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Abstract—Object detection is a critical problem for advanced
driving assistance systems (ADAS). Recently convolutional neural
networks (CNN) achieved large successes on object detection,
with performance improvement over traditional approaches,
which use hand-engineered features. However, due to the chal-
lenging driving environment (e.g., large object scale variation,
object occlusion and bad light conditions), popular CNN detectors
do not achieve very good object detection accuracy over the
KITTI autonomous driving benchmark dataset. In this paper
we propose three enhancements for CNN based visual object
detection for ADAS. To address the large object scale variation
challenge, deconvolution and fusion of CNN feature maps are
proposed to add context and deeper features for better object
detection at low feature map scales. In addition, soft non-maximal
suppression (NMS) is applied across object proposals at different
feature scales to address the object occlusion challenge. As the
cars and pedestrians have distinct aspect ratio features, we
measure their aspect ratio statistics and exploit them to set anchor
boxes properly for better object matching and localization. The
proposed CNN enhancements are evaluated with various image
input sizes by experiments over KITTI dataset. Experiment re-
sults demonstrate the effectiveness of the proposed enhancements
with good detection performance over KITTI test set.

I. INTRODUCTION

Visual object detection is a long standing and important

research problem for computer vision, with a wide range

of real world applications, such as robotic vision, surveil-

lance, ADAS and autonomous driving [1]. Its main task is

to predict the position and category of objects from images

or videos. Traditionally hand-crafted features have been used

to detect multiple classes of objects, e.g., over challenge

datasets PASCAL [2] and COCO [3]. Deformable parts model

(DPM) is a successful traditional object detection approaches

[4]. However, since AlexNet achieved large success in the

Imagenet challenge in 2012 [5], CNN quickly becomes the

dominant object detection approach.

Despite fast growth of CNN in object detection over datasets

with a large number of object classes, real time visual object

detection in driving environment is still very challenging.

It is observed that the object detection performance of the
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popular CNN detectors including Faster-RCNN [6] and SSD

[7] without modification is not very good over the KITTI

benchmark datasets [1]. KITTI is the largest public dataset

dedicated to ADAS and autonomous driving benchmarking.

In addition to radar and Lidar based object detection, camera

based visual object detection, which is the focus of this work,

provides an economic solution and is also a critical component

of hybrid solution for ADAS and autonomous driving. There

are many key challenges on visual object detection for ADAS

as discussed below, which may not present in the other object

detection datasets.

• Most autonomous driving applications have very high

detection accuracy and real time requirements. While

high false positive ratio (non-targets are falsely detected

as targets) or excessively delayed detections are annoying,

which may lead to close of the detection based safety

applications, high false negative ratio (targets are not

detected) can have fatal consequences and should be

avoided as much as possible.

• Driving environment is very harsh for visual object de-

tection with poor illumination and weather conditions.

Unlike that there are only a few large target objects

in images in datasets such as PASCAL, there can be

many occluded and truncated objects with large object

scale variations in ADAS images. Example images with

occluded and truncated cars are shown in Fig. 1.

• Apart from the accuracy performance requirement, com-

putation speed is also a large concern for ADAS object

detection. Vehicles are unlikely to be equipped with GPU

computers as powerful as used in research environments.

Accuracy often has to be compromised due to the com-

putation complexity of advanced CNN detectors.

In view of the above research challenges, in this paper

we propose the following enhancements to multi-scale CNN

models to increase the visual object detection accuracy for

ADAS.

• In the existing multi-scale CNN models [8], feature map

from feature output scales are processed separately to

predict existence of objects at fixed scales. In this paper

deconvolution of CNN features is applied at smaller

feature output scales, which is further fused with features

at larger feature output scales, to provide richer context

for object detection at individual feature output scale.

Such enhancement can effectively address the large object

scale variation challenge.
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Fig. 1. Example difficult images for object detection.

• In most of existing CNN detectors, non-maximal sup-

pression (NMS) method is used for suppression of over-

lapping object proposals. With such process there is very

little chance for proper detection of occluded objects. But

in driving environments occluded objects are normal and

are potential driving hazards. To address the object oc-

clusion challenge soft-NMS is applied at object proposals

from different feature output scales to strike a balance on

the number and quality of object proposals.

• In the existing CNN detectors, default anchor boxes with

certain sizes are used to generate object proposals. In

the driving environment the interested objects have strong

features in shape, for example, the width of a car should

not exceed lane width. The distributions of the object

aspect ratio can be utilized for anchor box settings. We

measure the aspect ratio statistics of objects from KITTI

training samples and find proper anchor box settings by

exploiting the statistics for better object localization and

prediction.

The proposed CNN enhancements are evaluated with vari-

ous image input sizes by experiments over KITTI benchmark

dataset. Good detection performance improvement is observed

with both individual and combined CNN enhancements. Com-

pared to the published works over KITTI benchmark test

dataset our proposed method ranks the first for pedestrian

detection category “Easy” and second for categories “Mod-

erate and “Hard”, and is the fastest among the top ten

ranked published methods. The object detection time with a

GPU computer is 0.08 second per 384×1280 sized image,

which can satisfy the real time requirements of driving safety

applications.

The remaining of the paper is organized as follows. Sec-

tion II presents the related works on object detection with

both traditional and deep learning models. Section III presents

our proposed methods. Evaluation and experimental results

are presented in Section IV. Finally the paper is concluded in

Section V.

II. RELATED WORK

Visual object detection is a long term research problem.

Classic object detectors use hand-crafted features, such as

histogram of oriented gradients (HOG) [9], integral channel

features (ICF) [10] and aggregated channel features (ACF)

[11]. From the aspect of feature enhancement, [12] introduces

spatially pooled features to improve the feature robustness.

