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Abstract: Strain sensors based on conductive polymer composites have been widely 

investigated due to their excellent elasticity and sensitivity. Such sensors may be 

manufactured using additive manufacturing techniques but there are some challenges 

to overcome in terms of performance if this technique is to be used. In this work, a 

high-performance strain sensor of carbon nanotube/thermoplastic polyurethane 

(CNT/TPU) nanocomposites was printed by fused deposition modeling (FDM), and 

1-pyrenecarboxylic acid (PCA) was introduced to non-covalently modify the CNTs 

and improve the polymer-nanofiller interactions. It is shown that the tensile and 

electrical properties of the modified composites are increased as a result of more 

uniform CNT dispersion. The 3D printed sensors demonstrate excellent properties 



 

 

with high gauge factor (GF=117213 at a strain of 250%), large detectable strain 

(0~250%), good stability (up to 1000 loading/unloading cycles) and wide frequency 

response range of 0.01~1 Hz. Also, the strain sensing ability of the sensor is greatly 

improved with the introduction of PCA. The working mechanism of strain sensor was 

further studied based on the Simmons’ tunneling theory. In addition, the sensor 

demonstrates the capability to monitor human body movements and voice, showing 

its potential for applications in intelligent robots and wearable electronics where 

customizability is demanded. 

Keywords: 3D printing; interfacial interactions; sensor; carbon nanotubes; 

polymer nanocomposites 

1. Introduction 

Conductive polymer composites (CPCs) [1,2] have been reported in numerous 

literature as a result of their excellent processability and wide applications in 

advanced electronics, aerospace as well as in new energy areas etc. Carbon 

nanoparticles with high aspect ratios, such as CNTs and graphene, are the most 

favorable conductive nanofillers for fabricating CPCs when a low electrical 

percolation threshold is required [3]. The conductive pathways formed by conductive 

nanofillers in CPCs may be destroyed as strain is applied, resulting in a conductivity 

that is strain sensitive. Therefore, CPCs have the capability to behave as strain sensors. 

Strain sensors based on highly flexible CPCs have attracted widespread attention [4]. 

By way of example, Liu et al. [5] integrated genetically engineered cells as 



 

 

programmable functional components with robust, elastic, and biocompatible 

hydrogel–elastomer hybrids to fabricate stretchable living materials and devices. Li et 

al. [6] manufactured strain sensors with high elasticity and sensitivity based on the 

composites of polydimethylsiloxane (PDMS) and 3D graphene foam. This sensor 

prepared by lyophilization can detect strains of 0~30%, and the sensitivity reaches 

98.66 at 5% strain. Wang et al. [7] proposed an efficient strategy to produce 

stretchable strain sensors with excellent mechanical and conductive properties. 

Multi-walled CNTs were decorated onto the surface of electrospun polyamide 6 (PA6) 

nanofibers by an ultrasonication anchoring technique to produce a conductive network, 

which was then embedded into a polymer matrix to form a high-strength conductive 

composite. Although these strain sensors show good sensing performance, the 

fabrication approaches employed in their manufacture are usually quite complicated 

and unlikely to be scalable to industrial processing.  

3D printing (namely additive manufacturing) is a rapid prototyping technology 

[8-10] that allows complex structures to be printed without the need for any mold 

tooling. This reduces capital costs and increases lead times as well as allowing the 

manufacture of structures that cannot be made by any other method. Currently, 3D 

printing has multiple classifications to meet different materials [11], such as metals 

and polymers by selective laser sintering, photocurable materials by stereolithgraphy, 

inkjet printing and thermoplastics by fused deposition modeling (FDM, namely Fused 

Filament Fabrication/FFF) [12]. 

In recent years, a lot of work has been carried out to develop the 3D printing 



 

 

technology for polymer composites. Wei et al. [13] used the CNT/PDMS composite 

ink to directly print a freestanding wavy flexible electrode with high stretchability 

(>300% strain) and excellent electrical stability (about 5% resistance change at a 

strain of 100%). The effect of serpentine shape and connecting angle on the 

stretchability and conductivity of the electrode was systematically studied to optimize 

its performance. Compared with other 3D printing methods, fused deposition 

modeling has the characteristics of low cost, convenience and flexibility, and the 

extruded filaments are suitable for large-scale production and long-term storage. 

Christ et al. [14] developed a MWCNT/TPU as a raw material for FDM and printed a 

flexible circuit with high elasticity and excellent pressure sensitive properties. It was 

found that the content of MWCNTs had an important effect on its sensitivity and 

detectable range. Kim et al. [15] proposed a new approach to directly print 3D 

multiaxial force sensor using FDM based on functionalized composite filaments. The 

sensor had two components: the structural component was printed from thermoplastic 

polyurethane filaments, and the sensing component was printed from CNT/TPU 

nanocomposite filaments. 

