally anisotropic confinement [38], which is
also one vital factor to determine the PM wavelength [39–
42]. However, how the fluorine influences the bi-
refringence and the corresponding chromatic dispersion
is still unknown. In this work, we analyzed the optical
anisotropy distribution of fluorine-containing anionic
groups with the aid of molecular design. And the origin
of birefringence for the fluorooxoborates was clarified by
the response electron distribution anisotropy (REDA)
method [43]. Furthermore, the behavior of chromatic
dispersion in refractive index was studied. The role of
chromatic dispersion in influencing PM wavelength was
explored, which can prove the superiority of introducing

fluorine to the B–O framework.

METHODS
Polarizability anisotropy δ was calculated by the density
functional theory (DFT) implemented by Gaussian09
package at 6-31G level. We kept the default values of the
Gaussian09 code [44] on the aspect of the other calcula-
tion parameters and convergence criteria.
The REDA method we proposed previously [43] was

used to analyze the contribution of groups to the bi-
refringence. The birefringence is proportional to the

REDA index :

( )/n N Z n E[ ] , (1)
i ic a b 1 g

where ( )/N Z n E= [ ]
i ic a b 1 g

, Nc is the coordination

number of the nearest neighbor cations to the central
anion, Za is the formal chemical valence of the anion, Δρb
is the difference of covalent electron density of the
covalent bond i on the optical principal axes of a crystal,
n1 is the minimal refractive index, Eg is the optical band
gap.
Linear optical properties were calculated by the first-

principles method based on DFT with generalized gradient
approximation (GGA) performed by a plane-wave pseu-
dopotential calculation package CASTEP [45]. We kept
the default values of the CASTEP code on the aspect of the
calculation parameters and convergence criteria. The lin-
ear optical properties were examined via calculating the

dielectric function i( ) = ( ) + ( )1 2
, where ( )1

and

( )2
are the real and imaginary part of dielectric func-

tion, respectively. The ( )2
can be obtained by
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where c e q is the integrated optical transitions

from the valance states ( ) to the conduction states c( ),

and the e, q denote the polariozation direction of the
photon and electron momentum operator. The real part

of the dielectric function ( )1
can be calculated from

( )2
based on the Kramers-Kroning transform. And

then the refractive indices n( ) and the birefrigence ( n)

can be calculated accordingly.

RESULTS AND DISCUSSION

Functionality of fluorine-containing anionic groups

To date, there are 22 alkali-metal fluorooxoborates and
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one ammonia-fluorooxoborate synthesized mostly by the
standard solid-state reaction in sealed silica tubes. And 11
of them take the formula of An(B2O3)mFn (m, n = 1, 2,
3, …): LiB6O9F [46,47], A2B6O9F2 (A = Li, Na) [48,49],
NaRbB6O9F2 [50], K3B6O9F3 [51], AB4O6F (A = Na, NH4,
Rb, Cs) [34,35,52,53], CsKB8O12F2 [53], CsRbB8O12F2 [53]
with the symmetry of Pna21, Cc, P21/c, P21/n, P21/c,
Pna21, Pna21, Pna21, P321, P6

−
2c. And others are

Li2B3O4F3 [54], Li2Na0.9K0.1B5O8F2 [55], A3B3O3F6 (A =
Na, K) [56,57], K0.42Rb2.58B3O3F6 [58], Na0.76Rb2.24B3O3F6,
K2-RbB3O3F6, K1.66Rb1.34B3O3F6, Rb3B3O3F6, KCs2B3O3F6,
K2.64Cs0.36B3O3F6, and Cs1.29Rb1.71B3O3F6 [59], with the
symmetry of P212121, Pbcn, C2/c, P21/n, Pbcn, P21/c, Pbcn,
P21/c, P21/n, P21/c, P21/c, P21/c. We can see that the
symmetry of such fluorooxoborates is various including
monoclinic, orthorhombic, trigonal and hexagonal sys-
tems. In the known alkali-metal fluorooxoborate family,
the FBUs have marked diversity consisting of the com-
bination of [BO3], or [BO4] with [BO3F], or [BO2F], and
Table S1 in the Supplementary Information shows the
structural information of typical fluorooxoborates. And
to date, only one reported structure consists of “[BOF3]”
[60], which is hard to be inserted in a six-membered ring
(6MR) owing to the terminal fluorine. According to the
classification for the FBUs [61,62], the FBUs can be de-
scribed as 3 : [(3 : T2)] in Na3B3O3F6 and K3B3O3F6, 4 : [(3
: 2Δ + T1) + (1 : Δ)] in NH4B4O6F and Rb4B4O6F, 4 : [(3 :
3Δ) + (1 : T1)] in CsB4O6F, and 6 : [(3 : 3Δ) + (3 : 2Δ +
T1)] in LiB6O9F, where Δ, T, T0, T1, and T2 refer to [BO3],
a general tetrahedra, [BO4], [BO3F], and [BO2F2], re-
spectively [23]. It is found that the FBUs in the known
alkali-metal fluorooxoborate family contain B–O or B–
O–F 6MR, therefore it is a good maternal microscopic-
structure to explore its functionality. As we know,
fluorine is the most electronegative and reactive element,
so introducing fluorine into the B–O groups may provide
the advantage of blue-shift of the UV cutoff which is
crucial for DUV NLO materials. If we introduce [BOF]
into borates, there are three categories of 6MRs con-
taining [BOF]: [3 : 2Δ + T]-type (II), [3 : Δ + 2T]-type
(III), and [3 : 3T]-type (IV). Fig. 1a shows a classification
of the configurations of 6MRs without considering the
direction of fluorine, with [3 : 3Δ] as type I for com-
parison. To date, the type II-[3 : 2Δ + T2], type III-[3 : Δ +
2T2] and type III-[3: Δ + T0 + T2] configurations have not
been found in the reported fluorooxoborates. And in
type-IV, only [3 : T2] was found in the reported fluor-
ooxoborates. And it is noticed that [BOF3] is hard to be
embedded into the rings because of the terminal character
of fluorine. According to the relationship between local