[13] proposes a pedestrian detector by computing features

at multiple image scales. A graph-based algorithm in [14]

generates proposals of vehicles with better quality than other

traditional region proposal approaches [15], [16]. DPM is

the latest successful classic object detector with significantly

improved detection accuracy. However the computation com-

plexity of DPM is still very high and its detection accuracy is

low for driving object detection.

While classic object detection gets stuck in a bottleneck,

there is a large breakthrough on visual object detection with

deep learning models, especially CNN models. Powered by

GPU computers and huge object detection samples, CNN

models can automatically learn complex and efficient features

from sample images. Widely successful CNN models and ap-

plications have been reported within the past several years. In

general CNN based object detectors fall into two frameworks:

one-stage and two-stage.

Currently two-stage detectors produce the state-of-the-art

performance in object detection tasks like PASCAL, COCO. In

the line of two-stage CNN detectors, RCNN [17] is a pioneer

CNN model, which increases object detection accuracy over

classic detectors by a large margin. In the first stage, RCNN

applies selective search method [15] to generate sufficient

proposal candidates that contain all the objects. In the second

stage, RCNN forwards each proposal through convolutional

networks, followed by classifying the proposals with SVMs

and predicting bounding boxes offsets with linear regression.

Fast-RCNN [18] extends RCNN by using one single convo-

lution network to perform shared computation in the second

stage, which increases the speed significantly. Furthermore,

Faster-RCNN [6] proposes region proposal network (RPN) to

replace selective search method in RCNN and makes the whole

network trainable in an end to end approach. In addition, many

other variants of RCNN-style approaches are proposed [19]–

[21].

On the other hand, one-stage detectors are faster and easier

to train while yielding inferior performance. SSD [7] skips

the region proposal stage and directly uses multiple feature

maps with different resolutions to perform object localization

and classification. YOLO [22] is another one-stage detector

that can achieve even faster speed at the expense of accuracy.

By introducing improvements of batch normalization, high

resolution classifier, convolutional with anchor boxes and

dimension clusters to YOLO, YOLOv2 [23] achieves higher

accuracy and higher speed.

In the latest research on CNN models, there are increasing

interests on exploiting multiple scales feature maps. Based on

the conventional pyramidal feature hierarchy in convolutional

networks in Faster-RCNN, [20] adds a top-down pathway

and lateral connections to merge feature maps from different

level. The objective is to strengthen the representational power

of low-level feature maps with the semantics conveyed from

high-level ones. With this adaptation in Faster-RCNN, [20]

shows considerable improvements on the COCO detection
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benchmark. Similar idea is applied to SSD in [24], where

DSSD is proposed to utilize feature maps from smaller scales

with more semantics. A fully evaluation of DSSD is conducted

with different feature map concatenation approaches, including

feature maps pooling and deconvolution [25].

The huge success of deep learning and CNN technologies

significantly boost research and development of autonomous

driving. The popular models are applied and enhanced for

object detection in driving environments. However, the popular

models including Faster-RCNN, SSD, YOLO, YOLOv2 did

not produce good detection accuracy results over the KITTI

test dataset. But with certain modifications and adaptations,

the variants of Faster-RCNN and SSD models are taking

the top entries in the KITTI object detection leader board.

For example, [26] improves the region proposal quality with

resource to subcategory information. As it is hard for Faster-

RCNN to handle the large object size variation, which is

designed to detect all the objects on a single layer, MS-CNN

[8] extends the detection over multiple scales of feature layers,

which produces good detection performance improvement.

Scale dependent pooling and cascaded rejection classifiers

are used in [27]. In [28], authors propose a recurrent rolling

convolution (RRC) architecture on top of SSD model, which

produces top detection performance for pedestrian detection.

However, the RRC model is very complex and significantly

increases computation time.

Our work presented in this paper are different from the

above reported enhancements over KITTI benchmark tests.

We use MS-CNN as a baseline network model and add

three enhancement building blocks, which show considerable

object detection performance improvement but with negligible

additional object detection time.

III. NETWORK ARCHITECTURES

In this section we present the overall architecture of the

modified CNN model and the proposed enhancements.

A. Overall Architecture of the Modified CNN Model

The input to the CNN is an image with size H ×W ×D,

where H and W denote image height and width in pixels, and

D denotes the number of color components.

The main building blocks of the modified CNN model is

presented in Fig. 2. The baseline network is MS-CNN [8],

which detects candidate objects at multiple feature output

layers with different scales. To differentiate from the MS-

CNN, the proposed enhancements are highlighted by red boxes

in Fig. 2. The proposed enhancements to MS-CNN are general

and are applicable to other CNN models such as Faster-RCNN

and SSD as well.

The proposed network follows the popular two-stages object

detection network architecture, which consists of an object

proposal network and an object detection network. The pro-

posal network layers are based on the popular reduced VGG-

16 net [29], which has 16 weight layers in its original

form. Additional convolution layers, pooling layer, proposed

deconvolution layers and object proposal layers are added on

top of the reduced VGG-16 net. Only a few convolution and

pooling layers from hidden layers are presented in Fig. 2 for

better visualization. The feature outputs of these layers are

directly used for object proposal. The layers selected as feature

output layers are labeled as “conv4-3”, “conv5-3”, “conv6-

1” and “Pool6”, respectively. The first number in the labels

such as 4 and 6 represents the associated hidden layer in

VGG-16 net, and the second number represents the ID of

the convolution layer in a hidden layer. As the feature output

layers are not directly connected (with separation by other

convolution layers or pooling layers), dotted lines are used to

connect them in Fig. 2.