Although these studies have demonstrated the fabrication of flexible strain 

sensors by 3D printing technology, the interfacial properties of composites used for 

3D printing are usually ignored. Interfacial interactions between the polymer and 

nanofiller play an important role in composites, significantly affecting the nanofiller 

dispersion in the matrix and the mechanical and physical properties of the composite 

material. If the interfacial properties can be tuned then so also can the performance of 



 

 

the printed strain sensors. The methods to improve the interfacial properties of 

composites include non-covalent and covalent modifications. Covalent modification 

often destroys the intrinsic structure of nanofillers, which severely affects the 

mechanical and electrical properties of nanofillers. By contrast, non-covalent 

modification can enhance the interfacial interactions without sacrificing the unique 

structural and physical characteristics of nanofillers. However, few research on 

enhancing the sensing performance of flexible strain sensors via non-covalent 

interactions has been reported. Herein lies the motivation for this work.  

In this work, CNT/TPU nanocomposites were prepared by solution mixing and 

extruded into filaments using a single-screw extruder for fabricating flexible strain 

sensors by FDM. Since π-π non-covalent interactions can be generated between CNTs 

and 1-pyrenecarboxylic acid (PCA) through a conjugation effect, and hydrogen 

bonding can also be formed between the carboxyl groups of PCA and the carbonyl 

and amide groups of TPU [16], PCA was used to non-covalently modify the 

nanotubes in order to improve their dispersion and alter polymer-nanofiller 

interactions without destruction of the intrinsic structure of the carbon nanotubes. The 

tensile, electrical and electromechanical properties of the 3D printed nanocomposites 

were also systematically investigated. It is observed that the strain sensors printed 

with non-covalent interactions exhibit better mechanical properties, electrical 

conductivity and strain sensing performance. This work provides important 

information for the fabrication of flexible and high-performance strain sensors using 

3D printing technique when customizability, multi-directionality and complex design 



 

 

are demanded. In addition, the non-covalent modification method of CNTs presented 

in this work can also be transferred to the preparation of polymer/CNT 

nanocomposites using more efficient and industrially favorable melt-mixing. 

2. Experimental section 

2.1. Materials 

Multi-walled carbon nanotubes (NC7000) were purchased from Nanocyl SA 

(Belgium). The length of the CNT is about 1.5 µm and the diameter is 9.5 nm. 

1-pyrenecarboxylic acid (PCA) with a density of 1.85 g/cm3 was obtained from 

Aladdin Reagent Company (China). Thermoplastic polyurethane in powder form 

(Bayer 2195) was obtained from Bayer Co. Ltd. with a melt flow index of 12.1 g/10 

min (205 °C, at a pressure of 5 kg) and a density of 1.19 g/cm3 [26, 32]. 

Dimethylformamide (DMF) reagent was provided by Chengdu Kelong Chemical 

Reagent Company (China). 

2.2. Preparation of CNT/TPU nanocomposites 

Firstly, CNTs and PCA were dispersed in DMF via ultra-sonicating at 100 W for 1 

hour at 25 ℃. The weight fraction ratio of CNTs to PCA was found to be optimized at 

4:1 (Fig. S1 in the Supporting Information). TPU was dissolved in the resulting 

suspension with magnetic stirring for 2 hours (10 g TPU per 100 ml DMF). The mixed 

suspension was transferred into a glass mold (140 mm×140 mm×40 mm) to dry for 24 

h at 100 °C in an air-circulating oven in order to produce nanocomposite sheets. It 



 

 

should be noted that the nanocomposites without the addition of PCA were also 

prepared using the same method for comparison (Fig. 1a).  

2.3. 3D printing of nanocomposites 

The above nanocomposite sheets were cut into small granules and fed into a 

benchtop single-screw extruder (Wellzoom Type C) to manufacture filaments with a 

diameter of 1.75 mm suitable for FDM 3D printing. The operating temperature of the 

extruder was 190 ℃, and the screw speed was 100 rev/min.  

CNT/TPU filaments were printed using an ET-K1 (ET Co. Ltd., China) desktop 

FDM 3D printer. A stacking mode was used with an interlayer angle of 90° (Fig 1.b). 

The FDM printing parameters are shown in Table 1. All the samples for tensile, 

electrical and electromechanical tests were printed under the same conditions. The 

detailed geometric dimensions of specimens for different characterizations are 

specified in section 2.4. 

 



 

 

Fig. 1. Schematic of (a) preparation process of CNT/TPU nanocomposites and (b) 3D printing 

of the nanocomposites. 

