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Abstract: The sine cosine algorithm’s main idea is the sine and cosine-based vacillation outwards or
towards the best solution. The first main contribution of this paper proposes an enhanced version of
the SCA algorithm called as ESCA algorithm. The supremacy of the proposed algorithm over a set of
state-of-the-art algorithms in terms of solution accuracy and convergence speed will be demonstrated
by experimental tests. When these algorithms are transferred to the business sector, they must
meet time requirements dependent on the industrial process. If these temporal requirements are
not met, an efficient solution is to speed them up by designing parallel algorithms. The second
major contribution of this work is the design of several parallel algorithms for efficiently exploiting
current multicore processor architectures. First, one-level synchronous and asynchronous parallel
ESCA algorithms are designed. They have two favors; retain the proposed algorithm’s behavior and
provide excellent parallel performance by combining coarse-grained parallelism with fine-grained
parallelism. Moreover, the parallel scalability of the proposed algorithms is further improved by
employing a two-level parallel strategy. Indeed, the experimental results suggest that the one-level
parallel ESCA algorithms reduce the computing time, on average, by 87.4% and 90.8%, respectively,
using 12 physical processing cores. The two-level parallel algorithms provide extra reductions of the
computing time by 91.4%, 93.1%, and 94.5% with 16, 20, and 24 processing cores, including physical
and logical cores. Comparison analysis is carried out on 30 unconstrained benchmark functions and
three challenging engineering design problems. The experimental outcomes show that the proposed
ESCA algorithm behaves outstandingly well in terms of exploration and exploitation behaviors,
local optima avoidance, and convergence speed toward the optimum. The overall performance of
the proposed algorithm is statistically validated using three non-parametric statistical tests, namely
Friedman, Friedman aligned, and Quade tests.

Keywords: constrained optimization; metaheuristic; heuristic algorithm; OpenMP; parallel
algorithms; SCA algorithm; unconstrained optimization

MSC: 49M99; 68Q10

1. Introduction

Metaheuristic optimization methods are widely used. Many of these algorithms are
based on populations that evolve towards the optimal through an iterative process. In many
cases, this iterative process is governed by rules based on natural phenomena, physical
processes, or mathematical functions. Depending on both the evolutionary process of the
populations (i.e., the algorithm used) and the characteristics of the function to be optimized
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(single-objective or multi-objective), the use of these methods may not be feasible, either
because of the high computing cost or because of the poor quality of the result.

Some of the well-known metaheuristic optimization algorithms are based on natu-
ral phenomena. The most common algorithms are the ant colony optimization (ACO)
algorithm [1], which imitates the foraging behavior of ant colonies; the evolutionary
strategy (ES) algorithm [2], which is based on the processes of mutation and selection
seen in evolution; the evolutionary programming [3] uses techniques for evolving pro-
grams based on the selection of individuals for reproduction (crossover) and mutation, as
well the genetic programming [4]; the particle swarm optimization (PSO) algorithm [5],
which is based on the social behavior of fish schooling or bird flocking; the shuffled
frog leaping [6] algorithm, which imitates the collaborative behavior of frogs; and the
artificial bee colony (ABC) algorithm [7], which was inspired by the foraging behavior
of honey bees. Some algorithms are based on physical phenomena, for instance, the
simulated annealing (SA) algorithm [8], which is based on the annealing process in met-
allurgy. Some algorithms based on human or non-human physiological processes have
been proposed, such as genetic algorithms (GA) [9], which reflects the process of natural
selection; the differential evolution (DE) [10–12] optimizes a problem by iteratively work-
ing to promote an agent concerning a given measure of quality; and the artificial immune
algorithm (AIA) [13], which is based on the behavior of the human immune system. Some
algorithms based on human social processes have also been proposed, such as the harmony
search algorithm (HSA) [14] inspired by the process of musical performance. Finally, there
are proposed algorithms based on mathematical processing, such as the SCA algorithm [15],
which is based on the sine and cosine trigonometric functions.

Almost all of the algorithms mentioned require configuration parameters for an opti-
mal optimization process. An incorrect setting of these parameters can cause either a poor
quality solution or that the computational cost drastically increases as more generations are
required to be processed. For example, ABC needs the number of bees and limits to be de-
fined, HSA needs the harmony memory consideration rate, the number of improvisations,
etc., to be adjusted. However, some of these algorithms do not require parameter tunings,
such as teaching-learning based optimization algorithm (TLBO), Jaya, and SCA algorithms.
The latter is employed in this paper.

The SCA algorithm has been proven to be efficient in various applications. In [16],
SCA is used to train feed foreword neural network to breast cancer classification. Authors
in [17] employ SCA algorithm to improve an adaptive fuzzy logic PID (proportional
integral derivative) controller for the load frequency control of an autonomous power
generation system. In addition, it is used to optimize the parameters of a fractional-order
proportional integral differential controller for coordinated control of power consumption
in heat pumps [18]. In [19], the unified power quality conditioner is formulated as a
single objective problem optimized using SCA. The application spectrum of the SCA
algorithm is too large, see for example [20–27]. However, its convergence speed is a bit
slow, especially when considered multimodal objectives functions. Indeed, it maintains
high global searchability even at the end of iterations. This paper aims to improve the SCA
algorithm optimization behavior by intensifying the current solution’s refinement with a
promising diversification level during the course of the algorithm, speeding it up both in
terms of optimization and computational cost.

The major findings of the work are:

• A new optimization algorithm is proposed, dubbed the Enhanced Sine Cosine Algo-
rithm (ESCA), which improves the SCA algorithm and offers better performance than
a set of state-of-the-art algorithms. The outstanding optimization performance of the
ESCA algorithm is based on the embedding of a best-guided approach along with the
local search capability already existing in the SCA algorithm, leading to a decrease in
the diversification behavior at the end of the iterations.

• To improve the computational performance of the proposed algorithm, synchronous
and asynchronous parallel algorithms have been designed based on parallelization,
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initially at an outer, i.e., at a coarse-grained level. Since this level of parallelization is
related to subpopulations, the number of subpopulations cannot increase indefinitely.
These synchronous and asynchronous one-level parallel ESCA algorithms decrease
the computing time by 87.4% and 90.8%, respectively, using 12 processing cores.

• To improve parallel scalability without harming the optimization performance and
increasing the number of processes, two-level parallel algorithms have been designed.
The parallel strategy includes two levels, namely the outer level and the internal
level. The outer level corresponds to coarse-grained parallelization, while the internal
level corresponds to fine-grained parallelization. Accordingly, the parallel scalability
of the proposed algorithms is extremely improved. The experimental results show
significant reductions in the computing time of 91.4%, 93.1%, and 94.5% with 16, 20,
and 24 processes mapped on 12 physical cores. These time reductions correspond to
speed-ups of x12.5, x15.9, and x19.0 with 16, 20, and 24 processes correctly mapped
on 12 physical cores, i.e., using hyperthreading.

The rest of the paper is organized as follows. The preliminaries, including the sine
cosine algorithm (SCA) and the related works, are provided in Section 2. The proposed
enhanced SCA algorithm (ESCA) along with the proposed parallel algorithms based on
multi-population are described in Section 3. Section 4 lists the benchmark functions and
the engineering problems employed for testing the performance of the proposed algorithm.
The experimental results of these algorithms are discussed in Section 5. Finally, Section 6
concludes the paper.

2. Related Work

The SCA algorithm, on which our ESCA proposal is based, is described in Section 2.1.
Other proposals based on the SCA algorithm are listed and briefly described in Section 2.2.

2.1. Sine Cosine Algorithm

The SCA algorithm is an optimization algorithm based on an initial population that
evolves in search of a function’s optimum, called a cost function. This evolution, i.e., the
generation of consecutive new populations (the typical procedure of population-based
algorithms), is mainly based on (1) and (2).

Popk
m = Popk

m + (r1 ∗ sin(rk
2)
∣∣∣rk

3 ∗ BestPopk − Popk
m

∣∣∣) (1)

Popk
m = Popk

m + (r1 ∗ cos(rk
2)
∣∣∣rk

3 ∗ BestPopk − Popk
m

∣∣∣) (2)

As can be seen, (1) and (2) differ only in the use of the mathematical functions sine
or cosine. In these equations, it has been adopted that each population is composed of m
individuals, each individual consists of k variables (this parameter depends on the cost
function), and finally, the best current individual is denoted by BestPop. Each individual
is generated based on both the current individual (Popm) and the current best individual
(BestPop). However, the generation of each variable of each new individual is tuned by
using three random values that define the magnitude of the sine or cosine range (r1), the
sine or cosine domain (rk

2), and the magnitude of the contribution of the target (BestPop) in
defining the new position of the solution (rk

3).
In practice, the random numbers r1 divide the search space into two sub-spaces based

on the current individual and the best individual in the current population. Thus, if r1 is
greater than 1, the candidate solutions vacillate outwards the destination, else they fluctuate
inwards the destination (see Figure 1).

Both exploration and exploitation phases of the SCA optimization algorithm depend
on the capabilities provided by (1) and (2). This selection is decided at random with the
same probability.
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Figure 1. Searching spaces of SCA depending on r1.

In heuristic optimization algorithms, which are iterative, the exploration phase is
usually more decisive in the iterative procedure’s final phase. The SCA algorithm prioritizes
the exploration phase as more iterations are performed through r1 (see Equation (3)).

r1 = iniValuer1 − currentIT
iniValuer1

maxITs
(3)

From an initial value (iniValue_r1), the value of r1 decreases as the number of iterations
performed increases, towards the r1 minimum value when the last iteration is performed
(max_ITs). The initial value of r1 is set to 2. The number of iterations to be performed
(max_ITs) is necessary for all population-based heuristic optimization algorithms. In
practice, the value of r1 modifies the range of values of the terms associated with the sine
and cosine, from the original range [−1, 1] to the decreasing variable range, this variables
range starts at [−iniValue_r1, iniValue_r1]. These variables’ contribution can be seen in
Algorithm 1, which shows the steps of the SCA algorithm. The computed new individual
is newPopm, the number of individuals in the population is popSize and the number of cost
function design variables is numDesignVars.

Algorithm 1 The SCA optimization algorithm.
1: Set iniValuer1 = 2
2: Set maxITs variable
3: Set population size (m - iterator for individuals)
4: Define function cost (k - iterator for design variables)
5: Generate initial population Pop0
6: for iterator = 1 to maxITs do
7: Search for the current BestPop

8: r1 = iniValuer1 − iterator
iniValuer1

maxITs
9: for m = 0 to popSize do

10: for k = 1 to numDesignVars do
11: r2 = 2 ∗ π ∗ rand0..1
12: r3 = 2 ∗ rand0..1
13: r4 = rand0..1
14: if r4 < 0.5 then
15: newPopk

m = Popk
m +

(
r1 ∗ sin(r2)

∣∣∣r3 ∗ BestPopk − Popk
m

∣∣∣)
16: else
17: newPopk

m = Popk
m +

(
r1 ∗ cos(r2)

∣∣∣r3 ∗ BestPopk − Popk
m

∣∣∣)
18: end if
19: end for
20: Popm = newPopm
21: end for
22: end for
23: Search for the current BestPop
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2.2. SCA-Based Proposals

Thanks to its simplicity, the SCA algorithm was widely adopted and refined in many
research proposals. In [28], the authors proposed a modified SCA algorithm in which
the linear transition rule was substituted by a non-linear transition to guarantee a better
transition from exploration to exploitation. Second, the best guidance based on the elite
candidate solution was entered in the SCA’s search equations. Third, to escape from local
optimums, a mutation operator is utilized to produce a new position during the course
of the algorithm. An improved alternative of SCA named HSCA for train multilayer
perceptrons was reported in [29]. The HSCA adjusted the search mechanism of SCA
by combining the leading guidance and the simulated quenching algorithm. In [30], a
novel SCA based on orthogonal parallel information was presented. It is based on two
approaches; multiple-orthogonal parallel information and experience-based opposition
direction strategy. The former enabled the algorithm to save the solution diversification
and search around promising regions simultaneously. The latter serves to guard the
exploration ability of the SCA algorithm. Authors in [31] proposed an improved sine
cosine algorithm (ISCA) for feature selection of text categorization. In addition to the
position of the leading solution, the ISCA worked with random positions from the search
space. That alteration of the solution’s position mitigated premature convergence and
submitted adequate performance. Ref. [32] suggested an improved sine cosine algorithm
in which a couple of new mechanisms are provided. One is the mixing of the exploitation
abilities of crossover with the personal lead position of individual solutions. The other
is the combination of self-learning and global search tools. Zhiliu et al. proposed a
modified SCA algorithm based on vicinity search and greedy levy mutation [33]. It suggests
three optimization tactics. Firstly, it mixed the exponential decreasing of conversion
parameter and the linear decreasing of inertia weight, which yielded an equilibrium
between the algorithm’s global and local search abilities. Secondly, to escape from local
optimums, a random strategy for search agents around the best one is performed. Thirdly,
the greedy Levy mutation strategy is adopted for the best individuals to intensify the
algorithm’s local searchability. A hybrid modified SCA algorithm was studied in [34].
It was benefited from the ability of random populations through the Latin hypercube
sampling method. Next, it was used for hybridization with the cuckoo search algorithm.
The algorithm showed sufficient local and global search skills. Mohamed et al. presented
an improved SCA algorithm based on opposition-based learning (OBL) [35]. Indeed, OBL
is a machine learning approach usually utilized to boost the performance of metaheuristic
optimization algorithms. It allowed better accuracy of the obtained solutions by promoting
the exploration skills of the algorithm. Since OBL elected the leading element falling
between a given solution and its opposite, better solutions are afforded accordingly. An
enhanced SCA algorithm for feature selection was described in [36]. It embedded an
elitism strategy and a new strategy of best solution updating, yielding better accuracy for
pattern classification. In [37], the authors proposed an improved SCA algorithm for solving
high-dimensional global optimization problems. The equation for renovating the position
of the current solution and the linearly decreasing parameter were modified. In the former,
inertia weight was introduced to speed up the convergence rate and avoid local optimums.
The latter was replaced by a Gaussian function-based strategy that enabled a non-linear
decrease of the parameter. Therefore, a promising exploration-exploitation balance was
yielded. Other good attempts for improving the SCA algorithm can be found in [38–42]. In
this subsection, some SCA-based algorithms have been reviewed. The motivation for the
improvements in each of them is briefly described.