The original feature outputs are further processed by the de-

convolution building blocks (DBB), shown as “DB1”, “DB2”

and “DB3” in Fig. 2, to aggregate feature maps from adjacent

layers, before being used in object proposal building blocks

(OPBB). Each OPBB produces a fixed-size set of proposals

including coordinates with respect to the pre-defined anchors

and scores of objectiveness. Then a soft-NMS building block

is used to remove redundant proposals with heavy overlapping.

In the original MS-CNN model, NMS is used to remove

redundant proposals. The new building blocks (DBB, OPBB

and soft-NMS building blocks) will be introduced in details

in the following subsections.

The object detection network has a region of interest (ROI)

pooling layer and a fully connected (FC) layer. The outputs

of upsampled feature maps from the lowest output feature

layer (i.e. “conv4-3”) and object proposals from soft-NMS

building block in the proposal networks are used as input to

the detection networks. The ROI pooling layer extracts the

feature maps of the object proposals using these inputs. The

feature maps from “conv4-3” are upsampled twice to improve

the capacity for location-aware bounding box regression. Then

a fully connected layer maps the ROI feature maps into fixed

vectors for classification and bounding box regression.

B. Deconvolution Building Block (DBB)

MS-CNN exploits multi-scale features to produce predic-

tions of different scales, which showed improved object de-

tection performance over Faster-CNN and SSD for KITTI

datasets. It is a good idea to use the feature maps at larger

scales (lower CNN layers) with smaller receptive fields to

detect smaller objects and those in smaller scales (higher

layers) to detect larger objects. However, shallow feature

maps from the low layers of feature pyramid inherently lack

fine semantic information for object recognition. There is an

opportunity to augment the shallow feature maps with deeper

feature maps from higher feature output layers and improve

detection performance.

We propose to add DBB to the baseline MS-CNN model,

with additional deconvolution layers and lateral connections to

aggregate feature outputs from different layers. Using DBBs

the semantics from higher layers can be conveyed into lower

layers to increase the representation capacity. There are three

DBBs used in the proposed CNN model. Fig. 3 illustrates the

architecture of the DBB used in this paper, which connects one

feature output layer with its adjacent higher layer counterpart.

Specifically, we first connect a convolution layer (“Conv
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Fig. 2. Overall pipeline of enhanced MS-CNN model.

Fig. 3. Feature fusion method for deconvolution building block (DBB).

1×1×512”) with 512 1×1 filters to an output feature layer

as shown in the Fig. 3. In addition, in the horizontal direction,

a deconvolution layer (“Deconv 4×4×512”) with 512 4×4

filters is applied to upsample the corresponding higher-level

feature maps. Then the outputs of these two associated feature

layers, which have the same spatial size and depth, are merged

by element-wise sum and processed by a ReLU layer to

produce a new output feature layer. In order to maintain feature

aggregation consistence, the number of channels is set to 512

in all DBBs.

There are many possible architecture designs for DBBs. For

example, for a given feature output layer, the output feature

maps can be merged with those from both higher layers and

lower layers. However the computation complexity and mem-

ory requirement can be increased significantly. We examined

and compared several alternative DBB architectures, some

using element-wise multiplication or concatenation instead of

element-wise sum used in this paper, and some adding a

batch normalization (BN) function block after the convolution

and deconvolution layers in the DBB as shown in Fig. 3.

However, according to results from extensive experiments, it

is found that the implementation shown in Fig. 3 has the

best detection performance and low computation complexity.

The results demonstrated that the design of DBB is not

straightforward and specific consideration should be taken for

different baseline CNN models.

C. Object Proposal Building Block (OPBB)

1) OPBB Architecture: The functionality of OPBB is to

receive feature map output from the DBBs or Pool6 layer

and produce high quality proposals to be further processed

by the soft-NMS building block. In this paper we have 4

OPBBs which have the same architecture but different pa-

rameters. These OPBBs are labeled as “OPBB8”, “OPBB16”,

“OPBB32” and “OPBB64” as shown in Fig. 2. The number

in the OPBB labels is the ratio of the original image size to

the spatial size of the feature map input to the OPBBs.

Inside each OPBB there are several similar process

pipelines, each associated with one type of anchors. The

overall architecture of an OPBB with two types of anchors

is shown in Fig. 4. For the first anchor related pipeline,

the input feature maps from DBB go through two separate

processes: one for classification having a convolution layer

with h1 × w1 × (C + 1) filters and a softmax module, and

the other for bounding box regression with respect to the

anchor having a convolution layer with h1 × w1 × 4 filters.

The classification process path produces the softmax scores

of C object classes and background class for each feature

map location. The regression path produces a bounding box

estimation for each feature map location. Then the anchors

with estimated classification scores and the bounding box for

each feature map location are processed to form good quality

proposals.

At each feature map location l, there are two proposals,

pnl for n ∈ {1, 2}, produced from the two anchor pipelines.

Each proposal has (4 + C + 1) dimensions, among which

4 dimensions are for bounding box coordinates and C+1

dimensions are for classification scores of each class. The

4 coordinates represent the offsets relative to the associated

anchor coordinates. Let Bn
l denote the coordinates vector for

proposal pnl , n ∈ {1, 2}. Let L denote the class label set,

L = {0, 1, 2, ..., C}. Label 0 refers to the background class.

Let Fn
l = (fn,0

l , f
n,1
l , ..., f

n,C
l ) be the classification score

vector for pnl , where n ∈ {1, 2}, f
n,c
l denotes the classification

score for class c. Classification score measures the probability

distribution over C+1 classes. Then a proposal pnl at location

l can be denoted by pnl = (Bn
l , Fn

l ).