Table 1. 3D printing parameters for the CNT/TPU nanocomposites. 

Parameter Value 

Nozzle diameter (mm) 

Nozzle temperature (℃) 

0.4 

220 

Hot bed temperature (℃) 70 

Printing speed (mm/s) 20 

Filling rate (%) 100 

Layer thickness (mm) 0.1 

2.4. Characterization 

The dispersibility of CNTs modified (M-CNTs) and unmodified by PCA in DMF 

was tested using a Zeta potentiometer (Brookhaven Zeta PALS 190 Plus). 

Fourier-transform infrared spectroscopy (FTIR) using a WQF-520 FTIR spectrometer 

was conducted to verify the non-covalent interactions. Raman spectra were collected 

for the cast nanocomposites using an Ocean IM-52 spectrometer (excitation 

wavelength 785 nm) at a laser power of 78.4 mW. The fracture morphologies of cast 

and printed nanocomposites were examined by FESEM (FEI Quanta 650 FEG) under 

an accelerating voltage of 20 kV after gold sputtered. 

Tensile tests were carried out for the nanocomposites using an MTS CMT4104 

Universal Tester at room temperature (IOS 37: 1994). The dimensions of the 



 

 

dumbbell specimen were 75 mm × 15 mm × 1 mm (Fig. 2a). Young’s modulus was 

determined using a clip-on extensometer with a gauge length of 20 mm at the speed of 

200 mm/min. 

The electrical resistivity (ρ) of the CNT/TPU nanocomposites was measured in 

cross-layer and through-layer directions using a two-point method combined with a 

DC digital source meter (Tektronix PWS4323) and picoamp-meter (Keithley 6485) at 

3 V. The material strips had a dimension of 50 mm × 10 mm, and the electrode 

distance was 15 mm (Fig. 2b). The resistivity of the nanocomposites was calculated 

using Eq. (1): 

ρ = R �
�                                                        (1) 

where R is the electrical resistance of the sample, L and S are the electrode 

distance and cross-sectional area of the sample, respectively. 

 

Fig. 2. Samples for (a) tensile and (b) electrical resistivity testing and (c) schematic for 

electromechanical testing. 

The electromechanical performance of the printed strain sensors was measured 

using the above universal tester, DC digital source meter and picoamp-meter at 3 V. 



 

 

To more precisely characterize the relationship of strain and relative resistance change 

(∆R/R0), the same dumbbell specimens for tensile testing were used, and the electrode 

distance was 20 mm (Fig. 2c). 

3. Results and discussion 

3.1. Dispersion and morphology 

The Zeta potential (ⅠςⅠ) of the modified CNTs/DMF suspension was 49.6 mv 

compared with 17.3 mv for the unmodified CNT suspension [33]. This implies that 

the dispersion of the MWCNTs suspension is greatly improved by the addition of 

1-pyrenecarboxylic acid [16]. To further study the dispersibility of CNTs, the CNT 

and M-CNT suspensions were left standing, after ultrasonication for 1 h, for a period 

of 30 days. As is shown in Fig. 3 that precipitation occurs for the unmodified CNT 

suspension after 15 days, while the M-CNT suspension still exhibits a good dispersion 

state after 30 days. This can be attributed to the fact that 1-pyrenecarboxylic acid 

adheres to the surface of the CNTs by physically forming a π-π stack, which enhances 

the electrostatic repulsive-forces between the CNT sidewalls [17]. 

 

Fig. 3. Photographs of (a) unmodified and (b) modified CNTs suspension after standing for 7, 



 

 

15 and 30 days respectively. 

The morphologies of cast and 3D printed samples with 3 wt% MWCNTs were 

investigated by FESEM at different magnifications, as shown in Fig. 4. A clear 

multi-layer structure with a layer thickness of about 0.1 mm can be seen in the printed 

nanocomposites (Fig. 4b and c) compared with the cast nanocomposite (Fig. 4a). In 

addition, there are more voids in the printed samples in spite of good interlayer 

adhesion. It is observed in Fig. 4d and Fig. 4e that many small nanotube agglomerates 

are uniformly distributed in the cast and printed CNT/TPU nanocomposites, while 

there are very few agglomerates in the M-CNT/TPU nanocomposite (Fig. 4f). At a 

higher magnification, a better nanotube dispersion state for the M-CNT/TPU 

nanocomposite can be observed in Fig. 4i, compared with Fig. 4g and Fig. 4h. This 

demonstrates that the dispersion of CNTs in the TPU matrix is improved with the 

addition of PCA. 



