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New propagation regimes for light arise from the ability to tune the dielectric permittivity to
extremely low values. Here we demonstrate a universal approach based on the low linear permittivity
values attained in the epsilon-near-zero (ENZ) regime for enhancing the nonlinear refractive index,
which enables remarkable light-induced changes of the material properties. Experiments performed
on Al-doped ZnO (AZO) thin films show a six-fold increase of the Kerr nonlinear refractive index (nz)
at the ENZ wavelength, located in the 1300 nm region. This in turn leads to ultrafast light-induced
refractive index changes of the order of unity, thus representing a new paradigm for nonlinear optics.

The nonlinear optical response of matter to light is, by
its very nature, a perturbative and hence typically weak
effect. Applications, e.g. for nonlinear optical switches
or quantum optics, are therefore largely underpinned by
the continuous endeavour to attain stronger and more ef-
ficient light-matter interactions.

Nonlinear mechanisms can typically be classified as res-
onant or non-resonant, depending on the frequency of
light with respect to the characteristic electronic reso-
nances of the material. Non resonant nonlinearities, like
those present in transparent crystals or amorphous ma-
terials (e.g. fused silica glass), are generally weak and
require high light intensities and/or very long samples to
take advantage of an extended light matter interaction.
Conversely, resonant nonlinearities can be several orders
of magnitude stronger, but this comes at the price of in-
troducing detrimental losses. A typical example is that
of metals, which both reflect and absorb light strongly
[1-3]. An alternative approach to enhance the nonlin-
ear response of a material consists of creating artificial
electromagnetic resonances, for example by stacking ma-
terials of different refractive index or using other types
of composite materials [4-11]. Creating resonant metal-
dielectric stacks and composites yields a very strong non-
linear enhancement [12-14], but inevitably exacerbates
the detrimental role of linear and nonlinear losses.

Here we propose a different approach to enhance the
effective nonlinearity without resorting to optical reso-
nances. Our approach relies on enhancing the nonlinear
effect, measured in terms of the nonlinear Kerr index ns,
rather than on a direct enhancement of the intrinsic x(*)
nonlinear susceptibility. As we show below, this enhance-
ment arises due to the fact that the nonlinear refractive
index is a function of both the nonlinear susceptibility
and the linear refractive index. Recent progress in mate-
rial design and fabrication has provided access to the full
range of linear optical properties bounded by dielectric
and metallic regimes. Of particular relevance for this

work are materials which exhibit a real part of the di-
electric permittivity that is zero, or close to zero, such as
transparent conducting oxides where their permittivity
cross over is typically located in the near infrared spec-
tral region.

The linear properties of these “epsilon-near-zero” (ENZ)
materials have been investigated [15-32] for applications
ranging from controlling the radiation pattern of elec-
tromagnetic sources to novel waveguiding regimes and
perfect absorption. Similarly, the nonlinear properties
have also been shown to be largely effected by the ENZ
condition [33-40], and recently it has been theoretically
predicted that the interplay between linear and nonlin-
ear properties of ENZ bulk materials may allow three-
dimensional self-trapping of light [41]. However, ex-
perimental evidence reported so far is limited to phase
matching-free conditions in four-wave-mixing [42], en-
hanced third and second harmonic generation [43-45],
and ultrafast optical switching [46].

In order to illustrate how the nonlinear Kerr index
may be enhanced as a result of the ENZ linear proper-
ties, we employed a 900 nm thick film of oxygen-deprived
aluminium-doped zinc oxide (AZO) [46, 47]. The AZO
900-nm thick thin film was deposited by pulsed laser
deposition [48, 49] (PVD Products Inc.) using a KrF
excimer laser (Lambda Physik GmbH) operating at a
wavelength of 248 nm for source material ablation (see
Ref. [47] for more details).