2) Anchor Boxes: Anchor boxes are critical component

of the regional proposal networks for Faster-RCNN model

and its variants such as MS-CNN. In the standard Faster-

RCNN model there are 9 types of anchor boxes associated

to one convolutional filter layer. In the baseline MS-CNN, in

each OPBB, there are several convolutional filter layers and

each is associated with only one type of anchor boxes. The

associated convolutional filter layer and the type of anchor

box correspond to one proposal pipeline in an OPBB. The
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Fig. 4. Object proposal building block.

aspect ratio of MS-CNN anchor boxes is set to 1 for cars

and around 0.7 for pedestrians. Although the network can

refine the bounding box of proposals by learning to predict the

offsets to anchor boxes, a better anchor box setting will help

object detection with improved matching to the ground truth

bounding boxes, therefore improve both training and inference

performance.
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Fig. 5. Distribution of aspect ratios for different object classes in KITTI
benchmark training set.

We develop a refined OPBB with better anchor box settings

according to the object statistics analyzed over the KITTI

training set. Although the experiments of the anchor box

setting are conducted with MS-CNN as the baseline CNN

model, the idea of setting anchor boxes with sample statistics

is general and can be applied to other network architectures

as well.

To get insights into better anchor box settings, we collect

all the ground truth bounding boxes in the KITTI training

set and generate a histogram of object aspect ratios for cars

and pedestrians. As shown in Fig. 5, the objects of different

classes have distinct distributions of aspect ratios. Car samples

have wider boxes with most aspect ratio values in the range

of 1 to 3. On the contrary, pedestrians have much smaller

aspect ratios. Based on the observation, we resize the square

anchor boxes for cars used in MS-CNN to rectangle ones,

which are closer to the average aspect ratio of car samples.

In addition, for pedestrian objects detection we add one more

type of anchor box. So there are three types of anchor boxes in

total for an OPBB in the refined OPBB architecture, compared

to only two types of anchor boxes used in the baseline MS-

CNN. The additional type of anchor box has an aspect ratio

0.5. The original anchor ratio set in the baseline MS-CNN

is too narrow to efficiently cover the object variations. More

details of anchor configurations are given in Section IV. Our

new anchor settings are by no means the best fitting to the

KITTI dataset. There may be optimal joint settings on the

number, scale and aspect ratio of anchor boxes.

D. Soft-NMS Building Block

After the object proposal layers, soft-NMS building block

is used to filter out highly overlapped proposals from the

object proposal layers. As NMS algorithm has been applied

to remove redundant neighbor proposals in most state-of-the-

art object detection CNN models including MS-CNN, we

have a brief introduction to NMS before the presentation of

soft-NMS. For a proposal p, any other proposal that has an

overlap more than a pre-defined threshold T with proposal p is

called a neighbor proposal of proposal p. Mathematically, let

Pin = {p1, p2, ...pn} denote an initial proposal set output from

the object proposal layers, in which the proposals are sorted by

their objectiveness scores. Here the objectiveness score Si for

proposal pi is the maximum value in the classification score

vector of pi. The traditional NMS method works as follows:

Algorithm 1 NMS.

Input: Proposal set Pin

Output: Proposal set Pout, which is initialized to an empty

set

1: Create a temporary proposal set Ptemp, which is initialized

to Pin.

2: Check if any proposal remains in proposal set Ptemp.

3: If yes, go to Step 4; else, terminate the NMS process and

return output Pout.

4: Move the first proposal (with the highest objectiveness

score) in Ptemp to Pout, which is called winning proposal,

denoted by pwin.

5: Update set Ptemp by removing all the neighbor proposals

of proposal pwin from set Ptemp.

6: Go to Step 2.

Fig. 6. Example of overlapped proposals.

In many object detection challenge datasets neighbor pro-

posals usually correspond to the same object. But due to
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heavy object occlusion in KITTI dataset, NMS may remove

positive proposals unexpectedly. For example, there are two

proposals p1 and p2 from an image with large overlap in

Fig. 6. The proposal p2 for the occluded back car may be

removed with high probability by the traditional NMS method.

To address the NMS issue with occluded objects, we apply

soft-NMS for suppression of overlapped objects [30]. With

soft-NMS the neighbor proposals of a winning proposal are not

completely suppressed. Instead they are suppressed according

to updated objectiveness scores of the neighbor proposals,

which are computed according to the overlap level of the

neighbor proposals and the winning proposal. NMS can be

viewed as a specific case of soft-NMS, in which the updated

objectiveness scores of the neighbor proposals of a winning

proposal are simply set to zero.

Let pi be a winning proposal and pj be a neighbor proposal

of pi. Let Sj be the objectiveness score of pj computed from

object proposal layers. The updated objectiveness score of pj
(denoted by Su

j ) is computed with a linear function by the

following formula (1) [30]:

Su
j = Sj(1−Opi,pj

), (1)

where Opi,pj
represents the intersection of union (IoU) be-

tween pi and pj . Opi,pj
is computed by the following formula:

Opi,pj
=

area(pi ∩ pj)

area(pi ∪ pj)
. (2)

As a whole, the term 1−Opi,pj
acts as a weighting function

with higher overlap leading to larger penalty to objectiveness

score for neighbor proposals.

The operation of soft-NMS method is presented below.

Algorithm 2 Soft-NMS.

Input: Proposal set Pin

Output: Proposal set Pout

1: Create a temporary proposal set Ptemp, which is initialized

to Pin.

2: Check if any proposal remains in proposal set Ptemp.

3: If yes, go to Step 4; else, terminate the NMS process and

return output Pout.