 

 

 

Fig. 4. SEM micrographs of fractured cross-sections for the cast and 3D printed samples with 3 

wt% MWCNTs: (a, d, g) cast CNT/TPU nanocomposite, (b, e, h) printed CNT/TPU nanocomposite, 

(c, f, i) printed M-CNT/TPU nanocomposite. It should be noted that the red and yellow circles 

indicate the CNT agglomerates and voids, respectively. 

3.2. Mechanical properties 

The tensile properties of 3D printed and cast CNT/TPU nanocomposites are 

shown in Fig. 5 and Table 2. In general, it can be seen in Fig. 5 that all the 

nanocomposite samples exhibit similar strain-stress behavior, and strain hardening 

behavior can be observed when strain exceeds 200%. Comparing the 3 wt% 

CNT/TPU cast with the 3 wt% CNT/TPU printed nanocomposites, it can be observed 

that the printed samples have slightly better mechanical properties in general. This is 



 

 

likely to be due to mild CNT disentanglement and alignment due to shearing in the 

single-screw extruder and printer nozzle. Disentanglement would reduce the extent of 

agglomeration and improve elongation while alignment would improve modulus and 

tensile strength. Comparing the modified with the unmodified printed material, 

increases of 27%, 68% and 19% for Young’s modulus, tensile strength and elongation 

at break respectively are observed for the modified material at the same content of 3 

wt%. The influence of CNT content is observed in increases of 39% and 49% in 

Young’s modulus (43% and 52% in tensile strength) for the 3 wt% unmodified and 

modified materials respectively compared with the unfilled printed sample. 

Elongation at break is slightly increased for the 1.5 wt% sample relative to the 

unfilled material but a dropping in elongation from 703% to 601% occurs for the 3 wt% 

sample. This indicates that at 3 wt% CNT loading the material has some 

agglomeration which acts as a stress concentrator. 

In general, the nanocomposite specimens with excellent mechanical properties 

were fabricated by 3D printing. The addition of PCA improves the dispersion of CNTs 

in the TPU matrix, which contributes to the further enhancement of the mechanical 

properties of the nanocomposites. It should be noted that 3D printing can achieve 

different filament alignments by controlling the printing paths (Fig. S2), which has a 

significant impact on the tensile properties of the composite materials (Fig. S3 and 

Table S1). Herein, we applied the optimized printing path to fabricate the strain 

sensors. 



 

 

 

Fig. 5. Typical strain-stress curves for the CNT/TPU nanocomposites. 

Table 2. Tensile properties of the CNT/TPU nanocomposites. 

Sample E (MPa) σ (MPa) εb (%) 

3 wt% CNT/TPU cast 15.1±0.7 8.0±0.6 465.7±14.4 
3 wt% CNT/TPU printed 17.1±0.8 10.4±0.4 505.3±16.3 

3 wt% M-CNT/TPU printed 21.7±2.9 17.5±0.6 601.2±21.4 
1.5 wt% M-CNT/TPU printed 

TPU printed 
20.3±0.9 
14.6±0.8 

16.5±0.6 
11.5±0.6 

710.4±23.0 
703.6±11.9 

In order to explore the changes in interfacial interactions with the addition of 

PCA, FTIR and Raman tests were analyzed for the 3D printed samples with 3 wt% 

unmodified and modified CNTs, as shown in Fig. 6. From FTIR spectra (Fig. 6a), the 

characteristic peak at the 1754 cm-1 wavenumber corresponds to carbonyl groups in 

the polymer chains, and the peak at the 1544 cm -1 is led by the deformation and 

vibration of amide groups [18]. The characteristic peak of the adipose group is 

observed at 1106 cm-1. Compared with the CNT/TPU nanocomposite, the full width at 

half maximum of the carbonyl peak of M-CNT/TPU at 1754 cm-1 is significantly 



 

 

increased. This demonstrates the formation of strong hydrogen bonding between the 

carbonyl and amide groups of TPU and the carboxyl groups of PCA. In addition, it 

can be seen in Fig. 6a that the M-CNT/TPU nanocomposite exhibits a small single 

peak at 880 cm-1, which is the characteristic peak of 5 substituted benzene in PCA. 

The low intensity of this peak can be attributed to the very small addition of PCA 

(about 0.6 wt%). Fig. 6b shows the Raman spectra of CNT/TPU and M-CNT/TPU 

nanocomposites. The D-band is derived from the disordered graphite structure and the 

G-band is derived from the in-plane vibration of C-C bonds [18]. The D-band and 

G-band of M-CNT/TPU samples are 1305 cm-1 and 1611 cm-1 in Fig. 6b, respectively, 

which are 25 cm-1 and 22 cm-1 higher than those of CNT/TPU samples [19]. Both the 

D-band and the G-band show a significant right shift, indicating that the modified 

nanocomposites have higher interfacial forces. The peak strengths of the G-band and 

D-band are denoted as ID and IG, respectively. The ID/IG values for CNT/TPU (ID1/IG1 = 

1.071) and M-CNT/TPU (ID2/IG2=1.083) nanocomposites are not significantly 

changed, indicating that the pristine structure of CNTs is not damaged by the 

non-covalent modification. 