3. Proposed Work

In Section 3.1 our proposed optimization algorithm based on the SCA algorithm,
called ESCA, is presented. Then in Section 3.2, the parallel algorithms developed to
computationally accelerate the ESCA algorithm are presented.
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3.1. Enhanced Sine Cosine Algorithm

The proposed enhanced sine cosine algorithm (ESCA) aims to improve the optimiza-
tion behavior of the original SCA algorithm. For this purpose, we enhance the exploration
and exploitation phases of the SCA optimization algorithm. Indeed, they depend on the
capabilities provided by (1) and (2). These capacities are boosted by introducing a new
alternative, defined by (4), to generate each new individual.

Popk
m = BestPopk + r2

5(Popk
m − r6 ∗ BestPopk) (4)

When using (4), the new individual is generated based on the current individual and
the distance between that individual and the best individual in the current population.
Both the magnitude of the best individual and the magnitude of the distance are tuned
using two random numbers, r5 (which is squared) and r6 respectively, as shown in (4).

The probability of using the sine-based equation, i.e., (1), remains at 50%. While the
probability of using the cosine-based equation, i.e., (2), decreases to only 20%. The new
equation uses neither sine nor cosine, and it has a 30% chance of being used. The proposed
enhanced sine cosine algorithm (ESCA) is described in Algorithm 2.

Algorithm 2 Enhanced SCA (ESCA) optimization algorithm
1: Set iniValuer1 = 2
2: Set maxITs variable
3: Set population size (m - iterator for individuals)
4: Define function cost (k - iterator for design variables)
5: Generate initial population Pop0
6: for iterator = 1 to maxITs do
7: Search for the current BestPop

8: r1 = iniValuer1 − iterator
iniValuer1

maxITs
9: for m = 0 to popSize do

10: for k = 1 to numDesignVars do
11: r2 = 2 ∗ π ∗ rand0..1
12: r3 = 2 ∗ rand0..1
13: r4 = rand0..1
14: if r4 < 0.5 then
15: newPopk

m = Popk
m +

(
r1 ∗ sin(r2)

∣∣∣r3 ∗ BestPopk − Popk
m

∣∣∣)
16: else if r4 < 0.7 then
17: newPopk

m = Popk
m +

(
r1 ∗ cos(r2)

∣∣∣r3 ∗ BestPopk − Popk
m

∣∣∣)
18: else
19: r5 = rand0..1
20: r6 = round(1 + rand0..1)
21: newPopk

m = BestPopk + r2
5(Popk

m − r6 ∗ BestPopk)
22: end if
23: end for
24: Popm = newPopm
25: end for
26: end for
27: Search for the current BestPop

In more detail, in the SCA algorithm two equations can be used to obtain a new individual,
as can be seen in Algorithm 1 (lines 14–18), the first based on the sine function and the second
based on the cosine function. Both equations have the same probability of being used, as
can be seen in line 14 of Algorithm 1. In contrast, in our proposal up to three equations
can be used, the first two coincide with the functions of the SCA algorithm, and the third is
shown in Equation (4). The probability of using the equation based on the sine of the SCA
algorithm remains unchanged.The probability of using the cosine-based equation of the SCA
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algorithm is reduced to 20%, while the new equation proposed in the ESCA algorithm has a
30% probability of being used, as can be seen in Algorithm 1 (lines 18–22).

To compare search agents’ behavior of the SCA and ESCA algorithms, the two-
dimensional versions of the benchmark functions are solved by 30 search agents. The search
maps of the search agents under 300 function evaluation times are shown in Figures 2–4.
Similarly, the distributions of all possible solutions over the entire search space are depicted
in Figures 5–7. These figures reveal that the ESCA algorithm searches around thoroughly
narrow regions from the promising regions of the search space, which means reaching the
optimum faster. In contrast, the SCA algorithm searches in dispersed areas of the entire
space, so more time is required to attain the promising regions. In addition, the obtained
solutions by the ESCA algorithm are almost distributed around the global optimum. This
proves that it efficiently exploits the previous solutions to improve the current one and
bypass significant jumps in the search space. The SCA algorithm’s weakness is that it
favors exploration even at the end of iterations. An efficient optimization algorithm should
hit an equilibrium of exploitation and exploration. Indeed, it should maintain a high level
of diversification at the beginning and a lower one at its end to avoid falling on local
optimums. Simultaneously, the algorithm refines the current solution progressively. Briefly,
the algorithm should promote exploration in the beginning and exploitation at the end. In
this context, the ESCA algorithm is guided by the current best solution (see Equation (4))
to converge toward the optimum and sustain a high level of intensification at the end of
the algorithm. Accordingly, a better balance between local search and global search is
guaranteed over the course of iterations.
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Figure 2. Search maps of search agents when solving functions f1, f3, and f4; by the ESCA algorithm
(first row); and the SCA algorithm (second row).
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Figure 3. Search maps of search agents when solving functions f9, f10, and f12; by the ESCA algorithm
(first row); and the SCA algorithm (second row).
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Figure 4. Search maps of search agents when solving functions f21, f24, and f25; by the ESCA
algorithm (first row); and the SCA algorithm (second row).
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Mathematics 2022, 10, 1166 9 of 47

0
10

2

10

104

5

4

5

6

0 0
-5 -5

0
100

1

2

100

104

3

50

4

0

5

0
-50

-100 -100

0
10

2

10

104

5

4

5

6

0 0
-5 -5

0
100

1

2

100

104

3

50

4

0

5

0
-50

-100 -100

Figure 6. Obtained solutions in the search space of functions f9, f10, and f12; by the ESCA algorithm
(first row); and the SCA algorithm (second row).
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Figure 7. Obtained solutions in the search space of functions f21, f24, and f25; by the ESCA algorithm
(first row); and the SCA algorithm (second row).

3.2. Proposed Parallel Algorithms

Almost all newer computing platforms, regardless of their computing power, are
parallel. The main trends to increase the platforms’ computing power are (i) increasing
the number of processing units (physical cores and/or logical threads) and (ii) including
hardware accelerators (GPUs, FPGAs, etc.). We propose parallel algorithms based on
multicore platforms to efficiently use the computational resources available on shared
memory parallel platforms.

First, two parallel coarse-grained algorithms based on multi-population are developed.
Similar strategies applied to different heuristic optimization are presented in [43,44] and
some other well-known algorithms. In both, the SCA and the proposed ESCA algorithms,
only the population size and the stop criterion need to be established. Since the proposed
parallel algorithms are based on multi-populations, the selected population size is that of
the initial population, i.e., before it is partitioned. The stop criterion is the number of new
generations to be computed. Note that the number of generations and the population’s
size implicitly determine the number of cost function evaluations to be performed.

The initial population is divided into subpopulations of equal or similar size. The
size of the subpopulations depends on the number of used processing units as shown in
Algorithm 3 (line 4). If the size of the initial population is not divisible by the number of
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processing units, the sizes of some subpopulations are increased by one as exhibited in
lines 5–9 of Algorithm 3.

Algorithm 3 Multi-population sizes computing
1: Initial population size: popInitSize
2: Number of cores (or processes): NoCs
3: Process ID: idPr ∈ [0, NoCs− 1]
4: subpopSize = popInitSize

NoCs
5: if (subpopSize%NoCs)! = 0 then
6: if idPr < (PopulationSize%NoCs) then
7: subpopSize = subpopSize + 1
8: end if
9: end if

Once the size of the subpopulations is determined according to the size of the initial
population and the number of processes, as can be seen in Algorithm 3, each subpopulation
is processed by a single process. The required communications between these concurrent
processes depend on the operating algorithm. The asynchronous approach reduces these
communications with respect to the synchronous algorithm. Note that when hyperthread-
ing is not used, each core runs only one process. In our case, hyperthreading is used when
more than 12 processes are required.

As stated, the proposed parallel algorithms are suitable for shared memory platforms.
In both algorithms, to efficiently exploit shared-memory platforms, private memory has
been used preferably. The first proposed parallel algorithm, shown in Algorithm 4, is asyn-
chronous, i.e., communications between processes are not needed. Algorithm 4 shows the
parallel processing implemented in the asynchronous parallel method, i.e., the processing
performed once each sequential thread has spawned the parallel region. A new subpop-
ulation individual (newSPm) is computed based on the current subpopulation individual
(SPm) and the best subpopulation individual (subpopBest).

It is worth mentioning that the concurrent processing shown in Algorithm 4 lacks syn-
chronization points. This strategy allows having populations of significantly different sizes
and leads to balancing the computing load through the number of generations processed
by each thread and thus not degrading parallel efficiency.

Algorithm 5 presents the second parallel strategy in which the concurrent processes
share data to obtain the best individual from the whole population, i.e., the best of all
subpopulations. This process is done both at the beginning (line 7) and after computing
each new generation by each parallel process (line 29). To ensure that all concurrent
processes use the best individual from the whole population (wholepopBest) in each new
generation, a synchronization point is needed after the critical section (line 35).

As shown in Algorithms 4 and 5, the population size assigned to each process depends
on the size of the whole population (popInitSize) and the number of computing processes
NoCs (see Algorithm 3). That is, as the number of processes increases, the size of the
subpopulations decreases. When tiny populations are used in population-based heuristic
optimization algorithms, the optimization behavior can be significantly degraded. To fur-
ther increase the number of processes and thus further reduce the computing time without
drastically reducing the subpopulation sizes, we propose a two-level parallel algorithm.
The parallel second level (fine-grained level) is applied to obtain a new generation of each
subpopulation (see lines 10 and 26 of Algorithm 4).
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Algorithm 4 Asynchronous parallel algorithm.
1: Allocate private memory for subpopulation: SP[0,subpopSize]
2: Allocate private memory for best individual: subpopBest
3: Set iniValuer1 = 2
4: Generation counter: genIt = 0
5: Generate initial subpopulation SP0
6: while genIt < numGenerations do
7: Search for the current subpop best subpopBest
8: genIt = genIt + 1

9: r1 = iniValuer1 − genIt
iniValuer1

numGenerations
10: for m = 1 to subpopSize do
11: for k = 1 to numDesignvars do
12: r2 = 2 ∗ π ∗ rand0..1
13: r3 = 2 ∗ rand0..1
14: r4 = rand0..1
15: if r4 < 0.5 then
16: newSPk

m = SPk
m +

(
r1 ∗ sin(r2)

∣∣∣r3 ∗ subpopBestk − SPk
m

∣∣∣)
17: else if r4 < 0.7 then
18: newSPk

m = SPk
m +

(
r1 ∗ cos(r2)

∣∣∣r3 ∗ subpopBestk − SPk
m

∣∣∣)
19: else
20: r5 = rand0..1
21: r6 = round(1 + rand0..1)
22: newSPk

m = subpopBestk + r2
5(SPk

m − r6 ∗ subpopBestk)
23: end if
24: end for
25: SPm = newSPm
26: end for
27: end while

In the two-level algorithm the subpopulations are not calculated as a function of the
total number of processes, since a single process will not process each subpopulation. The
total number of processes in the two-level algorithm is equal to the number of subpopu-
lations multiplied by the number of processes that will process each subpopulation. The
number of subpopulations will be equal to the number of external processes (NoCs), while
the number of processes that will process each subpopulation will be denoted by inCs.
Therefore, the total number of processes equals to NoCs× inCs.