atom groups and NLO properties, NLO functional ma-
terials can be characterized by functional modules and
fillers [63]. According to the module description, as
shown in Fig. 1, in NH4B4O6F, the [B3O6F] unit with the
configuration of [3 : Δ + 2T1] and the [BO3] compose
[B4O8F] and further form the B–O–F layers, and RbB4O6F
has a similar module structure. While for CsB4O6F, the
[B4O8F] unit consists of [B3O6] and [BO3F] and also
forms the B–O–F layers. The module structures in
NH4B4O6F and CsB4O6F can increase the degree of
polymerization, which guarantees the short UV cutoff
edges (156 and 155 nm). In Na3B3O3F6, three [BO2F2]
units form the [B3O3F6] 6MR with the configuration of
[3 : 3T2]. Comparatively, the B–O–F layers with con-
current-parallel [BO3] empower the large SHG effect and
strong optical anisotropy.

Polarizability characters and microscopic contribution

To reveal the influence of the possible [BOF] 6MR on
birefringence, we investigated their electronic structure
and polarizability characteristics using the DFT method
implemented by Gaussian09 package at 6-31G level. The
δ of the designed 6MRs was investigated, which can re-
flect the macroscopic birefringence to a certain extent.
Fig. 2a shows the δ along with the HOMO-LUMO gaps.
Considering the DUV transparency criterion, the region
with the HOMO-LUMO gap larger than 6.2 eV is
screened out. And the δ of 6MRs in the blue region, larger
than 2 × δ(BO3), δ(B2O5), 3 × δ(BO3) is highlighted,
where the [BO3] and its derived structures are bi-
refringence-preferential structures. In particular, the
[B2O5] group can be as the benchmark owing to its
dominant role in the typical birefringent material
Li2Na2B2O5 with a large birefringence of 0.095 measured
via the prism coupling method [64]. It is indicated that
the 6MRs with δ(6MRs) larger than δ(B2O5) have the
capability to produce large birefringences and possess
large HOMO-LUMO gaps as screened out in Fig. 2a.
A hierarchical feature in polarizability anisotropy from

I to IV types is shown in Fig. 2b. It can be seen that the
groups only containing tetrahedra have the smallest δ.
The δ of [3 : 3T2]-FBU, for example, only has 1/3 (or even
smaller) times as [3 : 3Δ], which may indicate that ma-
terials only with [3 : 3T2]-configuration may have a small
birefringence [65]. But we still expect that new materials
only with tetrahedral T2-configuration possess a large
birefringence. It is feasible because tetrahedral micro-
scopic structures with some optimizing arrangements
[63] can lead to large birefringence of materials. When
combining Δ and T, namely, introducing [BOF] forms
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[3 : Δ + 2T] and [3 : 2Δ + T], one can obtain appropriate
birefringence. Interestingly, some of 6MRs with the
configuration of [3 : 2Δ + T] can have comparable δ to
that of [3 : 3Δ], the later may produce a large bi-
refringence around 0.12 as in β-BaB2O4. Therefore, the
6MRs can have a high value of δ and keep a large
HOMO-LUMO gap. Moreover, in the known fluoroox-
oborates, the 6MRs connect Δ or T to form polymerized
2D B–O–F framework which further enhances the bi-
refringence. The highlighted electronic density of mi-
croscopic units also shows the bonding electron
distributions from T2 to Δ and from IV to I in Fig. 2b–g.
So introducing [BOF] is beneficial to obtaining a large