 

Fig. 6. (a) FTIR and (b) Raman spectra of the CNT/TPU and M-CNT/TPU nanocomposites. 



 

 

3.3. Electrical properties 

The electrical resistivity, in different directions, of cast and printed 

nanocomposites is shown in Table 3. It can be seen that the forming method has a 

great influence on the resistivity of material with resistivity increasing in both 

directions in the printed material. In the cross-layer direction, the resistivity of the 

printed sample is nearly 20 times higher than that of the cast sample with the same 3 

wt% CNT addition. This can be attributed to the orientation of the CNTs during 

extrusion and 3D printing which results in the reorganization of the conductive 

network structure with preferential alignment in the extrusion/print direction. Greater 

alignment in the print direction accounts for the lower resistivity in the cross-layer 

(print direction) than in the through-layer direction. However, the orientation degree 

of nanotubes may be not very significant, considering the relatively small shear forces 

during 3D printing [14]. The addition of PCA results in a 37 fold drop in resistivity of 

the printed material compared with the unmodified 3 wt% CNT/TPU material and the 

modified material resistivity is also more sensitive to direction due to the enhanced 

dispersion of CNTs. Comparing the modified material containing 3 wt% CNTs with 

that containing 1.5 wt% CNT we observe an increase in resistivity of approximately 

one order of magnitude which is to be expected as there are fewer CNTs in the 

network. However, the modified material containing 1.5 wt% CNTs is still somewhat 

lower in resistivity that the unmodified material containing 3 wt% CNTs so the 

modification allows the same electrical performance for half the CNT content. It 

should be noted that the printed 1.5 wt% CNT/TPU sample without the addition of 



 

 

PCA is nonconductive, thus it is not presented in this work. As shown in Fig. S4, 

according to classic percolation theory, the percolation threshold (fc) of the printed 

CNT/TPU nanocomposites is 1.98 wt%. Furthermore, the addition of PCA can 

effectively reduce the CNT percolation loading in nanocomposites. When the weight 

fraction ratio of CNT to PCA is 4:1, the percolation threshold of the printed 

nanocomposites is reduced to 0.95 wt%. In addition, the printing path also influences  

the electrical properties of the composite materials (Table S2). 

Table 3. The resistivity of nanocomposite materials in different directions. 

Sample Resistivity (Ω·m) 

Cross-layer Through-layer 

3 wt% CNT/TPU cast 

3 wt% CNT/TPU printed 

2.247×102 

4.285×103 

2.253×102 

1.516×104 

3 wt% M-CNT/TPU printed 1.151×102 5.730×102 

1.5 wt% M-CNT/TPU printed 1.765×103 1.059×104 

3.4. Electromechanical performance 

Electromechanical performance of the cast and 3D printed samples was carried 

out by measuring the resistance under monodirectional stretching and cyclic 

loading/unloading. The sensitivity of the sensor is usually expressed by a guage factor 

(GF) calculated using Eq. (2): 

GF = 
� 
��× 
�                                                    (2) 

Where ∆ε, ∆R and R0 represent the applied strain, resistance change under strain 



 

 

and initial resistance, respectively [20]. When the CNT content is 3 wt%, the printed 

sensor has both high sensitivity and large strain response range (Fig.S5). Fig. 7 shows 

the relationship between the ∆R/R0 and tensile strain for different samples. The ∆R/R0 

of the 3D printed sensors steadily increases with increasing strain, suggesting a clear 

electromechanical response. Moreover, all sensors have high linearity at low strains 

and excellent strain monitoring capabilities (over 250%). It can clearly be seen that the 

printed 3 wt% M-CNT/TPU sample exhibits a higher sensitivity over the whole strain 

range compared with the printed 3 wt% CNT/TPU. When the strain is less than 20%, 

the sensitivity increases from 2.53 to 3.21 with the addition of PCA. When the strain 

reaches 250%, The sensitivity (GF3) of the printed 3 wt% M-CNT/TPU is nearly 7 

times higher than that (GF2) of the printed 3 wt% CNT/TPU. In addition, a lower 

concentration of M-CNTs in the printed sensor contributes to a higher sensitivity, with 

the 1.5 wt% M-CNT sensor having the highest sensitivity regardless of the strain range. 