Important modifications in Algorithm 4 are required that could degrade the parallel
performance of the two-level parallel algorithm given in Algorithm 6. Since several threads
will process each subpopulation, it must be stored in shared memory (line 1 of Algorithm 6),
instead of being stored in private memory as in Algorithm 4. Moreover, before processing
each subpopulation, the best individual must be available for all the processes involved in
processing each subpopulation. This implies a synchronization point (line 9 of Algorithm 6)
that determine the best individual. Thereafter each process checks if the current best
individual stored in its private memory (subpopBest) should be updated.
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Algorithm 5 Parallel algorithm with data sharing.
1: Shared memory: wholepopBest
2: Allocate private memory for: SP[0,subpopSize] and subpopBest
3: Set iniValuer1 = 2
4: Generation counter: genIt = 1
5: Generate initial subpopulation SP0
6: Search for the current subpopulation best subpopBest
7: wholepopBest = Besto f (subpopBestNoCs)
8: while genIt < numGenerations do
9: genIt = genIt + 1

10: r1 = iniValuer1 − genIt
iniValuer1

numGenerations
11: for m = 1 to subpopSize do
12: for k = 1 to numDesignvars do
13: r2 = 2 ∗ π ∗ rand0..1
14: r3 = 2 ∗ rand0..1
15: r4 = rand0..1
16: if r4 < 0.5 then
17: newSPk

m = SPk
m +

(
r1 ∗ sin(r2)

∣∣∣r3 ∗ subpopBestk − SPk
m

∣∣∣)
18: else if r4 < 0.7 then
19: newSPk

m = SPk
m +

(
r1 ∗ cos(r2)

∣∣∣r3 ∗ subpopBestk − SPk
m

∣∣∣)
20: else
21: r5 = rand0..1
22: r6 = round(1 + rand0..1)
23: newSPk

m = subpopBestk + r2
5(SPk

m − r6 ∗ subpopBestk)
24: end if
25: end for
26: SPm = newSPm
27: end for
28: Search for the current subpopulation best subpopBest
29: CRITICAL parallel section:
30: if Feval(subpopBest) < Feval(wholepopBest) then
31: wholepopBest = subpopBest
32: else
33: subpopBest = wholepopBest
34: end if
35: end CRITICAL
36: end while

Note that, in Algorithm 6 the total number of processes is increased from NoCs to
NoCs× inCs, using the same subpopulation size. There are several options to implement
the second level of parallelism (lines 13–29 of Algorithm 6), which will be discussed in
Section 5.
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Algorithm 6 Two-level parallel algorithm.
1: Allocate shared memory for NoCs subpopulations: SP[0,subpopSize]
2: Total number of processes: NoCs× inCs processes.
3: Allocate private memory for best individual: subpopBest
4: Set iniValuer1 = 2
5: Generation counter: genIt = 0
6: Generate initial subpopulation SP0
7: while genIt < numGenerations do
8: Search for the current subpopulation best subpopBest
9: {Synchronization point}

10: genIt = genIt + 1

11: r1 = iniValuer1 − genIt
iniValuer1

numGenerations
12: {FOR processed in PARALLEL using inCs processes}
13: for m = 1 to subpopSize do
14: for k = 1 to numDesignvars do
15: r2 = 2 ∗ π ∗ rand0..1
16: r3 = 2 ∗ rand0..1
17: r4 = rand0..1
18: if r4 < 0.5 then
19: newSPk

m = SPk
m +

(
r1 ∗ sin(r2)

∣∣∣r3 ∗ subpopBestk − SPk
m

∣∣∣)
20: else if r4 < 0.7 then
21: newSPk

m = SPk
m +

(
r1 ∗ cos(r2)

∣∣∣r3 ∗ subpopBestk − SPk
m

∣∣∣)
22: else
23: r5 = rand0..1
24: r6 = round(1 + rand0..1)
25: newSPk

m = subpopBestk + r2
5(SPk

m − r6 ∗ subpopBestk)
26: end if
27: end for
28: SPm = newSPm
29: end for
30: end while

4. Benchmark Test

The benchamark test used in this work is composed of 30 well-known unconstrained
functions shown in Section 4.1, and three constrained engineering design problems shown
in Section 4.2.

4.1. Benchmark Functions

A total of 30 well-known unconstrained functions used for the performance analysis
are listed and described in Tables 1 and 2.

4.2. Engineering Optimization Problems

The proposed algorithms’ optimization performance will be further examined through
three constrained engineering design problems.

4.2.1. Pressure Vessel Design Problem

The structural design problem of pressure vessels is shown in Figure 8. In this design
problem, four variables have to be computed: the thickness of the shell (ds), the thickness
of the heads (dh), the internal radius (R), and the length (L) of the cylindrical section. These
variables should minimize the financial cost by meeting the non-linear stress constraints and
yield criteria. Note that ds and dh are not continuous variables. Indeed, from 0.0625 inches,
the possible values are calculated in steps of 0.0625 inches. The pressure vessel design
problem is formulated as in (5).
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Pressure vessel design problem:

f =0.6224x1x3x4 + 1.7781x2x2
3+

3.1661x2
1x4 + 19.84x2

1x3

x1 = ds, x2 = dh, x3 = R, x4 = L

Constraints:

g1 = −x1 + 0.0193x3 ≤ 0

g2 = −x2 + 0.00954x3 ≤ 0

g3 = −πx2
3x4 − (4/3)πx3

3 + 1296000 ≤ 0

g4 = x4 − 240 ≤ 0

0.0625 ≤ x1, x2 ≤ 99 ∗ 0.0625

10 ≤ x3, x4 ≤ 240 (5)

Figure 8. Pressure vessel design problem.

Table 1. Benchmark functions: dimensions and domain.

Id. Name Dim. (V) Domain (Min, Max)

f1 Sphere 30 −100, 100
f2 SumSquares 30 −10, 10
f3 Beale 2 −4.5, 4.5
f4 Easom 2 −100, 100
f5 Matyas 2 −10, 10
f6 Colville 4 −10, 10
f7 Trid 6 6 −V2, V2

f8 Trid 10 10 −V2, V2

f9 Zakharov 10 −5, 10
f10 Schwefel_1.2 30 −100, 100
f11 Rosenbrock 30 −30, 30
f12 Dixon-Price 5 −10, 10
f13 Foxholes 2 −216, 216

f14 Branin 2 x1 : −5, 10
x2 : 0, 15

f15 Bohachevsky_1 2 −100, 100
f16 Booth 2 −10, 10
f17 Michalewicz_2 2 0, π
f18 Michalewicz_5 5 0, π
f19 Bohachevsky_2 2 −100, 100
f20 Bohachevsky_3 2 −100, 100
f21 GoldStein-Price 2 −2, 2
f22 Perm 4 −V, V
f23 Hartman_3 3 0, 1
f24 Ackley 30 −32, 32
f25 Penalized_2 30 −50, 50
f26 Langermann_2 2 0, 10
f27 Langermann_5 5 0, 10
f28 Langermann_10 10 0, 10

f29 Fletcher-Powell_5 5 xi , αi : −π, π
aij, bij : −100, 100

f30 Fletcher-Powell_10 10 xi , αi : −π, π
aij, bij : −100, 100
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Table 2. Benchmark functions: Definitions.

Id. Function

f1
f =

V

∑
i=1

x2
i

f2
f =

V

∑
i=1

ix2
i

f3
f = (1.5− x1 + x1x2)

2 + (2.25− x1 + x1x2
2)

2

+(2.625− x1 + x1x3
2)

2

f4
f = − cos(x1) cos(x2) exp

(
−(x1 − π)2 − (x2 − π)2)

f5
f = 0.26(x2

1 + x2
2)− 0.48x1x2

f6
f = 100(x2

1 − x2)
2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2

3 − x4)
2

+10.1
(
(x2 − 1)2 + (x4 − 1)2)+ 19.8(x2 − 1)(x4 − 1)

f7 f =
V

∑
i=1

(xi − 1)2 −
V

∑
i=2

xixi−1
f8

f9 f =
V

∑
i=1

x2
i +

(
V

∑
i=1

0.5ixi

)2

+

(
V

∑
i=1

0.5ixi

)4

f10
f =

V

∑
i=1

(
i

∑
j=1

xj

)2

f11
f =

V−1

∑
i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)

f12
f = (x1 − 1)2 +

V

∑
i=2

i
(

2x2
i − xi−1

)2

f13 f =

 1
500 +

25

∑
j=1

1

j +
2

∑
i=1

(xi − aij)
6


−1

f14 f =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10

f15
f = x2

1 + 2x2
2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

f16
f = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2

f17 f = −
V

∑
i=1

sin xi

(
sin

(
ix2

i
π

))20

f18

f19
f = x2

1 + 2x2
2 − 0.3 cos(3πx1) cos(4πx2) + 0.3

f20
f = x2

1 + 2x2
2 − 0.3 cos(3πx1 + 4πx2) + 0.3

f21
f =

[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)
][

30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
]

f22
f =

V

∑
j=1

[
i

∑
i=1

(ij + β)

(( xi

i

)j
− 1
)]2

f23
f = −

4

∑
i=1

ci exp

[
−

3

∑
j=1

aij(xj − pij)
2

]
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Table 2. Cont.

Id. Function

f24
f = −20 exp

(
−0.2

√
1
V

V

∑
i=1

x2
i

)
− exp

(
1
V

V

∑
i=1

cos(2πxi)

)
+ 20 + e

f25

f = 0.1{sin2(3πx1) +
V−1

∑
i=1

(xi − 1)2
[
1 + sin2(3πxi+1)

]
+ (xV − 1)2

[
1 + sin2(2πxV)

]
}

+
V

∑
i=1

u(xi , 5, 100, 4),

u(xi , a, k, m) = k(xi − a)m, xi > a; 0,−a ≤ xi ≤ a; k(−xi − a)m, xi < −a.

f26 f = −
5

∑
i=1

ci

[
exp

(
− 1

π

V

∑
j=1

(xj − aij)
2

)
cos

(
π

V

∑
j=1

(xj − aij)
2

)]
f27
f28

f29 f =
V

∑
i=1

(Ai − Bi)
2; Ai =

V

∑
j=1

(
aij sin αj + bij cos αj

)
, Bi =

V

∑
j=1

(
aij sin xj + bij cos xj

)
f30

4.2.2. Welded Beam Design Problem

The welded beam design problem is depicted in Figure 9. The cost of manufacturing
and assembling the welded beams must be minimized by considering the welding work,
material, and labor cost. The variables to be computed are the thickness of the weld (h), the
length of the welded joint (l), the width of the beam (t), and the thickness of the beam (b).
The optimization problem is formulated as in (6), where τ(x) is the shear stress in the weld,
τmax is the allowable shear stress of the weld, σ(x) is the normal stress in the beam, σmax is
the allowable normal stress for the beam material, Pc(x) is the bar buckling load, P is the
load, δ(x) is the beam end deflection, and δmax is the allowable beam end deflection. Some
auxiliary functions and constant values used to solve the welded beam design problem are
given in (7).

Figure 9. Welded beam design problem.



Mathematics 2022, 10, 1166 17 of 47

Welded beam design problem:

F = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

x1 = h, x2 = l, x3 = t, x4 = b

Constraints:

g1 = τ(x)− τmax ≤ 0

g2 = σ(x)− σmax ≤ 0

g3 = x1 − x4 ≤ 0

g4 = 0.10471x2
1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

g5 = 0.125− x1 ≤ 0

g6 = δ(x)− δmax ≤ 0

g7 = P(x)− Pc(x) ≤ 0

0.1 ≤ x1, x4 ≤ 2.0

0.1 ≤ x2, x3 ≤ 10.0 (6)

Functions and constants of welded beam problem:

τ(x) =
√
(τ′)2 + 2τ′τ′′

x2
2R

+ (τ′′)2;

τ′ =
P√

2x1x2
; τ′′ =

MR
J

M = P
(

L +
x2
2

)
; R =

√
x2

2
4

+

(
x1 + x3

2

)2

J = 2

{
√

2x1x2

[
x2

2
12

+

(
x1 + x3

2

)2
]}

σ(x) =
6PL
x4x2

3

δ(x) =
4PL3

Ex3
3x4

Pc(x) =
4.013E

√
x2

3 x6
4

36
L2

(
1− x3

2L

√
E

4G

)
P = 6000lb; L = 14in; δmax = 0.25in

E = 30e+6 psi; G = 12e+6 psi

τmax = 13, 600psi; σmax = 30, 000psi (7)

4.2.3. Rolling Element Bearing Design Problem

The rolling element bearing design problem is a maximization problem aimed to
maximize the dynamic load capacity of a rolling element bearing. This problem, depicted
in Figure 10, has five decision variables, namely pitch diameter (Dm), ball diameter (Db),
number of balls (Z), curvature radius coefficient of inner raceway groove ( fi = ri/Db),
curvature radius coefficient of outer raceway groove ( fo = ro/Db), and the inner and
outer ring groove curvature ratio ri and ro, respectively. In addition, it has five constraints
constants, KDmin, KDmax, ε, e and ψ. This problem can be formulated as in (8).
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Rolling element bearing design problem:

f = fcx2/3
3 x1.8

2 ; if x2 ≤ 25.4

f = 3.647 fcx2/3
3 x1.4

2 ; if x2 > 25.4

x1 = Dm, x2 = Db, x3 = Z, x4 = fi, x5 = fo

Constraints:

g1 =
φ0

2 sin−1 x2
x1

− x3 + 1 ≥ 0

g2 = 2.0x2 − x6(D− d) ≥ 0

g3 = x7(D− d)− 2.0x2 ≥ 0

g4 = x10Bw − x2 ≥ 0

g5 = x1 − 0.5(D + d) ≥ 0

g6 = (0.5 + x9)(D + d)− x1 ≥ 0

g7 = 0.5(D− x1 − x2)− x8x2 ≥ 0

g8 = x4 − 0.515 ≥ 0

g9 = x5 − 0.515 ≥ 0

x6 = KDmin, x7 = KDmax, x8 = ε, x9 = e, x5 = ψ (8)

Auxiliary functions and constant values of rolling problem:

γ =
Dbcosα

Dm

fc =37.91×

1 +

[
1.04

(
1− γ

1 + γ

)1.72( fi(2 fo − 1)
fo(2 fi − 1)

)0.41
]10/3


−0.3

×
{(

γ0.3(1− γ)1.39

(1 + γ)1/3

)(
2 fi

2 fi − 1

)0.41
}

T = D− d− (2.0x2)

φ0 = 2π − 2 cos−1


(

D−d
2 − 3T

4

)2
+
(

D
2 −

T
4 − x2

)2
−
(

d
2 + T

4

)2

2
(

D−d
3 − 3T

4

)(
D
2 −

T
4 − x2

)


D = 160; d = 90; Bw = 30; α = 0

90.0 ≤ x1 ≤ 150.0

10.5 ≤ x2 ≤ 31.5

4 ≤ x3 ≤ 50

0.515 ≤ x4, x5 ≤ 0.6

0.4 ≤ x6 ≤ 0.5

0.6 ≤ x7 ≤ 0.7

0.3 ≤ x8 ≤ 0.4

0.02 ≤ x9 ≤ 1.0

0.6 ≤ x10 ≤ 0.85 (9)
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Figure 10. Rolling element bearing design problem.