birefringence that can meet the DUV criterion, while also
possessing a wide band gap.
To detect birefringence controlled by the fluoroox-

oborate units, the REDA method was employed [43]. As
shown in Equation (1), it is illustrated that the optical
anisotropy is proportional to the REDA index ξ. Usually,
the changes of the minimal refractive index n1 and the
band gap Eg bring tiny changes for alkali/alkaline-earth
metal borates. Taking Eg for example, a band gap chan-
ging from 5.5 to 7.5 eV brings a 5% difference. Therefore,
the birefringence is mainly related to the difference of
electron density of anionic groups, namely, Δρb. Fig. 3
shows the birefringence obtained by the first-principles

Figure 1 Fluorine-containing 6MRs, functional groups and assembling optical materials with functional groups. (a) Designed 6MR containing [BOF]
groups based on the maternal FBU [3 : 3Δ] (labelled as I configuration), II refers to [3 : 2Δ + T], III refers to [3 : Δ + 2T] and IV refers to [3 : 3T]. In
the [3 : 2Δ + T]-type, only two microstructure configurations exist: [3 : 2Δ + T1], and [3 : 2Δ + T2]; in the [3 : Δ + 2T]-type, there are five kinds of
rings: [3 : Δ + 2T1], [3 : Δ + 2T2], [3 : Δ + T1 + T2], [3 : Δ + T0 + T1], [3 : Δ + T0 + T2]; and in the [3 : 3T]-type, there are nine possible rings: [3 : 3T1], [3
: 3T2], [3 : 2T1 + T2], [3 : T1+ 2T1], [3 : 2T0 + T1], [3 : T0 + 2T1], [3 : 2T0 + T2], [3 : T0+ 2T2], and [3 : T0+ T1+ T2]. (b) Typical functional groups in
borates, fluorooxoborates used in DUV region. (c) A modular description of NH4B4O6F. The [B3O6F] units with the configuration of [3 : Δ + 2T1] and
BO3 compose the B–O–F layers which guarantee the large SHG effect and strong optical anisotropy. (d) A modular description of CsB4O6F. The
planar [B3O6] and [BO3F] compose B–O–F layers in crystal structures, which render its strong optical anisotropy and large SHG response. (e) A
modular description of RbB4O6F, a similar structure with NH4B4O6F. (f) A modular description of Na3B3O3F6. Three [BO2F2] form [B3O3F6] 6MR with
the configuration of [3 : 3T2]. Alkali- and alkaline-earth metals are fillers and descripted in one block with colors consistent with the corresponding
cation.
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calculation or experiment of some typical fluoroox-
oborate materials as well as the difference of electron
density of functional modules. One can see that K3B3O3F6

with the [3 : 3T] configuration has a relatively small Δρb
corresponding to a small birefringence. And Li2B3O4F3

with [3 : Δ + 2T] has the birefringence about 0.04, and the
compound with [3 : 2Δ + T] has a relatively larger bi-
refringence about 0.07 in Na2B6O9F2. And β-BaB2O4 with
[3 : 3Δ], NH4B4O6F with [(3 : 2Δ + T1) + (1 : Δ)] and
CsB4O6F with [(3 : 3Δ) + (1 : T1)] have comparable and

large birefringences [66]. Therefore, it proves that dif-
ferent birefringences in the discussed borates and fluor-
ooxoborates are mainly attributed to the different
configurations in the anionic groups such as 6MR con-
figurations (I–IV). And introducing fluorine can adjust
the birefringence into a suitable region.

Dispersion of refractive index in affecting PM condition

As an NLO material, the ability of PM is crucial because it
determines the applied shortest PM SHG wavelength and

Figure 2 Polarizability anisotropy and highlighted electronic density of microscopic units. (a) δ of the designed 6MRs as mentioned in Fig. 1a along
with the HOMO-LUMO gap. (b) Divided polarizability anisotropy along with different configurations of 6MRs, where I refers to [3 : 3Δ], II refers to
[3 : 2Δ + T], III refers to [3 : Δ + 2T] and IV refers to [3 : 3T]. Highlighted electronic density of [BO2F2] extracted from Na3B3O3F6 (c), [BO3F]
extracted from CsB4O6F (d), [BO3] extracted from RbB4O6F (e). Highlighted electronic density of typical 6MR, IV-[B3O3F6] extracted from Na3B3O3F6