4: Move the winning proposal pwin in Ptemp in this round to

Pout.

5: Compute the updated score of the neighbor proposals of

proposal pwin in Ptemp according to (1).

6: Update set Ptemp by removing the neighbor proposals of

pwin if their updated scores are lower than a pre-defined

threshold Ts.

7: Go to Step 2.

In this paper, the neighbor proposal threshold T is set to

0.4 and the score updating threshold Ts is set to 0.001 for

soft-NMS method by cross-validation.

E. Training and Inference

The whole network training includes two phases. Firstly,

train the object proposal network with object proposal training

samples. Secondly, train both the object proposal network

and the object detection network. For both phases of network

training, training samples with object classes and bounding

boxes are needed. Next we introduce the construction of

training samples, then present the loss function to be used

for network training.

1) Training Samples: The class and bounding box of a

proposal with regard to an anchor for a feature map location

is mainly determined by the convolution layers in the OPBB.

However, their weights are learned from training process with

ground truth samples and configured anchors. Without loss

of generality, let Al denote an anchor with a given scale and

aspect ratio from one type of anchor boxes centered at a feature

map location l. The coordinates of the anchor includes its

center (xl, yl), anchor width (wl) and height (hl). To create a

training sample for this anchor, we first find the best matching

ground truth box for it based on their IoU overlap. Let gtl
denote the best matching ground truth box for anchor Al, and

OAl,gtl be the IoU overlap between anchor Al and ground

truth box gtl. Then class label (denoted by cl) for this anchor

can be determined according to the IoU with the matched

ground truth box. If OAl,gtl is higher than 0.5, the anchor Al

is assigned a class label cgtl , which is the class label of the

matched ground truth object. If OAl,gtl is lower than 0.2, the

anchor Al is labeled as 0 (i.e., background class). Otherwise

the anchor is assigned a class value of -1. The class label

determination can be expressed in the following formula:

cl =







cgtl OAl,gtl > 0.5
0 OAl,gtl < 0.2

−1 otherwise

, (3)

Note that anchors that labeled -1 will be discarded and are not

used as training samples. The regression of the bounding box

can be obtained from the anchor coordinates and the ground

truth bounding box in a similar way presented in [6].

2) Training Loss Function: After the training samples are

prepared, the network can be trained with properly designed

loss function. In this paper the objective loss function is

to minimize the weighted sum of localization loss Lloc and

classification loss Lcls for the proposal and detection networks

[8]:

min

[

∑

l,cl≥1

λLloc(locl, locgtl) +
∑

l

Lcls(Fl, cl)

]

, (4)

Lloc(locl, locgtl) = 0.25 ∗ smoothL1(locl − locgtl), (5)

Lcls(Fl, cl) = −log(f cl
l ), (6)

smoothL1(x) =

{

0.5x2 if |x| < 1
|x| − 0.5 otherwise

, (7)

where l is the index of an anchor in the set of training

samples, λ denotes a weight term, Fl = (f0

l , f
1

l , ..., f
C
l ) is

the classification score vector for proposal pl, cl is the anchor

label class, locl is the bounding box coordinates for pl, locgtl
is the coordinates of matched ground truth box. With the above

objective function, the network can be trained by standard

back-propagation and stochastic gradient descent strategies.

During inference process, a feed-forward pass of the net-

work is run on the test images. The proposal network generates
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proposal candidates with bounding boxes and classification

confidences and detection network further refines the location

and class scores for proposals processed by soft-NMS.

IV. EXPERIMENTS

A. Dataset

We evaluate the enhanced CNN model over the KITTI

2D object detection benchmark dataset. The dataset contains

14999 images with 7481 for training and 7518 for testing.

The image size is 384×1280 pixels. There are over 80000

annotated objects, which are divided into three categories

(car, pedestrian and cyclist). Three object detection evaluation

categories (“Easy”, “Moderate” and “Hard”) are set up for

each object class, according to object height, occlusion and

truncation level, which are presented in Table I. For evaluation,

average precision (AP) with different IoU thresholds (0.7 for

car, 0.5 for pedestrian and cyclist) is used as the main metric

of interest. The AP is computed as the mean precision at a set

of equally spaced recall levels [2].

TABLE I
THREE OBJECT DIFFICULTY LEVELS FOR KITTI DATASET.

Levels
Description

Min. height Max. occlusion level Max. truncation

Easy 40 pixels Fully visible 15%

Moderate 25 pixels Partly occluded 30%

Hard 25 pixels Difficult to see 50%

B. Implementation Details

As a widely adopted practice, the proposed network is fine-

tuned on the reduced VGG-16 model, which is pre-trained

on the ILSVRC CLS-LOC dataset [31]. We split the raw

training dataset into training set and validation set for local

performance evaluation.

As the number of samples for different object classes are

highly imbalanced, detectors are trained separately for detec-

tion of cars and pedestrians. The training procedure consists

of two stages. In the first stage, only the proposal network is

trained by 10000 iterations, with weight term λ of 0.05, initial

learning rate of 0.00005, momentum of 0.9, weight decay of

0.0005. Following the proposal network training, in the second

stage the whole network (including both proposal network and

detection network) is trained for another 25000 iterations. The

learning rate for the second stage is initially set to 0.0005 and

is divided by 10 every 10000 iterations. The weight term λ is

1. The experiments are run with an Intel i7-7700k 4.20GHz

server with 8 CPU cores and 32 GB memory and a Nvidia

GeForce GTX 1080 GPU. Training time ranges from 6 to 10

hours for the models used in this paper.