5. Numerical Experiments

All the numerical experiments have been obtained in Fujitsu Server PRIMERGY
TX300 S8 Tower Server. This platform is a multicore platform equipped with a D2949-B1
motherboard with two CPU sockets. In each CPU the processor installed is an Intel(R)
Xeon(R) CPU E5-2620 v2 @ 2.10 GHz, with 15 MB Intel Smart Cache. Each processor is
composed of 6 physical cores, resulting in a total number of 12 physical cores in the system.
The Intel Hyper-Threading Technology is enabled, the number of threads per physical core
is 2, therefore the maximum number of processes (or threads) should not exceed 24, in order
to obtain the best possible computational performance. The main memory size is 32 GB
of DDR3. All the developments, both sequential and parallel, were implemented in the C
programming language, using the GCC v.4.4.7 [45]. The OpenMP API v3.1 [46] has been
used to develop parallel algorithms. Therefore, all the data in tables and figures included
in this section have been obtained running simulations in this platform. In addition, for the
computational results to be reliable, the Sun Grid Engine queuing system has been used.

5.1. Comparative Analysis ESCA vs. SCA

First, the computational costs of the SCA algorithm and the proposed ESCA algorithm
are examined in Table 3. This table shows the computing time cost when optimizing the
benchmark test reported in Section 4 with population sizes of 240, 120, and 60. The number
of generations was 50,000, and the number of independent runs was 30. The results in Table
3 point that the proposed ESCA algorithm does not increase the computing cost compared
to the SCA algorithm. On the contrary, in more than 80% of the experiments conducted, the
computational cost decreases.

Table 3. Computational times (s.) for sequential SCA and ESCA algorithms.

Population Size

60 120 240

SCA ESCA SCA ESCA SCA ESCA

f1 349.3 308.8 683.5 711.5 1432.5 1325.7

f2 388.5 312.9 739.0 668.4 1474.9 1405.0

f3 25.2 23.4 50.4 46.8 100.6 93.6

f4 27.8 26.4 55.6 52.8 111.2 105.6

f5 33.9 31.4 68.8 70.2 131.7 138.5

f6 31.3 28.6 62.4 57.1 124.7 114.1

f7 48.6 44.1 96.9 87.9 193.7 179.3

f8 80.5 69.8 160.0 140.8 321.4 279.2

f9 144.7 132.7 280.6 268.0 558.3 530.3
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Table 3. Cont.

Population Size

60 120 240

SCA ESCA SCA ESCA SCA ESCA

f10 374.5 413.7 773.6 815.8 1562.5 1657.5

f11 223.1 208.3 442.6 416.4 884.5 833.1

f12 38.4 36.4 77.9 72.5 154.9 145.5

f13 461.7 466.7 923.8 933.9 1845.8 1867.0

f14 19.7 18.9 39.5 37.8 79.1 75.6

f15 17.8 17.1 33.9 33.9 70.7 68.0

f16 15.5 14.6 31.2 29.1 62.0 58.1

f17 72.3 55.6 144.7 111.0 291.4 221.9

f18 174.7 125.1 309.0 280.3 620.4 493.1

f19 18.7 16.5 36.1 32.2 72.2 70.2

f20 17.6 16.8 35.2 31.2 69.9 59.7

f21 16.3 15.3 32.6 30.6 65.1 61.0

f22 105.5 101.8 212.0 205.5 419.7 409.7

f23 36.3 36.5 72.0 73.2 146.1 146.3

f24 125.6 123.2 251.6 246.3 501.5 493.8

f25 406.4 321.7 812.3 674.4 1707.8 1321.8

f26 56.4 57.1 113.3 113.5 225.6 227.2

f27 82.0 82.0 164.3 164.1 331.8 328.8

f28 130.6 118.5 262.2 236.1 523.4 473.2

f29 174.0 168.7 346.9 339.4 700.0 675.1

f30 583.4 568.9 1165.5 1134.6 2334.1 2290.9

Once it has been proven that the proposed method decreases the computational cost of
the SCA algorithm, the optimization behavior is investigated by comparing both methods
in Table 4. This table shows the number of function evaluations for an error of less than
<1 ×10−3(for functions marked with * an error less than <1 ×102), with population sizes
of 240, 120, and 60. Fewer function evaluations are required when the ESCA method is
used instead of the SCA method. The dramatic decrease, particularly for the functions that
require more evaluations, is higher than 100×, demonstrating the significant improvement
of the SCA’s optimization behavior.

To perform a parallel efficiency analysis of both parallel proposals, experimental
tests are conducted using the same parameters as those used so far, i.e., population sizes
of 240, 120, and 60. The number of generations is equal to 50,000, and the number of
independent runs is 30. The parallel speed-up values for the data sharing parallel algorithm,
depending on the total population size (popInitSize) and the number of processes (NoCs),
are exhibited in Table 5. The obtained speed-up values are close to ideal ones for the
largest population size. These values slightly decrease, in most cases, as the population
size decreases. However, the values significantly degrade when 12 parallel processes are
used for the smaller population size and lower computing cost functions.

The parallel asynchronous algorithm’s speed-up values, shown in Table 6, remain close to
the ideal values when the number of concurrent processes is increased or when the population
size is decreased. Note that this behavior implies outstanding parallel scalability.

Considering the outstanding parallel performance results obtained for the parallel
asynchronous algorithm using the 12 available physical cores (see Table 6), it can be
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concluded that the parallel scalability of the asynchronous algorithm allows increasing the
number of processes efficiently. However, the results shown in Table 4 confirm that the size
of the subpopulations requires a minimum dimension, which depends on the optimization
algorithm and the problem under consideration. Algorithm 6 has been proposed to increase
the number of processes without reducing the size of the subpopulations. To implement the
inner level of parallelism of Algorithm 6, nested parallelism can be applied using OpenMP
features. This strategy has been discarded due to poor experimental results that excessively
degrade parallel scalability. When using nested parallelism the generation of each nested
parallel region involves computational overhead [47]. The poor experimental results are
due to many nested regions (numGenerations× NoCs) and the insufficient computational
cost of each nested parallel region. Note that this computational cost depends on the
considered algorithm (quasi-non-variable cost) and the objective function.

Table 4. Number of function evaluations for an error < 1 ×10−3 (* < 1 ×102).

Population Size

240 120 60

SCA ESCA SCA ESCA SCA ESCA

f1 3,639,144 75,384 1,842,864 48,504 971,802 28,074

f2 3,596,880 73,464 1,808,004 43,500 988,380 24,888

f3 24,000 2136 24,888 3072 13,878 2082

f4 306,912 4152 218,220 3432 239,166 2088

f5 1584 840 756 564 540 312

f6 – 9,627,227 – 4,450,577 – 2,654,280

f7 * 3888 960 5724 612 3222 354

f8 * 5,031,792 317,376 2,684,760 190,053 1,565,184 196,337

f9 1,528,656 16,848 848,544 9708 490,854 6420

f10 5,048,616 739,296 2,623,800 462,456 1,400,712 311,640

f11 * 3,677,160 78,720 1,906,380 45,828 – 32,424

f12 – 6,186,240 – 4,982,240 – 2,624,640

f13 571,008 14,088 547,320 6288 236,148 36,126

f14 70,392 1920 118,296 2256 52,782 1998

f15 5928 2352 2964 1380 2262 762

f16 187,560 3120 236,952 2508 131,712 2400

f17 401,688 3888 419,220 1812 236,400 2910

f18 * 480 480 240 240 120 120

f19 6120 2448 3624 1392 1896 882

f20 5160 2112 4560 1296 2340 834

f21 26,856 2040 28,596 1080 15,924 912

f22 – 3,966,264 – 3,528,912 – 1,907,900

f23 7920 57,090 3,739,200 81,345 123,720 27,760

f24 2,290,464 30,408 1,207,956 17,940 668,790 8304

f25 * 3,591,960 46,032 1,952,616 33,756 951,708 17,022

f26 20,400 9672 21,744 4848 10,193 2208

f27 – 6,840,528 – 5,366,040 – 2,930,112

f28 480 480 252 252 120 120

f29 * 1,127,832 24,168 1,148,604 27,672 840,288 26,940

f30 * – 9,787,467 – 5,338,960 – 2,939,910
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Table 5. Parallel speed-up for parallel data sharing algorithm.

Population Size

240 120 60

NoCs

2 6 12 2 6 12 2 6 12

f1 2.0 5.7 10.4 2.0 5.7 11.4 1.8 5.0 9.7

f2 2.0 5.8 10.9 1.8 5.5 10.5 2.0 4.9 9.3

f3 1.9 4.9 6.9 1.9 4.6 4.5 1.9 3.7 2.5

f4 2.0 5.5 10.9 1.9 5.5 10.3 1.6 5.3 3.8

f5 1.9 5.0 9.0 1.8 4.9 7.4 1.6 4.2 3.7

f6 2.0 5.5 10.9 1.9 5.4 10.4 1.9 5.4 3.6

f7 1.3 3.3 4.5 1.9 4.7 5.1 1.9 4.1 3.4

f8 2.0 5.4 9.9 2.0 5.3 9.0 1.9 5.1 6.8

f9 1.9 5.2 10.2 1.8 5.3 10.1 1.9 5.1 9.2

f10 2.0 5.5 11.0 1.9 5.4 10.6 2.0 5.5 10.4

f11 2.0 5.5 11.0 2.0 5.5 10.9 2.0 5.5 10.9

f12 2.0 5.3 9.1 1.9 5.1 7.2 1.9 4.6 4.0

f13 2.0 5.5 11.1 2.0 5.5 11.0 2.0 5.5 10.8

f14 2.0 5.5 10.7 2.0 5.4 8.8 1.9 5.2 2.4

f15 1.9 5.4 10.2 2.0 5.7 6.3 2.0 5.2 2.2

f16 1.9 5.5 10.4 1.9 5.3 5.2 1.9 5.1 1.8

f17 2.0 5.4 9.5 2.0 5.2 8.2 1.9 4.8 5.8

f18 1.9 5.4 9.3 1.9 6.0 8.7 1.7 4.8 6.0

f19 2.0 5.1 7.1 1.7 4.3 3.8 1.5 3.7 1.9

f20 1.7 4.8 6.4 1.8 4.5 3.8 1.6 4.1 1.9

f21 1.9 5.1 6.4 1.9 4.6 3.5 1.9 3.6 1.7

f22 1.9 5.2 10.2 1.9 5.3 9.9 1.9 5.1 8.8

f23 2.0 5.5 10.6 2.0 5.4 10.2 1.9 5.4 8.9

f24 2.0 5.5 10.4 1.9 5.4 9.6 2.0 5.2 8.5

f25 2.0 5.6 10.4 2.0 5.5 10.0 2.0 5.2 9.1

f26 2.0 5.2 8.4 1.9 5.0 7.2 1.9 4.8 5.6

f27 2.0 5.4 9.8 2.0 5.1 8.7 2.0 5.0 6.9

f28 2.0 5.5 10.9 1.9 5.5 10.9 1.9 5.4 10.8

f29 2.0 5.5 11.0 2.0 5.5 10.6 2.0 5.4 10.4

f30 2.0 5.6 11.1 2.0 5.5 11.0 2.0 5.5 10.9
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Table 6. Parallel speed-up for asynchronous parallel algorithm.

Population Size

240 120 60

NoCs

2 6 12 2 6 12 2 6 12

f1 2.0 5.7 11.6 2.0 5.8 11.6 1.9 5.7 11.2

f2 1.9 5.5 11.4 1.9 5.6 11.2 1.9 5.2 10.5

f3 1.9 5.5 11.0 1.9 5.5 11.0 1.9 5.5 8.2

f4 1.9 5.5 11.0 2.0 5.5 11.0 2.0 5.5 11.0

f5 1.9 5.5 11.0 2.0 5.5 11.1 1.8 5.5 11.0

f6 1.9 5.5 11.0 2.0 5.5 11.1 2.0 5.5 11.0

f7 1.3 3.6 7.3 2.0 5.5 11.0 1.9 5.5 11.0

f8 1.9 5.5 11.0 2.0 5.5 11.1 2.0 5.5 11.1

f9 1.9 5.6 11.1 2.1 5.3 10.6 1.9 5.2 10.7

f10 1.9 5.4 10.9 2.0 5.6 11.1 2.0 5.5 10.9

f11 1.9 5.5 10.9 2.0 5.5 11.1 1.9 5.5 11.1

f12 1.9 5.5 10.7 2.0 5.5 11.0 2.0 5.5 10.9

f13 1.9 5.5 11.0 2.0 5.5 11.0 2.0 5.5 11.1

f14 1.9 5.5 10.9 2.0 5.5 11.0 1.9 5.5 10.9

f15 1.9 5.4 10.9 1.8 5.2 10.3 1.8 5.4 10.9

f16 1.9 5.5 11.0 1.9 5.5 10.9 1.9 5.5 10.8

f17 1.9 5.5 11.1 2.0 5.5 10.7 2.0 5.5 10.9

f18 1.9 5.6 11.3 2.0 5.6 11.1 2.0 5.6 11.3

f19 1.8 5.1 9.9 1.9 5.4 10.5 1.9 5.0 9.9

f20 1.9 5.3 10.4 2.0 5.5 11.0 1.9 5.5 10.9

f21 1.9 5.5 11.0 2.0 5.5 10.2 1.9 5.5 10.9

f22 1.9 5.2 10.4 1.9 5.2 10.5 1.9 5.3 10.3

f23 1.9 5.4 10.7 2.0 5.5 10.9 2.0 5.5 10.8

f24 1.9 5.5 11.0 2.0 5.6 11.2 2.0 5.5 11.0

f25 1.9 5.4 10.9 2.0 5.5 11.1 1.9 5.6 11.0

f26 1.9 5.5 11.0 2.0 5.5 11.0 1.9 5.5 11.0

f27 1.9 5.5 10.9 2.0 5.4 11.0 2.0 5.5 11.0

f28 1.9 5.5 11.0 2.0 5.5 11.1 1.9 5.6 11.1

f29 1.9 5.5 11.0 2.0 5.5 11.0 2.0 5.5 11.0

f30 1.9 5.5 10.9 2.0 5.6 11.0 2.0 5.6 11.1

The two-level parallel algorithm generates a parallel region of NoCs× inCs processes,
organized into NoCs groups of inCs processes each. In each group, only one process works
outside the inner parallel region, while all the processes in the group cooperate in the
processing associated with the inner level of parallelism (lines 13–29 of Algorithm 6).