(f), II-[B3O6F] extracted from RbB4O6F (g), and I-[B3O6] extracted from β-BaB4O6 (h).
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SHG efficiency of the crystal [39]. Dispersion of refractive
index is a vital factor for PM in SHG process. Small
dispersion is preferred as it will give a short SHG wave-
length. We define the dispersion characteristic factor as

D
n

n
( ) =

( / 2)

( )
. (3)min

max

Therefore, when the dispersion characteristic factor
D(λ) = 1, we can get the shortest PM SHG wavelength
λs

PM
. According to our previous research [43,63], D(λ) is

related to,

D

n n R

R
n( ) = 1 +

( ( ) ) 1 ( )

4
/ ( ), (4)

c

c

max
2 2 2

2 2 max

where, λc is determined by natural resonant frequency.
Fig. 4a, b and Fig. S1 give the consistent results from
Equations (3) and (4). At the PM wavelength, D(λ) = 1,
from which the shortest PM wavelength λs

PM
can be

obtained. In the PM region, D(λ) < 1 while in the non-
phase-matching (NPM) region, D(λ) > 1. And we can also
see that a larger band gap or a shorter UV cutoff edge is
beneficial to a flatter dispersion at a given wavelength. It
can be checked directly from the Sellmeier equations
[20,30,34,35,66], as shown in Fig. 4b and Fig. S1.
NH4B4O6F has a shorter λs

PM
, although it has a slightly

smaller birefringence as compared with β-BaB2O4. In fact,
the factors inducing a shorter λs

PM
, besides the large band

gap and birefringence, including a small chromatic dis-
persion of refractive index, are also crucial.
A small dispersion is beneficial to realizing the angle

PM to a shorter SHG wavelength as described above.
Based on the dispersion equation, the birefringence, the
refractive index and band gap have influences on the
dispersion. One can see that the variation of the refractive
index is small. Therefore, the dispersion is mainly de-
termined by birefringence and band gap. This is also
verified by the results shown in Fig. S2. In general, the
materials with large band gap or birefringence always
have smaller dispersion at an identical wavelength. Al-
though KBBF has relatively small birefringence, the large
band gap facilitates its PM in DUV region. It is because
NH4B4O6F has a short PM wavelength owing to its large
birefringence and wide band gap, which is proved by the
experimental results as shown in Fig. S3. The angle PM
can be realized by the optical anisotropy as well as the
frequency dispersion.

CONCLUSIONS
In summary, we studied the influencing factors to control
the birefringence and the dispersion of refractive index of
recent DUV fluorooxoborates by estimating a dispersion
characteristic factor. It reveals that the fluorooxoborates
possess strong optical anisotropy due to large covalent

Figure 3 Birefringences obtained by the first-principles calculation or
experiment of typical fluorooxoborate materials with respective to the
response electron distribution anisotropy Δρ

b
of fluorooxoborate units.

Figure 4 (a) Refractive index dispersion of different NLO borates, from the borate β-BaB2O4 to the borate fluoride KBe2BO3F2 and the fluoroox-
oborate NH4B4O6F. (b) The shortest PM SHG wavelength based on the corresponding Sellmeier equation.
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response electronic distribution induced by the B–O or
B–O–F rings and the corresponding quasi-layer ar-
rangement. By exploring the 6MRs (including newly de-
signed ones), it is found that introducing different
numbers of fluorine atoms into the ring can modulate the
polarizability anisotropy and accordingly influence the
birefringence. Furthermore, introducing fluorine into
B–O groups can reduce the chromatic dispersion of re-
fractive indices which is beneficial to a shorter PM wa-
velength. It further proves our previous assumption that
the [BOF] group is one kind of superior basic units.
Under the analysis of the structures, the designed possible
six-membered [BOF] rings can be regarded as new fun-
damental units to form diverse materials. We hope that
this work will be useful in guiding the novel performance-
driven materials design.
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深紫外氟化硼酸盐双折射率和折射率色散的性能
增益研究
杨志华1,2*

, 阿布都卡地·吐地1,2
, 雷兵华1,2

, 潘世烈1,2*

摘要 作为紫外/深紫外非线性光学材料的潜在体系, 氟化硼酸盐
已引起了该领域的广泛关注. 鉴于该类体系中双折射和折射率色
散的影响因素尚未明确, 我们设计了可能的氟化硼酸盐基团, 分析
了光学各向异性以探索其对双折射率的影响. 通过响应电荷分布
各向异性近似, 我们进一步证明和筛选了有利于双折射率的微观
基团, 并系统地探讨了可有效调节双折射率的功能模块. 基于发展
的折射率色散分析方法, 我们发现氟化硼酸盐基团的引入有利于
降低该类体系在深紫外区的折射率色散, 从而获得较短的相位匹
配波长. 该研究为功能驱动的材料设计提供了一条途径.
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