In order to examine the effectiveness of the proposed

network enhancements, ablation experiments are designed and

conducted. We let letters “D”, “AR” and “S” denote the

proposed network enhancements on deconvolution, anchor box

resize and soft-NMS, respectively. The baseline MS-CNN

network is denoted by letter “M”. In the ablation experiments

various enhancements are added on top of the baseline MS-

CNN network. The network variants with baseline network

and different network enhancements are denoted by “M+D”,

“M+AR”, “M+S”, “M+AR+S” and “M+D+AR+S”, respec-

tively. As there are much smaller number of cyclist samples

compared to those for car and pedestrian in the dataset, only

car and pedestrian evaluation results are presented.

In addition to the various network enhancements, input

layer image size impact is also investigated. We train the

network with 3 input image sizes, small image 384×1280 (the

original image size), medium image 576×1920 and large im-

age 768×2560. The enlargement of images does not increase

image resolution. The experiments carried out with different

input image size are denoted by the object class and the input

image height. For example, experiments for car detection with

image size 384×1280 are denoted by “Car-384”. Anchor sizes

are set differently for different types of experiments. The

anchor and associated filter size configurations for different

image sizes and different object classes are shown in Table II.

Note that the other parameters are kept unchanged through all

the experiments.

C. Experimental Results on Validation Set

In this subsection we examine and compare the performance

of the proposed CNN enhancements for object detection over

KITTI benchmark dataset. As the ground truth of the KITTI

test set is not publicised and only one submission of the KITTI

test results to the benchmark website is allowed, performance

comparison of the proposed enhancements is performed over

the KITTI training and validation set.

The AP results of the compared CNN models as configured

in the previous subsection are reported in Table III for both car

and pedestrian detection. The CNN models include the original

MS-CNN with and without the proposed enhancements. The

AP results for the detection categories “Easy”, “Moderate”

and “Hard” are presented in Table III(a), III(b) and III(c),

respectively. In the tables the maximal AP values from the

compared CNN models for each image size are displayed in

bold font. As MS-CNN training with deconvolution building

block and image size 768×2560 was not completed due to

high GPU memory requirement, the results of related CNN

models with DBB enhancement (“M+D+∗”) are not presented

for large input image size.

In addition the network inference time per image is reported

in Table IV. The inference speed of the original MS-CNN

and the proposed CNN networks are very fast (0.08 second

per image for small image size). The introduction of anchor

box resize (“AR”) and soft-NMS (“S”) add negligible time.

The deconvolution building block introduce a little extra

computation time (0.01 second per image).

1) The effectiveness of proposed enhancements: First we

check the effectiveness of the individual proposed enhance-

ments. Comparing the results of CNN variants “M+D”,

“M+AR” and “M+S” to the baseline MS-CNN model “M”,

it can be observed that there are good performance improve-

ment for most input image sizes and object classes. Among

the individual enhancements, soft-NMS produces the largest

and consistent performance gain for both car and pedestrian

detection in most cases. The performance improvement with
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TABLE II
CONFIGURATIONS OF ANCHOR SIZE AND FILTER SIZE (WIDTH×HEIGHT) WITH DIFFERENT IMAGE SIZE.

(a) car.

OPBB-8 OPBB-16 OPBB-32 OPBB-64

Car-384
anchor 40×24 56×36 80×48 112×72 160×96 224×144 320×192
filter 5×5 7×7 5×5 7×7 5×5 7×7 5×5

Car-576
anchor 60×40 84×54 120×80 168×108 240×160 336×216 480×320
filter 5×5 7×7 5×5 7×7 5×5 7×7 5×5

Car-768
anchor 60×40 84×54 120×80 168×108 240×160 336×216 480×320 672×432
filter 5×5 7×7 5×5 7×7 5×5 7×7 5×5 7×7

(b) pedestrian.

OPBB-8 OPBB-16 OPBB-32 OPBB-64

Ped anchor 28×40 28×56 36×56 56×80 56×112 72×112 112×160 112×224 144×224 224×320
-384 filter 3×5 3×7 5×7 3×5 3×7 5×7 3×5 3×7 5×7 3×5

Ped anchor 40×60 40×84 56×84 80×120 80×168 112×168 160×240 160×336 224×336 320×480
-576 filter 3×5 3×7 5×7 3×5 3×7 5×7 3×5 3×7 5×7 3×5

Ped anchor 40×60 40×84 56×84 80×120 80×168 112×168 160×240 160×336 224×336 320×480 448×672
-768 filter 3×5 3×7 5×7 3×5 3×7 5×7 3×5 3×7 5×7 3×5 5×7

TABLE III
PERFORMANCE COMPARISON OF CNN VARIANTS ON VALIDATION SET.

(a) Easy.

Car Pedestrian

Image height 384 576 768 384 576 768

M 89.34 90.62 91.12 76.25 79.72 80.02

M+D 90.96 92.39 - 77.93 80.25 -

M+AR 94.44 90.47 91.38 77.97 79.92 80.25

M+S 91.77 91.09 91.50 78.96 79.82 80.41

M+AR+S 94.78 92.72 91.68 80.28 79.98 80.58

M+D+AR+S 93.76 93.12 - 78.50 80.28 -

(b) Moderate.

Car Pedestrian

Image height 384 576 768 384 576 768

M 88.84 89.86 90.04 70.57 74.68 76.49

M+D 89.00 89.74 - 71.39 75.92 -

M+AR 89.36 89.88 90.08 71.63 75.59 76.38

M+S 89.44 89.99 90.29 73.04 75.07 76.64

M+AR+S 89.57 90.20 90.35 73.05 75.85 76.93

M+D+AR+S 89.37 90.23 - 72.42 76.69 -

(c) Hard.