The linear response i.e. real and imaginary parts of
e, €, and ¢g;, respectively, were measured by a standard
reflection/transmission measurement using a tunable-
wavelength, 100 fs, 100 Hz repetition rate, weak probe
beam, see Figs. 1(a) and (b). The linear permittiv-
ity, shown in Fig. 1(c) is then evaluated from the re-
flection/transmission measurements by means of an in-
verse transfer matrix approach: this allows to evaluate
the complex permittivity from the measured reflectivity
and transmissivity. The condition &, = 0 (ENZ wave-
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FIG. 1. (a) Experimental setup. A high intensity, horizon-
tally polarised beam at 785 nm pumps the thin AZO film at
normal incidence. The reflection and transmission of a weak
probe beam (variable wavelength between 1150 and 1550 nm,
vertically polarised, ~ 10° angle of incidence) are simulta-
neously recorded. For the linear characterisation the pump
beam was blocked. (b) Measured reflectivity (R, blue cir-
cles) and transmissivity (7o, red squares) in the linear regime
(no pump beam). The error bars have been evaluated as the
standard deviation on a sample of 300 measurements. (c) Real
(blue circles) and imaginary (red squares) part of the linear
permittivity extracted from the data in (a) using an inverse
transfer matrix approach. The error bars have been evaluated
by extracting € from the pairs {Ro + ory,To + o1, } (upper
bounds) and {Ro — o ry,To — o1, } (lower bounds), where o7,
and opr, are the reflectivity and transmissivity standard de-
viations, respectively. The large error bars for the real part
of the permittivity at longer wavelengths are due to the very
low values of transmissivity measured, in turn resulting in a
high relative error.

length) is at ~1300 nm.

For many applications and measurements, the nonlinear
Kerr index ns is used instead of the third-order nonlinear
x® tensor. For the case of a non-degenerate pump-probe
scenario with a weak probe and an intense pump beam,
the nonlinear index is given by [50]

_ 3 x®
2e0c nYP (0, +ing)

no

(1)

where both ny and y® are complex quantities, € is the
vacuum permittivity, ¢ is the speed of light in vacuum,
ny; are the real and imaginary parts of the linear
refractive index at the weak probe wavelength, nP"mP
is the real part of the refractive index at the pump
wavelength. The pump-induced nonlinear refractive
index change is then given by dn = nol, where I is the
intensity of the optical beam [50].

We note that although it is generally desirable to
minimise the absorption losses, the imaginary part of
the material’s linear response also plays a crucial role
in determining the effective nonlinear response. This
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FIG. 2. Plots of the theoretically estimated trends for no
and B2 from Egs. (2) and (3). (a) Plot of (n, 4+ n;)/D with
D = nP"™P(n2 + n?). This term weighs the real part of
the nonlinearity, na,. (b) Plot of (n, — n;)/D: this term
weighs the imaginary part of the nonlinearity, S2. The verti-
cal dashed lines indicate the ENZ wavelength

can be appreciated by separating the complex nonlinear
Kerr index into its real and imaginary parts [51]:

(3) (3

3 nexr T X
r = 2
"2 2¢e9cC D (2)
- 3 anz(?)) - niX7("3) (3)
2 2e9cC D

where D = nP"P(n2 4+ n?). The imaginary part ng; is
usually associated with what is known as the nonlinear
absorption coefficient, 83 = 4mna; /A, where X is the vac-
uum wavelength. Consequently, we see that it is the in-
terplay between linear (n,,n;) and nonlinear (ng), XES))
properties that defines the nonlinear index, and provides
a means to enhance or tailor the effective ng, and 8y co-
efficients as a function of wavelength.

An insight on the underlying physical mechanism at play
can be gained with the simplified model Xﬁ?) = ng) =
constant, which allows us to predict the no and Ss be-
haviour based only on the linear material properties. In
this case, the wavelength dependence of ns, is determined
by the term (n, + n;)/D, whereas the nonlinear absorp-
tion coefficient is determined by (n, —n;)/D. Both these
quantities are plotted in Fig. 2(a) and (b), respectively,
starting from the measured frequency-dependent linear
refractive index of our sample.

The presence of an ENZ wavelength (indicated by the
vertical dashed line) significantly modifies the behaviour
of the materials: a peak is observed in the (n, +n;)/D
term, indicating an enhancement of nsy, whilst the non-
linear absorption shows a more complex behaviour and
changes sign. The transition from positive to negative
(i.e. saturable) nonlinear absorption occurs at the ENZ
wavelength, such that the maximum nonlinear phase shift
can be attained with zero nonlinear losses. This is a
unique feature of ENZ materials and underlines the cru-
cial role played by the material’s linear dispersion and
the effects of the ENZ condition on the nonlinear optical

response. As discussed below, the condition ng) = XE:D



0 :
20 800} (b)
= S
X 40 =0 1300
- =
~ 60 =400
= > 870
< 80 200
-
10 435

1.2 1.3 14 15 1.6
Wavelength (um)

