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We suggest double-resonant �binary� metamaterials composed of two types of magnetic resonant
elements, and demonstrate that in the nonlinear regime such metamaterials provide unique
possibilities for phase-matched parametric interaction and enhanced second-harmonic generation.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2168755�
Extensive studies of microwave properties of composite
metallic structures led to the experimental demonstration of
left-handed metamaterials1 suggested a long time ago.2 Such
metamaterials are created by resonant magnetic elements and
operate for wavelengths much larger than the structural pe-
riod, allowing for the macroscopic effective medium descrip-
tion. The parameters of the effective medium depend on the
microscopic structure of the metallic composites. Moreover,
the nonlinear response of the metamaterial can become
substantial,3–5 and their transmission characteristics can be
effectively controlled by external fields.6–8

Nonlinearities of metamaterials suggest their novel
applications such as frequency conversion,5,9 tunable
transmission,8 second-harmonic imaging,10 nonlinear beam
focusing, and soliton propagation,11 etc. In contrast to non-
linear optical media, composite metamaterials possess non-
linear magnetic responses that can be engineered by insert-
ing nonlinear elements �e.g., diodes� into the resonant
conductive elements.3,4

In this letter we suggest a novel type of composite
metamaterial with a double-resonant response and demon-
strate that in the nonlinear regime such binary metamaterials
are ideally suited for the first observation of the enhanced
phase-matched parametric interaction and second-harmonic
generation �SHG�. Indeed, the quadratic nonlinear magnetic
susceptibility is proportional to a product of linear magnetic
susceptibilities at the frequencies of interacting waves. For
conventional single-resonant nonlinear metamaterials, the
magnetic susceptibility of the fundamental wave is relatively
large, since it corresponds to the backward wave near the
resonance9 while the susceptibility of the second-harmonic
wave is rather small. In the metamaterial with several reso-
nances, it is possible to enhance the nonlinear response, so
that both linear susceptibilities of interacting waves can
become large.

To create a double-resonant metamaterial we suggest the
mixing of two types of resonant conductive elements �RCEs�
with different resonant frequencies, as shown schematically
in Fig. 1 for the structure consisting of two lattices of differ-
ent split-ring resonators. Metamaterial structures with two
resonances were studied experimentally,12 as well as
theoretically13 within the quasistatic approximation for one-
and two-dimensional arrays only. Therefore, as a first step,

we analyze linear properties of the three-dimensional binary
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metamaterial. For large wavelengths, each RCE can be de-
scribed as a resonant circuit �see, e.g., Refs. 14 and 15� char-
acterized by self-inductance L, capacitance C, and resistance
R. We assume that the metamaterial consists of two types of
RCEs of the same shape �i.e., with the same L and R�, but
with different capacitances C1 and C2, and, thus, different
resonant frequencies.

An external homogeneous magnetic field H0 applied
perpendicular to the RCE planes and oscillating with the
frequency � induces the currents I1 and I2 in the resonators
of the corresponding type, which can be found from the
impedance matrix equation

E = Z1,2I1,2 + � I2,1, �1�

where Z1,2=Z1,2
�0� − i�L11 and �=−i�L12; E= i�0�SH0 is the

electromotive force; S is the RCE area; Z�
0���=−i�L

+ i��C��−1+R is the self-impedance of an RCE of the type �;
N� denotes the set of RCE position indices of the type �; and
Mn�n are the mutual inductances. The effective inductances
are

L11 = �
n,n��N1,

n��n

Mn�n; L12 = �
n�N1,

n��N2,

Mn�n. �2�

Solving the set of Eqs. �1� with respect to the currents,
we obtain the magnetization of the metamaterial,

M =
1

2
nS�I1 + I2� = nS2�0K H0, �3�

where K= i��Z1+Z2−2�� /2�Z1Z2−�2�, and n= �a2b�−1 is
the total volume density of the RCEs. Using the general

FIG. 1. Schematic structure of binary metamaterials with resonant magnetic

elements of two types �black and gray�.
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relation for magnetic induction of media in the external field,
B=�0�H0+2/3M� �see Ref. 14 for details� and the definition
of the magnetic susceptibility �, M =�H, we calculate the
magnetic permeability �,