Car Pedestrian

Image height 384 576 768 384 576 768

M 77.59 79.04 79.86 62.58 66.55 68.02

M+D 77.22 78.80 - 63.53 68.06 -

M+AR 77.86 79.50 79.83 63.41 66.85 68.02

M+S 77.16 79.50 80.31 64.70 66.74 68.03

M+AR+S 78.40 80.04 80.39 64.88 66.92 68.41

M+D+AR+S 78.23 80.33 - 64.15 68.25 -

TABLE IV
AVERAGE INFERENCE TIME FOR VARIOUS NETWORK ARCHITECTURES.

Car Pedestrian

Image height 384 576 768 384 576 768

M 0.08s 0.17s 0.24s 0.06s 0.14s 0.20s

M+AR+S 0.08s 0.17s 0.24s 0.06s 0.14s 0.20s

M+D+AR+S 0.09s 0.18s - 0.07s 0.15s -

soft-NMS is more obvious for pedestrian detection with im-

age size 384×1280. For example, the AP with soft-NMS

increases from 76.25% for “M” to 78.96% for pedestrian

detection category “Easy” with small image size. These results

demonstrate the effectiveness of soft-NMS on tackling the

object occlusion issues in ADAS environments. Anchor resize

(“AR”) enhancement shows consistent performance gain over

the baseline network as well. But the largest performance gain

with “AR” comes mainly with the small image size, e.g.,

5.1% performance gain with “AR” for car detection category

“Easy”. On the other hand, deconvolution (“D”) enhancement

shows consistent performance gain for pedestrian detection

and large performance gain for car detection category “Easy”

with medium image size, but there is a slight performance loss

for car category “Hard”.

Next combinations of the proposed enhancements are ex-

amined. The best AP performance is always achieved with

combined network enhancements for all object classes, object

detection categories and input image sizes. For example,

for medium image size, the best network for both car and

pedestrian detection is “M+D+AR+S” for category “Easy”,

“Moderate” and “Hard”. These results show that the proposed

enhancements can work together and effectively boost object

detection performance.

An interesting observation is on the experiment results with

combination of “AR” and “S” enhancements. For both car and

pedestrian detection with small image size, both anchor resize

and soft-NMS enhancements bring performance gains: anchor

resize has much larger gains for car detection, while soft-NMS

has larger gains for pedestrian detection. The combination of

“AR” and “S” enhancements have consistent and larger gains

than the individual enhancement.
2) The impact of input image size: Apart from the proposed

network enhancement, it is also observed that increasing image

size has a large positive impact on object detection. For any

given studied MS-CNN variant, the AP performance improves

with larger image size in most studied cases. There is a

substantial performance gain with image size for the baseline

network “M”, especially for pedestrian detection. For example

the AP increases from 70.57% with small image size to

76.49% with large image size.

However the performance gains with larger image size

for some MS-CNN variants (such as “M+AR+S” and

“M+D+AR+S”) are much smaller. For the baseline MS-CNN
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network, the largest AP for car detection category “Easy”

is 91.12% with large image size. But the enhanced network

“M+AR+S” has 94.78% AP with small image size.

It is worth noting that the performance gains with large

image size do not come without cost. According to Ta-

ble IV, the average inference time per image for car detection

increases from 0.08 second for small image size to 0.17

second for medium image size and 0.24 second for large

image size. Similar inference time performance for pedestrian

detection is observed. As the best detection performance with

“M+D+AR+S” with medium image size is already very close

to or even better than the best available performance with

large image size, “M+D+AR+S” network model with medium

image size is recommended for joint considerations on detec-

tion precision and speed. More specifically, the “M+AR+S”

network architecture with small image size offers the highest

speed and best detection AP (94.78% versus 91.68% with large

image) for car detection category “Easy” and slightly lower

AP (80.28% versus 80.58% for large image) for pedestrian.

For some driving safety assistance applications with targets of

detecting easy objects, such as forward collision warning, the

“M+AR+S” network architecture with small image size can

be the first choice.

To visually assess the effectiveness of the proposed method,

some example KITTI images with annotations of detected

objects by the baseline MS-CNN model (shown in the left

column) and our method (shown in the right column) are

presented in Fig. 7. To be fair, the image size is set 768×2560

for both models. The first three rows Fig. 7(a)-Fig. 7(c) are

for car detection and the last row Fig. 7(d) is for pedestrian

detection. Compared the detection results with MS-CNN and

our method, we can find that our method improves the

detection performance from several aspects:

• Our method can reduce false proposals as shown in

Fig. 7(a) and in Fig. 7(b). In the left image of Fig. 7(a),

there are two false proposals produced by MS-CNN

around the orange car in the bottom left side. In Fig. 7(b)

the MS-CNN method produce two false proposals, one

in the right cluster of cars and one in the left cluster of

cars.

• Our method can detect more small objects that are missed

by MS-CNN as shown in Fig. 7(c). The MS-CNN method

missed the remote small car on the road and a car in right

shadow area.

• Our method can avoid producing multiple bounding

boxes for one object. For example in Fig. 7(d), the

MS-CNN model produces two bounding boxes for each

detected pedestrian.

D. Experimental Results on KITTI Test Set

Next we present the experiment results over the KITTI test

set and compare our results with those of recently published

approaches.

As the KITTI leader board ranks the approaches based

on the AP for “Moderate” detection category, we select the

network “M+AR+S” with large image size (768×2560) for

competition, which produced the best AP for “Moderate”

category over validation set. The results are submitted to the

KITTI test set evaluation server.

The AP and inference time results of our proposed method

and other top ranked published approaches are presented in

Table V. While the original CNN models (Faster-RCNN, SSD

and YOLOv2) without adaption to the KITTI datasets have

much lower object detection performance over KITTI test set,

they are also listed in Table V for information.