As mentioned above, the used parallel platform has two processors with six physical
cores each. Hyperthreading can be enabled, allowing to run two processes (or threads)
per core efficiently. Thus, it can be run up to 24 concurrent processes without excessively
degrading the computer platform’s efficiency. Using hyperthreading and fine-grained
parallelism, such as the proposed two-level algorithm, the strategy of thread placement
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on the cores may be relevant. To control the strategy of process placement in the cores,
OpenMP affinity features are used. Figure 11a shows that the platform’s architecture is
equipped with two processors of six physical cores and twelve logical cores each. An
example of thread placement of 5 processes when no affinity is used is shown in Figure 11b,
in which the operating system decides the process placement. There is no problem in this
thread placement if neither hyperthreading nor fine-grained parallelism are used.

(a) (b)

Figure 11. Thread placement when no affinity is used. (a) Platform’s architecture. (b) Example of
thread placement without control

For instance, using 20 processes organized into 5 groups of 4 processes, a thread
placement option without using affinity features is displayed in Figure 12a. To optimize
parallel performance, the optimal thread placement can be forced using OpenMP affinity
features as shown in Figure 12b.

(a) (b)

Figure 12. Optimal thread placement. (a) Example of thread group placement without control.
(b) Example of thread group placement with affinity control.

Table 7 shows the parallel speed-up when more than 12 processes are used, i.e., using
hyperthreading for the highest computational cost functions. Results manifested in Table 7
have been obtained using 16 and 20 processes by varying the number of groups (NoCs) and
consequently varying the number of processes per group (inCs). Important conclusions
can be drawn by analyzing the results of this table: remarkable scalability is obtained
through the two-level parallel algorithm, even using logical cores (hyperthreading); al-
though the parallel performance allows setting the NoCs value (i.e., number of groups)
according to the desired size of the subpopulations, i.e., according to the optimization
performance rather than parallel behavior. All efficiency values are above 72%, except
for the Foxholes function ( f13), characterized by having only two design variables (see
Table 1), which penalizes fine-grained parallelism. Although both fine-grained parallelism
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and hyperthreading slightly penalize parallel efficiency, a remarkable average greater than
75% parallel efficiency is obtained. The average efficiency barely decreases as the number
of processes increases from 16 to 20, resulting in a slight fall of the average efficiency from
75.6% to 74.9%, i.e., the outstanding parallel scalability is maintained.

This outstanding behavior is confirmed by the results shown in Table 8, which are the
results conducted on all the available threads (24) when hyperthreading is activated. It
is found that the two-level parallel algorithm has remarkable parallel scalability with an
average parallel efficiency of 74.4%.

Table 7. Parallel speed-up for the two-level parallel algorithm using groups of processes. Population
size = 240.

16 Processes 20 Processes

NoCs; inCs 8;2 4;4 2;8 10;2 5;4 4;5 2;10

f1 12.5 12.5 12.1 15.9 15.0 15.2 15.2

f2 12.5 12.1 11.6 14.4 14.8 15.0 14.7

f10 11.9 11.8 11.8 14.7 14.7 14.7 14.7

f13 10.1 10.0 9.7 12.7 12.4 12.3 11.7

f30 12.2 12.1 12.2 15.3 15.2 15.1 15.1

Table 8. Parallel speed-up for the two-level parallel algorithm using groups of processes. Population
size = 240. Number of processes = 24.

24 Processes

NoCs; inCs 12;2 6;4 4;6 2;12

f1 19.0 18.3 18.7 17.4

f2 18.0 17.4 16.9 18.0

f10 17.6 17.6 17.4 17.4

f30 18.2 18.0 18.1 17.8

Tables 9 and 10 show the number of functions evaluations required by the data
sharing parallel algorithm to obtain an error of less than 1× 10−3 (1× 102 for functions
marked with an asterisk), when the total population size is 240 (popInitSize = 240) and
60 (popInitSize = 60), respectively. These results show that the number of concurrent
processes does not modify the optimization behavior. The heuristic nature of the proposed
optimization algorithm results in different evaluations for the same function depending on
the concurrent processes.

Tables 11 and 12 listed the number of functions evaluations required by the asynchronous
parallel algorithm for population sizes 240 (popInitSize = 240) and 60 (popInitSize = 60),
respectively. It is clear that, unlike the sharing data-parallel algorithm, the ratio of convergence
depends on the number of concurrent processes used for the asynchronous parallel algorithm.
In addition, the convergence ratio slightly worsens as the number of concurrent processes
increases, but the outstanding parallel scalability offsets this behavior. Note that this behavior
depends on the subpopulation sizes, which depend on the population size.
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Table 9. Sharing data parallel algorithm: number of function evaluations for error <1×10−3 (* < 1 ×102).
popInitSize = 240.

NoCs

1 2 6 12

f1 75,384 80,657 83,776 76,385

f2 73,464 70,135 73,034 60,717

f3 2136 2120 2128 2200

f4 4152 4889 4005 3507

f5 840 842 687 312

f6 9,627,227 9,966,401 9,430,103 9,876,351

f7 * 960 762 722 583

f8 * 317,376 374,307 255,284 324,357

f9 16,848 16,516 17,853 17,829

f10 739,296 854,471 780,928 743,569

f11 * 78,720 65,643 75,129 76,902

f12 6,186,240 7,359,497 8,535,793 5,457,901

f13 14,088 9603 7294 11,392

f14 1920 2042 3831 2259

f15 2352 2144 2453 1722

f16 3120 3342 3328 4471

f17 3888 3517 3275 2470

f18 * 480 456 453 373

f19 2448 2259 2192 1990

f20 2112 2262 2031 1892

f21 2040 1732 1601 974

f22 3,966,264 3,298,233 5,086,208 7,588,192

f23 57,090 3134 4069 3396

f24 30,408 28,982 30,281 30,248

f25 * 46,032 56,975 35,157 41,468

f26 9672 15,605 13,573 10,713

f27 6,840,528 10,618,500 3,333,940 8,731,516

f28 480 440 462 164

f29 * 24,168 30,604 25,408 26,676

f30 * 9,787,467 8,810,661 8,232,263 10,546,564
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Table 10. Sharing data parallel algorithm: number of function evaluations for error <1×10−3 (* < 1 ×102).
popInitSize = 60.

NoCs

1 2 6 12

f1 28,074 32,624 28,419 28,128

f2 24,888 24,323 25,030 22,209

f3 2082 2361 1867 1670

f4 2088 2319 1762 2220

f5 312 314 250 173

f6 2,654,280 1,896,252 2,914,210 1,951,487

f7 * 354 325 430 262

f8 * 196,337 279,480 347,191 238,579

f9 6420 7143 6844 7113

f10 311,640 262,261 308,376 310,209

f11 * 32,424 28,081 28,738 32,903

f12 2,624,640 2,353,703 2,680,174 2,202,838

f13 36,126 18,554 6345 34,818

f14 1998 1944 1917 2689

f15 762 820 753 520

f16 2400 2503 3393 2781

f17 2910 1271 2745 2865

f18 * 120 114 105 63

f19 882 762 879 604

f20 834 807 812 629

f21 912 691 743 543

f22 1,907,900 1,110,490 1,874,520 2,209,849

f23 27,760 3956 2633 3782

f24 8304 9840 10,120 9041

f25 * 17,022 21,353 28,550 17,609

f26 2208 2626 9685 1920

f27 2,930,112 2,842,249 2,925,193 2,806,709

f28 120 113 113 37

f29 * 26,940 12,415 17,103 17,228

f30 * 2,939,910 2,650,149 2,863,317 2,815,149
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Table 11. Asynchronous parallel algorithm: number of function evaluations for error <1 ×10−3

(* < 1 ×102). popInitSize = 240.

NoCs

1 2 6 12

f1 80,136 83,277 90,626 84,218

f2 73,824 72,792 73,927 74,209

f3 2568 2578 2989 3313

f4 3264 5795 5436 5963

f5 816 633 750 410

f6 8,974,650 10,097,595 10,025,662 11,314,284

f7 * 1032 759 897 481

f8 * 253,920 34,7465 61,2221 86,7391

f9 17,184 16,644 23,193 25,164

f10 71,4336 85,8736 1,078,127 1,252,559

f11 * 64,656 77,582 88,175 10,3109

f12 8,937,680 7,699,045 10,565,357 11,289,390

f13 46,872 10,347 17,452 20,750

f14 1992 3554 4702 5277

f15 2256 2277 2656 1922

f16 4896 4869 6881 6861

f17 3264 3640 4408 5952

f18 * 480 411 413 306

f19 2256 2204 2452 2353

f20 2304 2441 2661 1826

f21 1896 1590 2347 2041

f22 4,256,610 7,094,932 7,742,422 6,726,769

f23 10,1640 49,884 14,750 30,406

f24 31,152 32,214 32,039 33,949

f25 * 37,752 47,883 46,427 41,350

f26 8592 3266 2386 3399

f27 8,689,680 9,215,379 10,203,567 10,787,817

f28 528 456 444 199

f29 * 21,624 29,572 58,600 46,029

f30 * 10,729,470 10,103,632 10,519,594 9,802,382

As earlier recorded, the parallel asynchronous algorithm allows each thread to have
its population size without sacrificing parallel performance and thus exploring populations
of different characteristics, which could improve the optimization’s performance. Table 13
compares the number of function evaluations (# FEs) for functions f6, f22, and f27 when
using homogeneous and heterogeneous subpopulation sizes. The latter improving the
optimization performance. Moreover, not reaching a good solution due to small populations
can be avoided by increasing the number of processes. For instance, 12 processes are used
for f6 and f27 (see Table 12).
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Table 12. Asynchronous parallel algorithm: number of function evaluations for error <1 ×10−3

(* < 1 ×102). popInitSize = 60.

NoCs

1 2 6 12

f1 28,308 25,754 37,605 33,407

f2 24,684 25,346 26,985 26,891

f3 1644 1163 1876 3188

f4 2778 2239 4294 4816

f5 378 307 228 308

f6 2,742,830 2,918,138 2,936,681

f7 * 402 415 376 156

f8 * 216,387 314,711 495,643 602,778

f9 6822 6827 9873 11,370

f10 314,562 316,765 415,446 413,730

f11 * 28,338 26,143 29,280 35,931

f12 2,444,835 2,056,447 2,802,878 2,993,886

f13 52,848 35,565 30,404 63,877

f14 1680 2625 7972 5786

f15 732 926 851 583

f16 2736 6429 4814 8359

f17 2790 3023 5588 9495

f18 * 120 101 105 46

f19 630 846 877 563

f20 792 736 878 732

f21 858 914 930 1437

f22 1,089,000 1,850,238 2,757,559

f23 1980 11,291 20,030 21,210

f24 8940 9557 8676 11,540

f25 * 17,652 21,631 17,447 17,945

f26 3342 1151 2377 3869

f27 2,918,580 2,865,679 2,970,869 2,779,579

f28 120 116 105 30

f29 * 23,586 22,921 42,961 59,068

f30 * 2,782,130 2,885,935 2,631,535 2,801,275

It is settled that the proposed parallel algorithms achieve a remarkable parallel per-
formance without disordering the optimization behavior. Figures 13 and 14 point the
significant improvement in the convergence speed of the proposed ESCA algorithm com-
pared to the SCA algorithm.
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Table 13. Asynchronous parallel algorithm: number of function evaluations for error <1 ×10−3,
6 processes and homogeneous and heterogeneous subpopulation sizes. popInitSize = 240.

Thread Id.

0 1 2 3 4 5

Subpopulation Sizes # FEs

f6
40 40 40 40 40 40 10,025,662
80 60 40 30 20 10 8,365,248

f22
40 40 40 40 40 40 7,742,422
80 60 40 30 20 10 6,341,866

f27
40 40 40 40 40 40 10,203,567
80 60 40 30 20 10 9,941,450
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Figure 13. Cont.
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Figure 13. Convergence curves for the benchmark functions f1− f15 in row-major order. Optimization
algorithms are SCA [◦], ESCA [∗].
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Figure 14. Convergence curves for the benchmark functions f16 − f30 in row-major order. Optimiza-
tion algorithms are SCA [◦], ESCA [∗].
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The last analysis discusses the optimization’s behavior when solving the engineering
design problems described in Section 4.2. Table 14 compares the convergence ratio of the
SCA and ESCA methods when only 10,000 and 20,000 generations are processed. As can be
observed from this table, the ESCA outperforms the SCA algorithm in terms of convergence
ratio. Similar results are obtained when optimizing the 30 benchmark functions. This
behavior confirms that our proposal significantly boosts the SCA algorithm.

Table 14. Convergence ratio for ESCA and SCA algorithms with different population sizes.