Generally, one can see in Fig. 7 that GF1˂GF2˂GF3˂GF4. As expected, the printing 

path also has a significant effect on the electromechanical response of the 

nanocomposites (Fig. S3). Besides, the addition of PCA is also beneficial to the 

sensitivity of the cast sensor (Fig. S6). Compared with the recently reported literature, 

the printed sensor (1.5 wt% M-CNT/TPU) in our work exhibits an outstanding 

performance in both sensitivity and detectable strain range (Fig. 8) [20-28]. 



 

 

 

Fig. 7. ΔR/R0 as a function of strain for the strain sensors with different CNT contents and 

processing methods. 

 

Fig 8. Comparison of the gauge factor and detectable strain range of the printed strain sensor 

with that of recently reported strain sensors. 



 

 

The sensing performance of the sensors were also tested at different strains when 

the frequency was 0.1 Hz. From Fig. 9, the relative resistance change of the sensors 

regularly responds to the applied strains, indicating that the sensors enable to detect 

multiple deformations. As expected, the printed 1.5 wt% M-CNT/TPU and cast 3 wt% 

CNT/TPU samples exhibit the strongest and weakest signal feedback at all the testing 

strains. Double peaks in the ∆R/R0 of nanocomposites during monotonic loading are 

rarely observed in literature, while they are usually observed during cyclic loading 

(Fig. 9). The competition between the destruction and reconstruction of conductive 

network during the loading/unloading process determines this behavior [29]. 

Mechanical hysteresis could explain it whereby the retraction of the macromolecular 

chains results in the reconstruction of some comductive pathways after the large 

deformation. However, the macromolecular chains cannot completely return to their 

original location after unloading. This hesteresis causes a destruction of the 

conductive network formed by the nanotubes, leading to more obvious shoulder peaks 

with increasing strain [30]. 



 

 

 

 

Fig. 9. ∆R/R0 of the strain sensors under cyclic loading at different strains (5%, 15%, 50%) and 

a frequency of 0.1 Hz: (a) 3 wt% CNT/TPU cast, (b) 3 wt% CNT/TPU printed, (c) 3 wt% 

M-CNT/TPU printed, (d) 1.5 wt% M-CNT/TPU printed. 



 

 

The stress-strain relationship of the sensors may vary significantly when 

repeatedly loaded to large strains, thus their electromechanical responses ( Δ

R/R0-strain relationship) may also be affected. From Figures 10a and 11a, the printed 

sensor exhibited good recovery at low strain (30%), where the movement of the TPU 

molecular chains is hardly affected by viscoelasticity. Moreover, with the addition of 

PCA, the hysteresis in ∆R/R0-strain curves of the 3 wt % M-CNT/TPU printed sensor 

under low strain is smaller than that of 3 wt % CNT/TPU printed sensor (Fig. 10d and 

Fig. 11d). When the strain is increased to 100% and 250%, the printed sensors show 

more evident mechanical and electromechanical hysteresis. This is mainly due to strain 

softening [31] and the Mullins effect [32] in the tensile process of TPU and TPU based 

composites [14]. The strain softening effect in elastic polymers is related to the 

rearrangement of molecular chains to minimize the deformation energy as well as the 

physical breakage of the polymer matrix under large strains. The Mullins effect is 

generally considered as the change in elastic behavior of material, usually referred to 

as stress-softening, resulting from initial loadings. As shown in Fig. 10 b,c and Fig.11 

b,c, the stress-strain curves of printed 3 wt% CNT/TPU and 3 wt% M-CNT/TPU 

sensors present a large change in the first cycle under large strains (ε>100%), but they  

tend to be stable after 10 cycles. The mechanical hysteresis in stretching-releasing 

cycles at different strains is calculated based on the area of the curves. From Fig. S7, the 

printed 3 wt% M-CNT/TPU sensor has lower mechanical hysteresis compared to the 3 

wt% CNT/TPU sensor due to the enhanced interfacial interaction between the CNTs 

and TPU by non-covalent modification. A similar phenomenon can also be observed 



 

 

in the ΔR/R0-strain relationship of the sensors at large strains. From Fig. 10 e,f and 

Fig. 11 e,f, the ΔR/R0-strain curves of the 3 wt% CNT/TPU printed sensor are clearly 

modified in the cyclic stretching-releasing process, while those of 3 wt% 

M-CNT/TPU printed sensor tend to stabilize after 10~100 cycles. Furthermore, the 

percentage change in ΔR/R0 for the 3 wt% M-CNT/TPU printed sensor (31.2%) 

during cyclic stretching is less than that for the 3 wt% CNT/TPU printed sensor (51.2%) 

at 250% strain, indicating that the addition of PCA has a positive effect on the stability 

of the sensor under large strains.  