A simple comparison of our own results on KITTI test data

set to those on validation test shows that there are considerable

performance loss possibly due to harder images in the test

set. However similar performance loss was observed for the

baseline MS-CNN model.

Comparing the AP and the inference time results in Table V,

it can be concluded that there is no absolute winner with domi-

nant performance over all the comparison aspects. Among the

compared leading approaches, our proposed method ranked

the first in network inference speed, the best in the pedestrian

category “Easy”, second in pedestrian categories “Moder-

ate” and “Hard”, third in car detection category “Moderate”.

D MANTA [35] ranked the first in car category “Easy”. RRC

[28] has four number one positions in all detection categories.

However, RRC has the second longest inference time (3.6

second), which is 15 times our inference time, even it is based

on the fast SSD baseline and used much higher specification

GPU computer.

The highest AP for car category “Easy” achieved by

“M+AR+S” with small image is 94.78% over the validation

set, while the highest AP over the test set is only 90.49%.

One reason for the performance gap is that “M+AR+S” with

large image size is selected as the only model for competition.

Therefore the good performance with “M+AR+S” model and

small image size is compromised.

TABLE V
PERFORMANCE COMPARISON OF RECENT PUBLISHED WORKS AND OUR

METHOD ON THE TEST SET.

Method
Pedestrian Car

Time (s)
Easy Mod Hard Easy Mod Hard

Faster-RCNN [6] 78.35 65.91 61.19 87.90 79.11 79.19 2

SSD [7] 23.14 16.30 16.06 83.89 67.17 59.09 0.06

YOLOv2 [23] 20.80 16.19 15.43 28.37 19.31 15.94 0.02

spLBP [12] - - - 80.16 77.39 60.59 1.5

Mono3D [32] 77.30 66.66 63.44 90.27 87.86 78.09 4.2

MS-CNN [8] 83.70 73.62 68.28 90.46 88.83 74.76 0.4

Deep3D [33] - - - 90.47 88.86 77.60 1.5

SubCNN [26] 83.17 71.34 66.36 90.75 88.86 79.24 2.0

MV3D [34] - - - 90.53 89.17 80.16 0.36

SDP+RPN [27] 79.98 70.20 64.84 89.90 89.42 78.54 0.4

D MANTA [35] - - - 97.25 90.03 80.62 0.7

RRC [28] 84.14 75.33 70.39 90.61 90.22 87.44 3.6

Our method 85.12 74.52 69.35 90.49 89.64 77.95 0.24

According to the object detection results presented in Ta-

ble V and in KITTI benchmark website, it can be observed

that the car detection performance for category “Moderate” is

almost saturated with very little performance gap over the top

20 detection methods. However, there is still large performance

improvement space for pedestrian and cyclist detection. For

example the highest AP from the published works is 85.12%

and 75.33% for pedestrian category “Easy” and “Moderate”,

respectively.
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(a)

(b)

(c)

(d)

Fig. 7. Object detection examples on KITTI testing set with MS-CNN and our method.

The main challenges of the pedestrian and cyclist detection

still come from the small size, heavy occlusion or truncation of

the objects. In addition other external factors like illumination

change and cluttered background can affect the accuracy of our

detection method. And compared to the number of car samples

in the KITTI dataset, the number of pedestrian and cyclist

samples are much smaller, which may be another cause of the

relatively poor detection performance for pedestrian detection.

We present two example images in which some samples

are not correctly detected by our method in Fig. 8. These

detection examples may help understand the existing detection

challenges. In Fig. 8(a) the white car in the bottom left side

is not detected due to heavy truncation. In Fig. 8(b) one

person near the train is not detected due to occlusion and poor

illumination conditions.

V. CONCLUSION

Real time accurate object detection is one of the most

critical problems for advanced driving assistance systems

(ADAS) and autonomous driving. Recently convolutional neu-

ral networks (CNN) achieved huge successes on visual object

detection over traditional object detectors, which use hand-

engineered features. However, due to the challenging driving

environment (e.g., large object scale variation, object occlusion

and bad light conditions), popular CNN detectors includ-

ing Faster-RCNN and SSD do not produce good detection

performance over the KITTI driving benchmark dataset. In

this paper we proposed three enhancements on a multiple

scale CNN network model for ADAS object detection. Firstly,

CNN feature maps deconvolution and fusion was proposed

to add context and deeper features for better object detection

at lower scale of feature maps, to address the large object

scale variation challenge. Then, soft non-maximal suppres-

sion (NMS) was applied across object proposals at different

image scales to address the object occlusion challenge. As

the cars and pedestrians have distinct aspect ratio features,

we measured their aspect ratio statistics and exploited them

to set anchor boxes properly for better object matching and

localization. The proposed CNN enhancements with various

input image sizes were individually and jointly evaluated by

extensive experiments over KITTI dataset. The effectiveness

of the proposed enhancements was verified by experiment

results with improved or comparable detection performance

over KITTI test set. The average precision (AP) for pedestrian

detection category “Easy” and the computation speed rank the

first among the published works, the second for pedestrian

category “Moderate” and “Hard”, the third for car category

“Moderate”. And the network inference time for cars per

384×1280 image is only 0.08 second, much faster than the

other top ranked published methods in KITTI leader board.

In our future works we will investigate more CNN models

and enhancements to improve object detection for safe and

intelligent transport.
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(a) Undetected car due to heavy truncation (b) Undetected pedestrians due to occlusion and poor illumination
conditions

Fig. 8. Example images from KITTI testing set with false object detection by our method.
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