Population Size

60 120 240

Pressure Vessel Problem

ESCA-10000 6060.2070 6060.7420 6059.9340
SCA-10000 6079.0610 6091.4340 6068.5540

ESCA-20000 6060.0950 6059.8290 6059.8000
SCA-20000 6065.7460 6066.9530 6069.2260

Welded beam problem

ESCA-10000 1.728844 1.726625 1.726300
SCA-10000 1.748143 1.749394 1.747236

ESCA-20000 1.726585 1.726704 1.725514
SCA-20000 1.751480 1.747207 1.738482

Rolling element bearing problem

ESCA-10000 81,706.17 81,798.38 81,832.05
SCA-10000 80,673.58 81,333.65 80,318.50

ESCA-20000 81,803.87 81,774.60 81,836.77
SCA-20000 80,224.49 80,335.60 81,086.44

As for solution accuracy, the results on benchmark functions and challenging engi-
neering problems are listed in Table 15. These results are acquired from 30 independent
runs on each function, 10,000 iterations, and three population sizes, i.e., 60, 120, and 240. As
can be observed from this table, the ESCA algorithm performs better than SCA in almost
all functions. These outcomes are statistically compared in Table 16. Indeed, to measure
the overall performance of the ESCA algorithm respect to its original counterpart SCA,
the non-parametric statistical tests of Friedman, Friedman aligned, and Quade test are
employed. The Friedman test or Friedman rank test is a non-parametric test developed by
Milton Friedman [48] consisting of arranging the data by blocks, replacing them by their
respective order, considering the existence of identical data. Therefore, in the Friedman
test the performance of the analyzed algorithms are ranked separately for each data set.
This ranking scheme only allows comparisons between sets, since comparisons between
sets are meaningless. When the number of algorithms to be compared is small, this can
be a disadvantage, in this case inter-dataset comparison may be desirable and we can
employ the Friedman aligned or Friedman aligned rank method [49]. The Quade or Quade
rank test [50] is also a non-parametric test, which shows its robustness for small data sets.
Regardless of the population size, the ESCA is ranked first under all tests.
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Table 15. Average values for unconstrained and constrained problems obtained by ESCA and SCA.

Population Size

60 120 240

SCA ESCA SCA ESCA SCA ESCA

f1 2.757179 × 10−64 0.000000 1.712496 × 10−79 0.000000 4.457065 × 10−94 0.000000

f2 8.616185 × 10−65 0.000000 1.046044 × 10−80 0.000000 1.112510 × 10−92 0.000000

f3 6.811942 × 10−6 5.491076 × 10−9 4.783583 × 10−6 3.114413 × 10−9 1.401307 × 10−6 7.104723 × 10−10

f4 −9.999516 × 10−1 −1.000000 −9.999736 × 10−1 −1.000000 −9.999892 × 10−1 −1.000000

f5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

f6 9.900274 × 10−2 8.185273 × 10−3 9.765063 × 10−2 2.929811 × 10−3 6.404594 × 10−2 2.334942 × 10−3

f7 −4.845251 × 101 −4.990339 × 101 −4.877389 × 101 −4.995156 × 101 −4.896195 × 101 −4.996917 × 101

f8 −1.262160 × 102 −1.539732 × 102 −1.339290 × 102 −1.787089 × 102 −1.501428 × 102 −1.862011 × 102

f9 8.721680 × 10−202 0.000000 3.156447 × 10−257 0.000000 2.251127 × 10−315 0.000000

f10 8.175285 × 10−1 0.000000 1.361425 × 10−3 0.000000 2.200964 × 10−8 0.000000

f11 2.701419 × 101 2.643757 × 101 2.699064 × 101 2.614943 × 101 2.663097 × 101 2.585579 × 101

f12 3.584155 × 10−1 5.114134 × 10−1 3.100522 × 10−1 4.890716 × 10−1 2.815470 × 10−1 4.889729 × 10−1

f13 1.064141 1.196414 9.980039 × 10−1 1.064141 9.980038 × 10−1 9.980038 × 10−1

f14 3.979373 × 10−1 3.978874 × 10−1 3.979186 × 10−1 3.978874 × 10−1 3.979079 × 10−1 3.978874 × 10−1

f15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

f16 2.880073 × 10−5 3.813791 × 10−9 1.142770 × 10−5 7.944414 × 10−10 6.238591 × 10−6 1.858303 × 10−10

f17 −1.774460 −1.801303 −1.801248 −1.801303 −1.801272 −1.801303

f18 −3.187932 −3.700737 −3.375650 −4.044260 −3.610325 −4.071782

f19 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

f20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

f21 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000

f22 3.214731 × 10−2 6.673788 × 10−3 1.718025 × 10−2 3.599778 × 10−3 1.316666 × 10−2 2.510527 × 10−3

f23 −3.855633 −3.858840 −3.855658 −3.859628 −3.857749 −3.860941

f24 4.588922 × 10−15 3.996803 × 10−15 4.233650 × 10−15 3.878379 × 10−15 4.115227 × 10−15 3.996803 × 10−15

f25 1.888945 1.585867 1.787761 1.515388 1.698389 1.389630

f26 −1.069455 −1.080938 −1.080930 −1.080938 −1.080936 −1.080938

f27 −5.685987 × 10−1 −6.957021 × 10−1 −6.135416 × 10−1 −8.465688 × 10−1 −7.018316 × 10−1 −8.571367 × 10−1

f28 −3.945496 × 10−2 −1.893884 × 10−1 −8.203238 × 10−2 −2.315995 × 10−1 −1.025653 × 10−1 −2.631384 × 10−1

f29 3.258800 × 101 3.224237 1.912760 × 101 1.364237 1.720010 × 101 7.855821 × 10−1

f30 3.745441 × 101 2.581768 2.071528 × 101 1.359673 1.765572 × 101 9.444320 × 10−1

Vessel 6.213857 × 103 6.097895 × 103 6.176765 × 103 6.067191 × 103 6.150466 × 103 6.062122 × 103

Beam 1.792532 1.733833 1.783172 1.731625 1.770235 1.729274

Bearing 7.303758 × 104 8.116530 × 104 7.449770 × 104 8.147987 × 104 7.689757 × 104 8.162418 × 104
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Table 16. Comparison of solution accuracy for ESCA and SCA algorithms. The average ranking
results by Friedman, Friedman aligned, and Quade tests.

Population Size

60 120 240

Ranking

Friedman F. aligned Quad Friedman F. aligned Quad Friedman F. aligned Quad

ESCA 1.1970 22.7121 1.1738 1.2273 23.3485 1.1934 1.2273 22.8333 1.1783

SCA 1.8030 44.2879 1.8262 1.7727 43.6515 1.8066 1.7727 44.1667 1.8217

5.2. Further Comparison with Numerous State-of-the-Art Algorithms

In this section, we compare the sequential version of the ESCA algorithms to several
well-known algorithms. Firstly, the comparison algorithms are benchmarked on a set of
30 unconstrained problems. Then, we test these algorithms in solving three challenging
engineering problems with constrained and unknown search spaces.

5.2.1. Benchmarking of the Comparison Algorithms

The ESCA algorithm is benchmarked on 30 unconstrained functions that are listed
in Tables 1 and 2. The ESCA algorithm runs on each benchmark function 30 times. A
comparison to grey wolf algorithm (GWO) [51], whale optimization algorithm (WOA) [52]
and Harris hawk optimization algorithm (HHO) [53] is provided as well. To ensure a fair
comparison, the individuals are replaced only if there is an improvement of the objective
function over the course of iterations of each algorithm, i.e the selection operator used in
ESCA was “rank selection” also used by GWO, WOA and HHO. Table 17, compares the
convergence speed in terms of the number of functions evaluations (# FEs) required to
obtain an error of less than 1 ×10−3 and (1 ×102 for functions marked with an asterisk), for
a population size of 120. As can be observed from this table, the ESCA algorithm exhibits
the lowest # FEs values for almost all functions. Accordingly, the ESCA algorithm can early
converge to a feasible solution for almost all benchmark functions.

Table 17. Number of function evaluations for error <1 ×10−3 (* <1 ×102).

ESCA GWO HHO WOA

f1 14,502 6920 2635 7567

f2 12,399 6261 2024 5877

f3 1051 1461 535 829

f4 1582 6352 3020 2123

f5 282 400 307 346

f6 1,121,028 1,019,746 1,404,298 1,173,481

f7 * 307 281 214 268

f8 * 17,545 3946 1329 1165

f9 7543 3501 2219 149,835

f10 77,362 22,158 6625 1,058,019

f11 * 10,727 4732 1054 4077

f12 853,399 1,088,983 11,311 7280

f13 204,227 563,262 46,084 22,772

f14 2043 7718 4079 2882

f15 856 1012 1286 1701
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Table 17. Cont.

ESCA GWO HHO WOA

f16 1330 2758 5191 6688

f17 1142 28,240 3073 1279

f18 799,483 1,198,708 1,385,561 1,015,650

f19 880 1046 1227 3460

f20 866 1029 1606 8337

f21 1214 1961 1597 1634

f22 1,058,023 1,142,825 1,481,119 228

f23 1415 96,594 20,375 83,281

f24 15,322 8510 4928 11,575

f25 * 7537 2275 674 1708

f26 10,031 11,503 421,650 321,426

f27 822,131 1,128,604 583,872 927,182

f28 962,612 968,637 1,171,682 942,952

f29 * 6955 11,138 131,846 33,285

f30 * 7654 55,073 158,831 59,033

The statistical data (best cost function, and corresponding average, worst, and standard
deviation) are summarized in Table 18. These results are derived from 30 independent
runs on each function, a population size of 120 individuals, and 10,000 iterations. It can be
seen from this table that the ESCA algorithm holds a competitive performance in terms of
solution accuracy as opposed to the comparison algorithms.

Table 18. Statistical data for 30 runs with a population of 120 and 10,000 iterations for f1 to f30.

ESCA GWO HHO WOA

f1

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f2

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f3

Best 3.262152 × 10−18 5.547644 × 10−13 0.000000 1.203238 × 10−19

Avg. 8.895248 × 10−11 1.170037 × 10−10 0.000000 6.586553 × 10−16

Worst 6.298503 × 10−10 3.953307 × 10−10 0.000000 1.233480 × 10−14

SD 1.412547 × 10−10 9.315382 × 10−11 0.000000 2.205548 × 10−15

f4

Best −1.000000 −1.000000 −1.000000 −1.000000
Avg. −1.000000 −1.000000 −1.000000 −1.000000

Worst −1.000000 −1.000000 −1.000000 −1.000000
SD 6.943355 × 10−13 4.337546 × 10−10 8.599751 × 10−17 9.634141 × 10−13

f5

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
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Table 18. Cont.

ESCA GWO HHO WOA

f6

Best 1.807347 × 10−6 4.686073 × 10−8 4.023087 × 10−5 8.462644 × 10−4

Avg. 6.913877 × 10−4 4.435400 × 10−2 3.457026 × 10−3 1.179321 × 10−2

Worst 2.241546 × 10−3 1.330605 6.863861 × 10−3 2.110537 × 10−2

SD 6.032768 × 10−4 2.388509 × 10−1 1.911670 × 10−3 5.070219 × 10−3

f7

Best −5.000000 × 101 −5.000000 × 101 −5.000000 × 101 −5.000000 × 101

Avg. −4.999999 × 101 −5.000000 × 101 −5.000000 × 101 −5.000000 × 101

Worst −4.999997 × 101 −5.000000 × 101 −5.000000 × 101 −5.000000 × 101

SD 7.486059 × 10−6 9.662948 × 10−8 5.492594 × 10−11 2.403252 × 10−10

f8

Best −2.099980 × 102 −2.100000 × 102 −2.100000 × 102 −2.100000 × 102

Avg. −2.099872 × 102 −2.063305 × 102 −2.100000 × 102 −2.100000 × 102

Worst −2.099745 × 102 −1.549028 × 102 −2.100000 × 102 −2.100000 × 102

SD 7.246266 × 10−3 1.372988 × 101 5.265073 × 10−8 2.197536 × 10−7

f9

Best 0.000000 0.000000 0.000000 5.909506 × 10−178

Avg. 0.000000 0.000000 0.000000 4.294324 × 10−82

Worst 0.000000 0.000000 0.000000 6.977677 × 10−81

SD 0.000000 0.000000 0.000000 1.580556 × 10−81

f10

Best 0.000000 2.470328 × 10−323 0.000000 3.725891 × 10−8

Avg. 0.000000 7.905050 × 10−323 0.000000 1.000874 × 10−2

Worst 0.000000 1.729230 × 10−322 0.000000 2.032146 × 10−1

SD 0.000000 0.000000 0.000000 3.734209 × 10−2

f11

Best 2.481895 × 101 2.522460 × 101 2.489752 × 101 2.486321 × 101

Avg. 4.935104 × 103 2.685818 × 101 4.932600 × 103 2.612374 × 104

Worst 1.003584 × 104 2.889938 × 101 1.002894 × 104 9.002408 × 104

SD 4.931226 × 103 7.683004 × 10−1 4.928556 × 103 3.000263 × 104

f12

Best 1.019230 × 10−8 4.395919 × 10−9 4.827285 × 10−17 6.442491 × 10−13

Avg. 3.333334 × 10−1 4.000000 × 10−1 2.551869 × 10−12 3.430491 × 10−10

Worst 6.666667 × 10−1 6.666667 × 10−1 2.321049 × 10−11 2.552220 × 10−9

SD 3.333332 × 10−1 3.265986 × 10−1 5.095444 × 10−12 7.470906 × 10−10

f13

Best 9.980038 × 10−1 9.980038 × 10−1 9.980038 × 10−1 9.980038 × 10−1

Avg. 1.588057 1.923918 9.980038 × 10−1 9.980038 × 10−1

Worst 1.076318 × 101 2.982105 9.980038 × 10−1 9.980038 × 10−1

SD 1.831761 9.898436 × 10−1 4.309420 × 10−16 6.214605 × 10−16

f14

Best 3.978874 × 10−1 3.978874 × 10−1 3.978874 × 10−1 3.978874 × 10−1

Avg. 3.978874 × 10−1 3.978878 × 10−1 3.978874 × 10−1 3.978874 × 10−1

Worst 3.978874 × 10−1 3.978987 × 10−1 3.978874 × 10−1 3.978874 × 10−1

SD 2.664066 × 10−10 2.044411 × 10−6 3.707297 × 10−15 7.625589 × 10−12

f15

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f16

Best 7.032691 × 10−16 4.176314 × 10−12 1.053336 × 10−17 1.518097 × 10−10

Avg. 8.501715 × 10−11 2.991300 × 10−10 9.229996 × 10−16 1.061443 × 10−9

Worst 6.188203 × 10−10 1.038909 × 10−9 1.010500 × 10−14 4.095840 × 10−9

SD 1.224357 × 10−10 2.805821 × 10−10 2.016184 × 10−15 7.755945 × 10−10

f17

Best −1.801303 −1.801303 −1.801303 −1.801303
Avg. −1.801303 −1.801303 −1.801303 −1.801303

Worst −1.801303 −1.801303 −1.801303 −1.801303
SD 3.984603 × 10−12 3.073081 × 10−9 1.314259 × 10−15 1.115984 × 10−12
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Table 18. Cont.