0
1.1 1.2 13 14 15 16 1.1
Wavelength (um)

FIG. 3. (a) Measured reflectivity change AR/Ry = (R —
Ro)/Ro, where R is the reflectivity at the probe wavelength
with the pump and Ry is the linear value (pump off), for in-
creasing pump intensities: I, = 435 GW/cm? (black circles),
I, = 870 GW/cm? (blue squares), and I, = 1300 GW /cm?
(red triangles). (b) Same as (a) but for transmissivity change
AT/Ty = (T — To)/To. The error bars have been evaluated
propagating the error of the R, Ry, T, and T, standard devi-
ations, from a sample of 300 measurements.

is not strictly required for observing the no enhancement
at the ENZ condition.

We note that in order to observe the described enhance-
ment one needs to achieve the ENZ condition for the real
part of the linear dielectric permittivity whilst maintain-
ing a relatively low imaginary part, as this in turn guar-
antees a low real part of the refractive index. The AZO
film employed here displays all of the required properties
for both the linear and nonlinear susceptibility to exper-
imentally demonstrate the predicted nonlinear enhance-
ment. Remarkably, this also comes with an extremely
high damage threshold — no damage was observed up to
2 TW/cm? (at 785 nm, 100 Hz repetition rate), to be
compared to the few GW /cm? typical of metallic struc-
tures.

We characterised the nonlinear response of the AZO film
with a pump and probe system [Fig. 1(a)] by measuring
the pump-induced change in reflectivity and transmissiv-
ity for different pump intensities, see Figs. 3(a) and (b).
We observe a large variation in the reflectivity around the
ENZ wavelength. Conversely, the highest values of rela-
tive transmissivity change are observed for longer wave-
lengths, which is simply due to the normalisation with
respect to the initial transmission Ty that is very close to
zero in this spectral region.

The pump pulse (100 fs, 100 Hz repetition rate, hori-
zontally polarised) has a fixed wavelength Apump = 785
nm and is at normal incidence with respect to the sample.
The probe pulse (100 fs, 100 Hz repetition rate, vertically
polarised) from an Optical Parametric Amplifier (OPA)
and tunable from 1150 to 1550 nm is incident at a small
(< 10°) angle. The intensity of the probe beam is kept
low (below the GW/cm? level) to avoid any nonlinearity
from the probe itself (no change in the probe transmissiv-
ity and reflectivity was observed at this intensity). The
probe beam waist (wo probe = 45 pm) is smaller than the
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FIG. 4. (a) Real (blue circles) and imaginary (red squares)
part of e, as a function of the pump intensity for a specific
probe wavelength, and corresponding linear fits (solid lines).
(b) Real (blue circles) and imaginary (red squares) part of the
x® tensor for different probe wavelengths.

pump beam waist (wo pump = 125 pm), in order to ob-
tain a uniform pump intensity across the probe beam.
For all the measurements the pump beam size was con-
stant and the intensity was changed only increasing the
energy. The pump-probe delay was then optimised to
maximise the nonlinear effect.

For each probe wavelength we measure the pump-induced
change in reflection and transmission of the probe beam
and then use these values to retrieve the permittivity in
the pumped case (e,1) by applying an inverse transfer
matrix approach. Whenever the dependence of ¢,; from
1, is linear, we may determine the third order nonlinear-
ity from the relation [52]:

ny"MPegc Oen (wprobev Ip)

3
( - bl (4

X Wp, Wprobe) =
where w, and I, are the pump frequency and intensity,
respectively, and the derivative can be evaluated as the
slope of the linear fit of e,(I,). In Fig. 4(a) we show
an example of e, (I,) for a specific probe wavelength
(Aprobe = 1258 nm) with the corresponding linear fit,
while Fig. 4(b) reports the resulting real and imaginary
parts of the material x(3) as a function of the probe wave-
length.

From the x(3) values it is possible to extract the nonlinear
Kerr index by exploiting the formulas in Eqs. 2. The re-
sults for both the real part, ns,., and nonlinear absorption
coefficient, (3, are presented in Figs. 5(a) and (b), and
show a good qualitative agreement with the theoretical
curves in Fig. 2. Most importantly, as seen in Fig. 5(a),
a clear six-fold enhancement of ny, (with respect to its
lowest value at 1152 nm) is observed around the ENZ
wavelength.