���� = 1 + � = 1 +
�0nS2

K−1 − �0nS2/3
. �4�

In the case C1=C2, the result �4� reduces to that obtained
previously for single-resonant structures.14

In Fig. 2�a�, we plot the permeability versus frequency
for typical parameters: RCE radius r0=2 mm, wire thickness
l=0.1 mm, which gives self-inductance L=8.36 nHn �see
Ref. 14�. To obtain RCEs of the type 1 with the resonant
frequency of �01=6��109 rad/s ��0=3 GHz�, we take
C1=0.34 pF. The resonance frequency of the type 2 RCEs is
chosen as �02=X�01 with X=1.75, i.e., C2=C1 /X2. The lat-
tice constants are a=2.1r0 and b=0.5r0. The RCE quality
factor, Q=�01L /R, can reach the values up to 103.1 However,
by inserting diodes this value may decrease, and therefore we
take Q=300.

Figure 2�a� confirms that indeed in such structures there
exist two resonances and two frequency ranges with negative
magnetic permeability. Positions of the macroscopic
resonances are shifted from the resonant frequencies of
individual RCEs; the shift is not the same for two reso-
nances, and the resulting ratio of the resonant frequencies is
about 2.17.

Nonlinear metamaterials can be created by inserting
nonlinear elements. In order to obtain a material with low
resistive losses, it is preferable to use variable capacitance
insertions, varactor diodes.3 We assume that the capacitance
of RCEs �both linear and nonlinear� is determined by varac-
tors, and the difference between two types of resonators
arises due to different varactors.

A general expression for the voltage drop on a varactor
can be written in the form5,6

U�t� = I�t�Rins�U�t�� +
1

Cins�U�t���−	

t

I�t��dt�, �5�

and it can be simplified in the limit of low current and low
voltage. We assume that resistance is constant, while capaci-
tance can be expanded into a Taylor series, Cins�U��C�1
+
U�. The corresponding solution of Eq. �5� gives a linear
capacitive contribution to the impedance as well as weak
quadratic nonlinearity.

For the three-wave parametric processes, we write
I��t�=��=1

3 I����� exp �−i��t�+c.c., �1=�2+�3, and the
icle is copyrighted as indicated in the abstract. Reuse of AIP content is
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E��1,2� = Z1,2��1,2�I1,2��1,2� + ���1,2�I2,1��1,2�

+

1,2

C1,2
2 �2�3

I1,2��2�I1,2��3� . �6�

Since the nonlinear part of the capacitance is much smaller
than the linear one, we apply an iterative procedure and use
linear currents calculating nonlinear contribution to obtain

��2���1;�2,�3� =
4 i ���1����2����3�

�0S3n2�1�2�3

� �
�


�

C�
2 A���1�A���2�A���3� , �7�

where

A1,2��� =
Z2,1��� − ����

Z1��� + Z2��� − 2����
, �8�

characterizes the relative contribution from the currents,
I1��� and I2���, to the total magnetization of the metamate-
rial, and A1+A2=1. In the limit of identical varactors in both
sublattices, i.e., C1=C2 and 
1=
2, Eq. �7� coincides with
the results obtained in Ref. 3.

We note that the zeros of the denominator in Eq. �8� are
canceled out by zeros of linear susceptibility in the numera-
tor and they do not lead to any increase of the nonlinear
response. At the same time, the resonant poles of the linear
magnetic susceptibilities in Eq. �7� lead to a dramatic in-
crease of nonlinear interaction when the wave frequencies
approach resonances. Clearly, the effect is stronger when all
the waves are close to the magnetic resonances of the
metamaterial. Therefore, the binary metamaterial provides an
unique possibility for realizing this general concept, as we
show below for the example of SHG.

As has been shown recently,9 SHG in the media with
negative refraction differs from the conventional scheme. In
particular, it is possible to satisfy the phase-matching condi-
tions for counterpropagating waves. As a result, a semi-
infinite sample of a nonlinear quadratic metamaterial oper-
ates as a frequency converting mirror reflecting radiation
with the double frequency of the incident wave. Remarkably,
in the lossless regime the conversion efficiency is close to
100%. In a more realistic case of a finite-size metamaterial
slab, high efficiency is possible for the slabs of several tens
of wavelengths.