ESCA GWO HHO WOA

f18

Best −4.687657 −4.687658 −4.687658 −4.687658
Avg. −4.687651 −4.567539 −4.599323 −4.359473

Worst −4.687640 −3.749195 −4.332021 −3.573593
SD 3.945663 × 10−6 1.662246 × 10−1 7.870435 × 10−2 3.986633 × 10−1

f19

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f20

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f21

Best 3.000000 3.000000 3.000000 3.000000
Avg. 3.000000 3.000000 3.000000 3.000000

Worst 3.000000 3.000000 3.000000 3.000000
SD 3.827852 × 10−13 5.764236 × 10−9 1.924979 × 10−14 9.407358 × 10−11

f22

Best 2.100529 × 10−5 6.233180 × 10−7 2.762363 × 10−4 2.471215 × 10−3

Avg. 1.123810 × 10−3 1.300996 × 10−1 6.401639 × 10−3 6.126825 × 10−2

Worst 2.974472 × 10−3 1.035930 3.782117 × 10−2 3.768746 × 10−1

SD 1.050413 × 10−3 3.277276 × 10−1 9.226831 × 10−3 7.362338 × 10−2

f23

Best −3.862780 −3.862780 −3.862780 −3.862780
Avg. −3.862780 −3.862255 −3.862780 −3.862254

Worst −3.862780 −3.854902 −3.862780 −3.854902
SD 1.061189 × 10−10 1.965115 × 10−3 5.382464 × 10−15 1.965074 × 10−3

f24

Best 3.996803 × 10−15 3.996803 × 10−15 4.440892 × 10−16 4.440892 × 10−16

Avg. 3.996803 × 10−15 7.312669 × 10−15 4.440892 × 10−16 2.575717 × 10−15

Worst 3.996803 × 10−15 7.549517 × 10−15 4.440892 × 10−16 7.549517 × 10−15

SD 0.000000 8.862025 × 10−16 0.000000 1.967404 × 10−15

f25

Best 1.099003 × 10−3 4.167573 × 10−8 2.110681 × 10−7 1.097794 × 10−7

Avg. 9.811139 × 10−2 9.347600 × 10−2 4.397173 × 10−3 3.273148 × 10−7

Worst 3.014981 × 10−1 3.999622 × 10−1 1.098999 × 10−2 1.083257 × 10−6

SD 1.046370 × 10−1 9.982078 × 10−2 5.381619 × 10−3 2.209943 × 10−7

f26

Best −1.080938 −1.080938 −1.080938 −1.080938
Avg. −1.080938 −1.080938 −1.075192 −1.075192

Worst −1.080938 −1.080938 −1.056311 −1.056311
SD 1.216749 × 10−10 4.717320 × 10−10 1.041639 × 10−2 1.041639 × 10−2

f27

Best −9.649998 × 10−1 −9.649999 × 10−1 −9.649999 × 10−1 −9.649999 × 10−1

Avg. −9.426906 × 10−1 −9.350842 × 10−1 −9.355537 × 10−1 −7.696397 × 10−1

Worst −9.079998 × 10−1 −7.367849 × 10−1 −7.035660 × 10−1 −4.828707 × 10−1

SD 2.065763 × 10−2 4.201816 × 10−2 6.553091 × 10−2 1.953920 × 10−1

f28

Best −9.649623 × 10−1 −9.649673 × 10−1 −5.170000 × 10−1 −9.079987 × 10−1

Avg. −5.700238 × 10−1 −4.854299 × 10−1 −3.504035 × 10−1 −3.186518 × 10−1

Worst −5.317959 × 10−2 −5.317959 × 10−2 −5.317959 × 10−2 −2.813614 × 10−2

SD 2.867891 × 10−1 2.743351 × 10−1 1.736198 × 10−1 2.090066 × 10−1

f29

Best 2.498726 × 10−4 1.093726 × 10−5 9.178611 × 10−13 4.883815 × 10−8

Avg. 5.554048 × 10−3 1.419868 × 10−1 2.459967 × 101 1.769584 × 10−1

Worst 5.564318 × 10−2 3.434501 3.684844 × 102 3.925457
SD 9.949693 × 10−3 6.288349 × 10−1 9.190723 × 101 7.128277 × 10−1

f30

Best 1.696582 × 10−4 9.049588 × 10−6 5.440372 × 10−11 4.601300 × 10−8

Avg. 4.315053 × 10−3 1.263696 × 101 3.685149 × 101 2.656585 × 101

Worst 2.657023 × 10−2 3.684844 × 102 3.684844 × 102 7.966935 × 102

SD 5.023689 × 10−3 6.609445 × 101 1.105443 × 102 1.430091 × 102
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Inferential statistics prove how well a sample of data sustains a particular hypothesis
and whether the outcomes can be generalized for other data samples. To evaluate the overall
performance of the ESCA algorithm and determine the significance of data in Table 17 (average)
and Table 18, non-parametric statistical tests dubbed Friedman, Friedman aligned, and Quade
test are employed [54]. Tables 19 and 20 statistically compare the assessed algorithms in
terms of convergence speed and solution accuracy, respectively. Tables 21 and 22 estimate
the contrast between medians of data in Table 17 (average) and Table 18, respectively, while
considering all pairwise comparisons [54]. As can be observed from Table 19, the ESCA
algorithm is ranked first under all statistical tests in terms of convergence speed. Similar
results are obtained in Table 21 in which the ESCA algorithm always obtain a positive
difference value with respect to the comparison algorithms. That is, the ESCA algorithm
performs better than others. As for the solution accuracy, the ESCA and HHO algorithms are
ranked first with a competitive performance, as shown in Table 20. However, according to
the outcomes in Table 22, the proposed algorithm is slightly better than the HHO algorithm.
Unlike this latter, the ESCA algorithm always has a positive contrast compared to the other
tested algorithms.

The effectiveness of the proposed ESCA algorithm in solving high-dimensional prob-
lems is validated in Table 23. The outcomes show that the proposed algorithm exhibits
promising and competitive performance compared to the state-of-the-art algorithms.

Table 19. Comparison of convergence speed for the assessed algorithms. The average ranking
outcomes through Friedman, Friedman aligned, and Quade tests.

Ranking

Algorithm Friedman Friedman Aligned Quade

ESCA 2.1667 54.4667 2.2000

GWO 2.9000 65.8000 2.8387

HHO 2.3667 60.7667 2.5376

WOA 2.5667 60.9667 2.4237

Table 20. Comparison of solution accuracy for the assessed algorithms. The average ranking outcomes
through Friedman, Friedman aligned, and Quade tests.

Ranking

Algorithm Friedman Friedman Aligned Quade

ESCA 2.2000 53.7000 2.0613

GWO 2.8333 66.2000 2.8828

HHO 2.2000 53.0000 2.2065

WOA 2.7667 69.1000 2.8495

Table 21. Comparison of convergence speed for the assessed algorithms. Contrast Estimation based
on medians.

ESCA GWO HHO WOA

ESCA 0 865.5 159.6 398.9

GWO −865.5 0 −705.9 −466.6

HHO −159.6 705.9 0 239.3

WOA −398.9 466.6 −239.3 0
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Table 22. Comparison of solution accuracy for the assessed algorithms. Contrast Estimation based
on medians.

ESCA GWO HHO WOA

ESCA 0 8.290 × 10−16 4.145 × 10−16 4.145 × 10−16

GWO −8.290 × 10−16 0 −4.145 × 10−16 −4.145 × 10−16

HHO −4.145 × 10−16 4.145 × 10−16 0 0

WOA −4.145 × 10−16 4.145 × 10−16 0 0

Table 23. Statistical data for 30 runs with a population of 120 and 10,000 iterations for high-dimensional
functions.

# N. var. ESCA GWO HHO WOA

f1

100

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

300

Best 0.000000 1.472678 × 10−269 0.000000 0.000000
Avg. 0.000000 1.195492 × 10−267 0.000000 0.000000

Worst 0.000000 9.890031 × 10−267 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

500

Best 0.000000 6.492796 × 10−216 0.000000 0.000000
Avg. 0.000000 2.937464 × 10−214 0.000000 0.000000

Worst 0.000000 5.611286 × 10−213 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f2

100

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

300

Best 0.000000 2.664037 × 10−269 0.000000 0.000000
Avg. 0.000000 1.078682 × 10−267 0.000000 0.000000

Worst 0.000000 1.117063 × 10−266 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

500

Best 0.000000 4.427418 × 10−216 0.000000 0.000000
Avg. 0.000000 3.940111 × 10−214 0.000000 0.000000

Worst 0.000000 2.032876 × 10−213 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f10

100

Best 8.324341 × 10−149 1.977371 × 10−107 0.000000 2.360440 × 102

Avg. 7.974122 × 10−116 5.051906 × 10−92 0.000000 7.941213 × 103

Worst 2.391764 × 10−114 1.513262 × 10−90 0.000000 3.263596 × 104

SD 4.293318 × 10−115 2.716247 × 10−91 0.000000 7.423773 × 103

300

Best 1.527654 × 10−82 9.975385 × 10−35 0.000000 5.113928 × 105

Avg. 1.566300 × 10−55 4.698595 × 10−7 0.000000 2.324814 × 106

Worst 4.212831 × 10−54 1.409572 × 10−5 0.000000 3.178554 × 106

SD 7.582484 × 10−55 2.530258 × 10−6 0.000000 5.939182 × 105

500

Best 1.617417 × 10−70 4.140184 × 10−14 0.000000 8.236708 × 106

Avg. 2.137194 × 10−27 1.223006 × 10−2 0.000000 1.223004 × 107

Worst 6.411583 × 10−26 3.383713 × 10−1 0.000000 1.470168 × 107

SD 1.150914 × 10−26 6.061667 × 10−2 0.000000 1.446876 × 106
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Table 23. Cont.

# N. var. ESCA GWO HHO WOA

f11

100

Best 9.417182 × 101 9.409247 × 101 9.460401 × 101 9.267136 × 101

Avg. 9.690864 × 101 9.618143 × 101 9.501840 × 101 9.309575 × 101

Worst 9.839476 × 101 9.827330 × 101 9.538590 × 101 9.337289 × 101

SD 1.214620 8.735442 × 10−1 1.739057 × 10−1 1.907979 × 10−1

300

Best 2.958073 × 102 2.957236 × 102 2.951796 × 102 5.714967
Avg. 2.976425 × 102 2.970865 × 102 2.957244 × 102 2.828332 × 102