To further support our analysis, we compare the theoret-
ical predictions with the experimental results in Fig. 5.
The red lines in Figs. 5 (a) and (b) show the expected
values of nor and (2 obtained from the measured linear
refractive index and assuming a non dispersive x(3) with
comparable real and imaginary parts. In detail, we plot
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FIG. 5. (a) Real part of the nonlinear Kerr index, na., and
(b) nonlinear absorption coefficient, 82 = 4mna; /A, obtained
from Eq. (2) and the data in Fig. 4 (blue dots). The red
lines represent the expected theoretical result obtained from
Eq. (6). (c) Change in the real part of the refractive in-
dex, on, = n,.(Ip) — n.(I, = 0), for different pump inten-
sities (left axis). Maximum relative refractive index change,
on,/nr(I, = 0), at 1390 nm (right axis). (d) Measured shift
of the probe carrier wavelength as a function of the pump
intensity (the red curve is the linear fit).

the quantities:

3 TL,«A—FTLZ'B

r,theo = um b

farth 2e0eny P (n2 4 n?) 5)

5 _Ar 3 n.B —n; A (©)
2,theo — )\ QEocnvg)ump(n% + ng)

where A and B (representing ng) and X§3), respectively)

are used as fitting parameters and A = 4 x 10729 m?/V?
and B = 1 x 10720 m?/V2. The relatively good agree-
ment with the data shows that indeed our measurements
are compatible with the assumption used in Fig. 2, i.e.
XS?’) ~ ng) = constant.

Remarkably, for the laser pulse intensities used in our
experiments the measured nonlinear refractive index no,
gives a change of refractive index in the medium (on, =
ng,Ip) that is of the order of the linear refractive index.
For example, at 1390 nm we measured a change of refrac-
tive index as high as dn, = 0.4 to be compared with the
linear index n, = 0.09, recorded for the highest intensity
I, = 1300 GW /cm? without observing any optical dam-
age, see Fig. 5(c). This large modulation places the ENZ
nonlinearity in AZO in a regime where the approxima-
tion of expanding the material polarisation in a power
series breaks down [50].

We note that similar results are in principle expected in
any medium displaying similar linear properties together

(3 XEB)

with a weak y® dispersion and for y;~) ~ . Most im-

portantly, the ENZ condition is often achieved together
with significant losses while AZO films are featured by
both the ENZ condition combined with a relatively low
imaginary part of the permittivity, ;. The latter con-
dition ensures that the linear refractive index is signifi-
cantly close to zero, which as discussed above maximises
the observed enhancement of the nonlinear index.
Finally, in Fig. 5(d) we show how the carrier wavelength
of the probe pulse transmitted through the sample in-
creases linearly with the pump intensity, and shifts up
to 17.5 + 1.6 nm, i.e. by more than the 15 nm probe
input bandwidth. This “nanoscale wavelength shifter”
could be applied e.g. for single photon wavelength divi-
sion multiplexing [53]. In our demonstration, large fre-
quency shifts were achieved with high pump intensities
(TW/cm?), which might however be reduced by relying
on nanostructured materials [54].

In conclusion, ENZ materials allow one to tailor and
access novel linear propagation regimes. Here we have
shown the ability to exploit the ENZ regime for enhanc-
ing third-order nonlinear effects thus leading to an ultra-
fast light-induced metal-to-dielectric phase change. The
interplay between the real and imaginary parts of the
linear refractive index and x(®) tensor also leads to a pe-
culiar wavelength-dependent behaviour of the nonlinear
refractive index. This allows, for example, an enhance-
ment of the real part of the nonlinear index, which in
turn is associated with a nonlinear phase shift in the
probe beam. On the other hand, novel and interesting
behaviours are observed such as the change in sign of the
Bo coefficient, effectively eliminating nonlinear absorp-
tion close to the ENZ wavelength. Moreover, the pos-
sibility to optically control the material’s refractive in-
dex by amounts comparable to the linear values (close to
500% relative changes in the refractive index are reported
here) may allow one to effectively tailor the impedance
of the material and match it to that of the surrounding
medium. The ability to access ultrafast light-induced re-
fractive index changes of the order of unity represents a
new paradigm for nonlinear optics.

During the review process, we became aware of a related
study that has now been published [55].
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