 

Fig. 10. Stress-strain and ΔR/R0-strain curves of 3 wt% CNT/TPU printed sensors during 

loading to different strains (30%, 100%, 250%) for 1000 cycles: (a, d) strain=30%, (c, e) 

strain=100% (d, f) strain=250%. 



 

 

 

Fig. 11. Stress-strain and ΔR/R0-strain curves of 3 wt% M-CNT/TPU printed sensors during 

loading to different strains (30%, 100%, 250%) for 1000 cycles: (a, d) strain=30%, (c, e) 

strain=100% (d, f) strain=250%. 

The ∆R/R0 of the 3D printed sensors under the same strain (ε = 10%) and 

different frequencies (f = 1, 0.1, 0.2, 0.01 Hz) was also investigated, as shown in Fig. 

12. The strain sensors demonstrate the capability of detecting strain within a broad 

frequency range. It can be seen that the ∆R/R0 of sensors increases with increasing 

frequency, which is mainly due to the decrease in the molecular mobility at a high 

frequency resulting in a stiffer mechanical response [33]. 



 

 

 

Fig. 12. ΔR/R0 of the 3D printed strain sensors during a cyclic loading at a strain of 10% and a 

frequency of 0.01, 0.1, 0.2, 1 Hz: (a) 3 wt% CNT/TPU, (b) 3 wt% M-CNT/TPU, (c) 1.5 wt% 

M-CNT/TPU. 

In order to further explore the relationship between sensing signal and strain,  

rectangular strain wave (ε = 10%, f = 0.05) testing was performed (Fig. 13a). One can 

see that the ∆R/R0 of all the sensors changes with time/strain, while the printed 3 wt% 

M-CNT/TPU (Fig. 13c) and 1.5 wt% M-CNT/TPU samples (Fig. 13d) show a better 

correlation compared with the printed 3 wt% CNT/TPU (Fig.13b), indicating that the 

enhanced interfacial interations leads to a higher sensitivity [34]. 



 

 

 

Fig. 13. ΔR/R0 of the 3D printed strain sensors under rectangular wave: (a) time-strain curve, 

(b) 3 wt% CNT/TPU, (c) 3 wt% M-CNT/TPU, (d) 1.5 wt% M-CNT/TPU. 

The relative resistance changes of the printed sensors during 1000 

loading/unloading cycles at different strains and a frequency of 1 Hz are shown in Fig. 

14. It can be seen in Fig. 14a-c that all the printed strain sensors show excellent 

stability even after 1000 loading/unloading cycles. However, compared with the strain 

sensors of 3 wt% and 1.5 wt% M-CNT/TPU nanocomposites, theunmodified 3 wt% 

CNT/TPU sensor shows a clear upward shift after 700 cycles, indicating that the 

stability of sensors based on M-CNT/TPU is higher. In addition, it can be seen in Fig. 

14d-f that the ∆R/R0 of the sensors with modified CNTs gradually stabilizes after the 

first 100 loading cycles at 250% strain. However, the printed sensor with unmodified 

CNTs exhibit a more evident instability in ∆R/R0 during the cyclic large strain tests. 

Therefore, the non-covalent modification can significantly improve the stability of the 

sensor due to stronger interfacial interactions between CNTs and TPU regardless of the 

strain range. 



 

 

 

 

Fig. 14. ΔR/R0 of the 3D printed strain sensors during 1000 cycles at a strain of 10% and a 

frequency of 1 Hz: (a) 3 wt% CNT/TPU, (b) 3 wt% M-CNT/TPU, (c) 1.5 wt% M-CNT/TPU; Δ

R/R0 of the 3D printed strain sensors during 1000 cycles at a strain of 250% and a frequency of 1 Hz: 

(d) 3 wt% CNT/TPU, (e) 3 wt% M-CNT/TPU, (f) 1.5 wt% M-CNT/TPU. 

3.5. Modeling and mechanism 

As mentioned earlier, the strain sensing response of the printed sensors greatly 

depends on the destruction and reformation of the conductive network. Based on 

Simmons’ tunneling theory, a conductive model was established to study the sensing 

mechanism [20]. The total resistance R of conductive composites can be expressed by 

Eq. (3): 

R = (�
�)( ����

���²�²)exp (��)                                          (3) 

γ = !�"#$%
�                                                      (4) 

where L is the number of particles forming a single conductive path, N the 

number of conductive paths, h the Planck’s constant, s the shortest distance between 



 

 

conductive particles, a² the effective cross-section area, e the electron charge, m the 

electron mass, and φ the height of the potential barrier between particles [35]. 