Worst 2.981833 × 102 2.978485 × 102 2.959295 × 102 2.928548 × 102

SD 6.213829 × 10−1 7.024913 × 10−1 1.326191 × 10−1 5.145973 × 101

500

Best 4.973285 × 102 4.950355 × 102 4.935614 × 102 4.904825 × 102

Avg. 4.978877 × 102 4.969489 × 102 4.939061 × 102 4.910578 × 102

Worst 4.981244 × 102 4.976162 × 102 4.939489 × 102 4.913822 × 102

SD 2.206418 × 10−1 6.608382 × 10−1 9.846602 × 10−2 2.614029 × 10−1

f24

100

Best 3.996803 × 10−15 1.110223 × 10−14 4.440892 × 10−16 4.440892 × 10−16

Avg. 3.996803 × 10−15 1.453652 × 10−14 4.440892 × 10−16 2.338870 × 10−15

Worst 3.996803 × 10−15 1.820766 × 10−14 4.440892 × 10−16 7.549517 × 10−15

SD 0.000000 1.117208 × 10−15 0.000000 1.995713 × 10−15

300

Best 3.996803 × 10−15 2.176037 × 10−14 4.440892 × 10−16 4.440892 × 10−16

Avg. 3.996803 × 10−15 2.614205 × 10−14 4.440892 × 10−16 2.457294 × 10−15

Worst 3.996803 × 10−15 2.886580 × 10−14 4.440892 × 10−16 7.549517 × 10−15

SD 0.000000 3.135436 × 10−15 0.000000 2.186836 × 10−15

500

Best 3.996803 × 10−15 2.886580 × 10−14 4.440892 × 10−16 4.440892 × 10−16

Avg. 4.825769 × 10−15 3.158955 × 10−14 4.440892 × 10−16 2.457294 × 10−15

Worst 7.549517 × 10−15 3.597123 × 10−14 4.440892 × 10−16 7.549517 × 10−15

SD 1.502629 × 10−15 1.985144 × 10−15 0.000000 2.371435 × 10−15

f25

100

Best 4.955085 2.624674 4.766665 × 10−5 3.631265 × 10−5

Avg. 6.169643 4.123167 4.122016 × 10−3 1.910465 × 10−3

Worst 7.315961 5.184571 2.124806 × 10−2 1.105270 × 10−2

SD 5.111456 × 10−1 5.124575 × 10−1 5.953081 × 10−3 4.083615 × 10−3

300

Best 2.643887 × 101 2.282209 × 101 2.212745 × 10−3 3.726640 × 10−3

Avg. 2.697167 × 101 2.376806 × 101 8.795785 × 10−3 8.291253 × 10−3

Worst 2.757999 × 101 2.474629 × 101 1.782640 × 10−2 2.452580 × 10−2

SD 3.359007 × 10−1 4.596044 × 10−1 4.937780 × 10−3 5.300295 × 10−3

500

Best 4.658280 × 101 4.243303 × 101 8.669046 × 10−3 2.174499 × 10−2

Avg. 4.724426 × 101 4.391827 × 101 2.089506 × 10−2 3.314949 × 10−2

Worst 4.807043 × 101 4.471744 × 101 2.799315 × 10−2 5.016311 × 10−2

SD 3.648753 × 10−1 5.330605 × 10−1 4.269011 × 10−3 7.169631 × 10−3

5.2.2. Optimization Outcomes for Classical Engineering Problems

The results for the pressure vessel design problem are compared in Tables 24 and 25.
The multi-strategy enhanced SCA (MSCA) was presented in [55], which also provides numer-
ical results. The numerical results for the improved harmony search algorithm (IHS) [56],
gravitational search algorithm (GSA) [57], DE [10], and HSA [14] were provided in [55].
Moreover, results for PSO [5] were taken from [58]. Results for GA [9] are provided in [59–61]
for GA_1, GA_2 and GA_3 respectively. In [62], results for evolutionary strategy ES were
provided, while those of the ACO algorithm were reported in [63]. GWO, WOA, WOA [52],
and HHO [53] algorithms are included in the comparative study of classical engineering
problems, i.e., pressure vessel problem, welded beam design problem, and rolling element
bearing design.

The comparison for the pressure vessel problem is exhibited in Tables 24 and 25. The
former shows both the variables and the cost function’s optimal value, while the latter
provides the constraints’ value. The proposed ESCA algorithm and the DE algorithm achieve
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the best feasible results. It should be noted that the solution provided by MSCA and HHO
methods are not feasible since both variables ds and dh have been considered as continuous
variables, which is not correct as they are actually discrete variables. In particular, they must
be multiples of 0.0625 inches. The IHS and ACO methods are not feasible because they do
not meet the g3 and g1 constraints, respectively, as shown in Table 25.

The results of the welded beam design problem are reported in Tables 26 and 27.
Table 26 exhibits the optimal cost of the function and its variables for several state-of-the-art
algorithms, including; GSA algorithm [57], the ray optimization (RO) algorithm [64], IHS
algorithm [56], genetic algorithm (GA_3) [61], the GWO algorithm, the WOA algorithm,
and the HHO algorithm. Outcomes reveal that the ESCA algorithm outperforms the state-
of-the-art algorithms in solving the welded beam design problem. The constraints of the
leading solutions are listed in Table 27. It worth mentioning that the solution provided by
HHO algorithm is not feasible as it does not meet the g2 constraint.

Table 24. Design variables and comparison of the best solutions obtained for pressure vessel problem.

Variables

Algorithm ds dh R L Function
Cost

ESCA 0.8125 0.4375 42.0983 176.6385 6059.7344

SCA 0.8125 0.4375 42.0799 177.0465 6066.1710

MSCA 0.7793 0.3996 40.3255 199.9213 5935.7161

IHS 1.1250 0.6250 58.2902 43.6927 7197.7300

GSA 1.1250 0.6250 55.9887 84.4542 8538.8359

PSO 0.8125 0.4375 42.0913 176.7465 6061.0777

GA_1 0.8125 0.4345 40.3239 200.0000 6288.7445

GA_2 0.8125 0.4375 42.0974 176.6541 6059.9463

GA_3 0.9375 0.5000 48.3290 112.6790 6410.3811

ES 0.8125 0.4375 42.0981 176.6405 6059.7456

DE 0.8125 0.4375 42.0984 176.6377 6059.7340

ACO 0.8125 0.4375 42.1036 176.5727 6059.0888

GWO 0.8125 0.4375 42.0892 176.7587 6061.0135

HHO 0.8176 0.4073 42.0917 176.7196 6000.4626

WOA 0.8125 0.4375 42.0983 176.6390 6059.7410

The results for the rolling element bearing design problem are compared in Table 28.
In addition to the SCA algorithm, the proposed ESCA algorithm is compared to the genetic
algorithm (GA_4) [65], the TLBO algorithm [66], the mine blasting algorithm (MBA) [67],
the supply demand-based optimization algorithm (SDO) [68], and the HHO algorithm.
Note that, as shown in Table 29, neither TLBO nor MBA, nor SDO, nor HHO obtain feasible
solutions. Indeed, the TLBO violates the g7 constraint, while MBA, SDO and HHO violate
the g4 constraint. As shown in these tables, ESCA also carries the best feasible result on
this constrained maximization problem.

Concisely, the outcomes on the assessed engineering problems prove that ESCA is
high-performing in solving challenging problems as opposed to the comparison algorithms.
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Table 25. Constraints of the best solutions obtained for the pressure vessel problem.

Constraints

Algorithm g1 g2 g3 g4

ESCA −2.81 × 10−6 −3.59 × 10−2 −5.57 × 10−1 −6.34 × 101

SCA −3.59 × 10−4 −3.61 × 10−2 −9.97 × 102 −6.30 × 101

MSCA −9.75 × 10−4 −1.49 × 10−2 −1.26 × 101 −4.01 × 101

IHS −1.05 × 10−7 −6.89 × 10−2 6.57 × 10−2 −1.96 × 102

GSA −4.44 × 10−2 −9.09 × 10−2 −2.71 × 105 −1.56 × 102

PSO −1.39 × 10−4 −3.59 × 10−2 −1.16 × 102 −6.33 × 101

GA_1 −3.42 × 10−2 −4.98 × 10−2 −3.04 × 102 −4.00 × 101

GA_2 −2.02 × 10−5 −3.59 × 10−2 −2.49 × 101 −6.33 × 101

GA_3 −4.75 × 10−3 −3.89 × 10−2 −3.65 × 103 −1.27 × 102

ES −6.92 × 10−6 −3.59 × 10−2 2.90 −6.34 × 101

DE −6.68 × 10−7 −3.59 × 10−2 −3.71 −6.34 × 101

ACO 9.99 × 10−5 −3.58 × 10−2 −1.22 −6.34 × 101

GWO −1.79 × 10−4 −3.60 × 10−2 −4.06 × 101 −6.32 × 101

HHO −5.21 × 10−3 −5.74 × 10−3 −6.57 × 10−6 −6.33 × 101

WOA −3.39 × 10−6 −3.59 × 10−2 −1.25 −6.34 × 101

Table 26. Welded beam problem. Function cost and variables.

Variables

Algorithm h l t b Function
Cost

ESCA 0.205727 3.470570 9.036625 0.205730 1.724862

SCA 0.205661 3.471731 9.037817 0.205742 1.725213

GSA 0.182129 3.856979 10.000000 0.202376 1.879952

RO 0.203687 3.528467 9.004233 0.207241 1.735344

IHS 0.203687 3.528467 9.004233 0.207241 1.735344

GA_3 0.248900 6.173000 8.178900 0.253300 2.433100

GWO 0.205676 3.478377 9.03681 0.205778 1.726240

HHO 0.204039 3.531061 9.027463 0.206147 1.731990

WOA 0.205396 3.484293 9.037426 0.206276 1.730499
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Table 27. Welded Beam problem. Constraints.

Constraints

Algorithm g1 g2 g3 g4 g5 g6 g7

ESCA −7.80 × 10−2 −5.98 × 10−2 −3.00 × 10−6 −3.43 −8.07 × 10−2 −2.36 × 10−1 −3.20 × 10−2

SCA −0.699753 −9.721939 −0.000081 −3.432575 −0.080661 −0.235547 −1.602377

GSA −5.35 × 102 −5.10 × 103 −2.02 × 10−2 −3.26 −5.71 × 10−2 −2.39 × 10−1 −1.33 × 104

RO −2.24 −4.13 −3.55 × 10−3 −3.42 −7.87 × 10−2 −2.35 × 10−1 −1.24 × 104

IHS −2.24 −4.13 −3.55 × 10−3 −3.42 −7.87 × 10−2 −2.35 × 10−1 −1.24 × 104

GA_3 −5.76 × 103 −2.56 × 102 −4.40 × 10−3 −2.98 −1.24 × 10−1 −2.34 × 10−1 −2.39 × 104

GWO −2.12 × 101 −8.29 −1.02 × 10−4 −3.43 −8.07 × 10−2 −2.36 × 10−1 −4.31

HHO −6.21 × 101 5.72 × 10−2 −2.11 × 10−3 −3.43 −7.90 × 10−2 −2.36 × 10−1 −3.26 × 101

WOA −2.15 × 101 −8.48 × 101 −8.80 × 10−4 −3.43 −8.04 × 10−2 −2.36 × 10−1 −4.83 × 101

Table 28. Design variables and comparison of the best solutions obtained for the rolling element
bearing design problem.

Algorithm

Design
Variables SCA GA_4 TLBO MBA SDO HHO ESCA

Dm 125.719015 125.717100 125.719100 125.715300 125.700000 125.000000 125.718960

Db 21.425557 21.423000 21.425590 21.423300 21.424905 21.000000 21.425563

Z 11.000000 11.000000 11.000000 11.000000 11.000000 11.090000 11.000000

fi 0.515000 0.515000 0.515000 0.515000 0.515002 0.515000 0.515000

fo 0.515000 0.515000 0.515000 0.515000 0.515930 0.515000 0.515000

KDmin 0.490213 0.415900 0.424266 0.488805 0.487755 0.400000 0.465124

KDmax 0.672451 0.651000 0.633948 0.627829 0.629992 0.600000 0.653542

ε 0.300000 0.300043 0.300000 0.300149 0.300039 0.300000 0.300000

e 0.070763 0.022300 0.068858 0.097305 0.053510 0.050474 0.020149

ψ 0.760058 0.751000 0.799498 0.646095 0.665982 0.600000 0.736634

Function cost 81,859.508 81,841.511 81,859.738 81,843.686 81,575.185 83,011.883 81,859.552

Table 29. Constraints of the best solutions obtained for the rolling element bearing design problem.

Algorithm

Constraints SCA GA_4 TLBO MBA SDO HHO ESCA

g1 0.000009 0.000822 0.000004 0.000564 −0.001272 0.013477 0.000003

g2 8.536204 13.733000 13.152560 8.630250 8.706960 14.000000 10.292446

g3 4.220456 2.724000 1.525180 1.101430 1.249630 0.000000 2.896814

g4 1.376183 1.107000 2.559350 −2.040450 −1.445445 −3.000000 0.673457

g5 0.719015 0.717100 0.719100 0.715300 0.700000 0.000000 0.718960

g6 16.971735 4.857900 16.495400 23.610950 12.677500 12.618500 4.318290

g7 0.000047 0.002129 −0.000022 0.000518 0.009240 0.700000 0.000070

g8 0.000000 0.000000 0.000000 0.000000 0.000002 0.000000 0.000000

g9 0.000000 0.000000 0.000000 0.000000 0.000930 0.000000 0.000000
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6. Conclusions

This paper proposed an enhanced SCA algorithm dubbed the ESCA algorithm in
which the diversification behavior of the SCA algorithm is reduced at the end of the opti-
mization course. Indeed, the SCA algorithm’s exploitation abilities are strengthened with a
best-guided strategy that refines the current solution and leads the algorithm to converge
swiftly toward the optimum. Experimental tests on benchmark functions and challenging
engineering problems prove the supremacy of the proposed algorithm in overall perfor-
mance, i.e., solution accuracy and convergence speed, compared to a set of state-of-the-art
algorithms. This domination is confirmed through statistical tests. The proposed ESCA
algorithms are ranked first according to Friedman, Friedman aligned, and Quade tests
in terms of convergence speed and solution accuracy. Furthermore, one-level parallel
ESCA algorithms that work synchronously and asynchronously are designed as well. They
efficiently utilize multicore architectures by joining coarse-grained and fine-grained parallel
techniques. The parallel scalability of these algorithms yields an efficient use of the physical
and logical cores when hyperthreading is enabled, which increases the total number of
threads that are efficiently used when the two-level parallel algorithm is executed. It was
identified that the one-level parallel ESCA algorithms diminish the computing time, on
average, by 87.4% and 90.8%, respectively, using 12 processing cores. Moreover, it has
been shown that parallel performance can be improved by affinity techniques that permit
mapping processes over the cores of multicore processors. In fact, the two-level parallel
algorithms provide extra reductions of the computing time by 91.4%, 93.1%, and 94.5%
with 16, 20, and 24 processing cores. Considering its outstanding optimization performance
and computational behavior capability of extracting the maximum performance from the
available computational resources, the proposed algorithm is particularly fitting for high
computational complexity problems.
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