For the double-resonant medium, first we analyze the
spectrum of electromagnetic waves, ��k�. We consider the
waves with the magnetic field perpendicular to the planes of
resonators and assume that the electric component of the

FIG. 2. �Color online� �a� Real �solid�
and imaginary �dashed� parts of mag-
netic permeability of the binary
metamaterial. �b� Spectrum of electro-
magnetic waves. The arrows show the
perfectly phase-matched second-
harmonic generation.
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����=1−�p
2 /�2, where the plasma frequency �p=1.2�0 is

selected between two magnetic resonances. The wave spec-
trum has three branches, as shown in Fig. 2�b�. Two
branches, which are close to the magnetic resonances,
correspond to large wave numbers. Importantly, we can find
the points of the exact phase matching between fundamental
and second-harmonic waves, for both waves close to the
resonances.

We consider the case of normal incident wave propagat-
ing along the z axis, and present the magnetic field inside the
sample using slowly varying amplitudes

H�z,t� = a1
+�z�e−ikz−i�t + a2

+�z�e−2ikz−2i�t + a1
−�z�eikz−i�t

+ a2
−�z�e2ikz−2i�t + c.c., �9�

where k=� /c���������� �as usual �=��+ i���, the phase
mismatch �=���������−��2�����2�� is assumed to be
small. The coupled-mode equations for the amplitudes a1

+

and a2
+ are written in the form

da1
+

d
+ �1a1

+ = i�1a2
+a1

+*,

�10�
da2

+

d
+ �2a2

+ = − i�2a1
+2,

where we use the notations �1=���������1/2 /2�����1/2,
�2= �i�−��2�����2��������������−1/2,
�1=0.5����� /������1/2��2��� ;2� ,−��,
�2=��2�������������−1/2��2��2� ;� ,��, and =�z /c is the
dimensionless coordinate. Equations for the amplitudes a1

−

and a2
− are the same as equations for a1

+ and a2
+, except for the

opposite signs of the spatial derivatives. We solve these
equations numerically with appropriate boundary conditions
and obtain the dependence of the second-harmonic �SH� re-
flection coefficient, i.e., the ratio of the reflected energy flux
of the SH to the incident wave, as a function of the ratio of
the two resonant frequencies X, shown in Fig. 3�a� for three
slab thicknesses. Calculating the results shown in Fig. 3�a�,
we were adjusting the frequency of the incident wave to
satisfy the phase-matching conditions. Large X correspond to
the nonresonant limit, when the SH field is not in resonance.
Decreasing X we drive both fundamental and SH waves
closer to the magnetic resonances, and the conversion rate
increases. At the same time, losses become stronger, and fi-
nally they dominate, suppressing SHG efficiency. For small

relative shifts �below X=1.75�, the phase matching cannot be
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archived. The incident field amplitude and nonlinear coeffi-
cients �1=�2, were chosen in such a way that maximum
nonlinear modulation in the simulations was ��2��� ;2� ,
−��H��0.2. Such modulation is expected in resonant non-
linear processes, since even in realistic nonresonant cases,5

the nonlinear modulation of 0.01 was created by the external
magnetic fields with amplitudes less than 1 A/m. Our results
demonstrate that for a one-wavelength-thick slab, the SHG
enhancement due to the second resonance can become larger
by at least one order of magnitude. The decrease of losses
would allow increasing the efficiency.

Dependence of the maximum reflection coefficient of the
SH wave and reflection coefficient in the nonresonant case
�X=3� on the slab thickness is shown in Fig. 3�b�. One can
see that the major relative increase of the SHG process in
resonance, compared to the nonresonant case, is observed for
thin nonlinear slabs.

In conclusion, we have suggested double-resonant
metamaterials for the study of phase-matched parametric in-
teractions in composite nonlinear media. In particular, we
have analyzed a composite structure consisting of two types
of resonant magnetic elements, and demonstrated that such a
binary resonant structure can enhance significantly the
second-harmonic generation.
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