When the composite is stretched, the distance between the nanofillers linearly 

increases from s0 to s, which increases the electrical resistance of the composite. The 

shortest distance between nanofillers is calculated as follows: 

s = �' (1 + C ,
-
-�./ = �'(1 + 01)                                  (5) 

where ε is the strain of the sensor, 2' is the original length of the sensor, and 

∆l is the deformation of the sensor, and constant C varies with the material systems. 

At large strains, a non-linear change in the number of conductive paths (N) 

results in a non-linear increase in resistance, which can be expressed by Eq. (6): 

N = �˳
789 (:�;<�=;>�?;@�A)                                         (6) 

where M, W, U, V are constants. 

Substituting Eq. (6) and Eq. (5) into Eq. (3) gives Eq. (7): 

R = B(1 + Cε)exp [E + (F + E0)1 + G1# + H1� + I1!]               (7) 

where A= γ�', B= 
���K��

����=�²�², and n represents the total number of particles 

(n=L×N). 

It can be observed in Figure 15 that the theoretical model agrees with the 

experimental results well. The fitting parameters A, B, C, M, W, U, and V are shown 

in Table 4. Fig. 16a and Fig. 16b, demonstrate the variations in tunneling distance 

(change of TD, y= Cx) and conductive paths (change of CP, y= Mx+Wx2 +Ux3 +Vx4). 

In general, the change of TD linearly increases with increasing strain. Obviously, the 

changes of TD and CP in the printed 1.5 wt% M-CNT/TPU increase more evidently 



 

 

compared with the printed 3 wt% M-CNT/TPU. This indicates that the sensitivity of 

the printed sensor increases as the CNT content decreases. Besides, the changes of TD 

and CP of the sensor after non-covalent bond modification also significantly increase 

at the same CNT content of 3 wt%. This indicates that the conductive network in the 

modified samples with stronger interfacial interactions is significantly deformed and 

is more readily destroyed under stretching. 

 

Fig. 15．．．．Theoretical (red solid lines) and experimental (dots) results for the resistance-strain 

relationship of the printed sensors. 



 

 

 

Fig. 16. Changes of the (a) tunneling distance and (b) the conductive paths against strain for 

the printed sensors. 

Table. 4. Parameters obtained from fitting the resistance-strain data. 

Samples 3 wt% CNT/TPU 

casted 

3 wt% CNT/TPU 

printed 

3 wt% M-CNT/TPU 

printed 

1.5 wt% M-CNT/TPU 

printed 

A 0.0888 0.435 0.0481 0.133 

B 5.72ⅹ105 2.78ⅹ106 1.31ⅹ105 2.03ⅹ106 

C 0.00217 0.0136 0.0370 0.0547 

M 0.00238 0.00385 0.0265 0.0570 

W -4.81ⅹ10-6 0.00130 0.0365 0.0426 

U -3.69ⅹ10-6 -5.16ⅹ10-7 6.19ⅹ10-6 0.0027 

V 8.18ⅹ10-6 4.03ⅹ10-7 7.13ⅹ10-8 -0.0002 

3.6. Applications 

Due to the excellent performance in sensitivity and stability, the printed strain 

sensors with 1.5 wt% modified CNTs could have a promising propective for flexible 

electronic devices and health monitoring. Some application in detecting human 



 

 

motions, such as finger movement, wrist bending, and breathing, were evaluated for 

the sensors and the results are illustrated in Fig. 17. When the strain sensor was 

attached to the index finger, bending of the finger could accurately be monitored with 

specific responses to different bending degrees (Fig. 17a). For example, ΔR/R0 

reached 8.5% at a bending angle of 45°, and it increased to 35% at a bending angle of 

90°. Fig. 17b demonstrates the response of the printed sensor to wrist bending. The Δ

R/R0 response was 7.5% at a bending angle of 30°, and it increased to 20% at a 

bending angle of 60°. As the muscles of the abdomen change during breathing, this 

sensor can be used to detect changes in the frequency of breathing. As shown in Fig. 

17c, the normal respiratory rate was about 0.33 Hz, which increased to 0.5 Hz after 

strenuous exercise with the corresponding ∆R/R0 increased by 2 times. As a result of 

the high flexibility and sensitivity of the sensor, it can be attached to the throat and used 

to monitor human speech (Fig. 17d). When the volunteer spoke different English 

words, the sensor outputed distinct signal patterns due to the delicate muscle 

movement leading to the changes of the conductive paths in the sensor [36]. 



 

 

 

Fig. 17. Electromechanical responses of the printed sensor to (a) bending and unbending of 

index finger at 30°and 90, (b) wrist, (c) breathing and (d) speaking “go”, “belong”, and “important”. 

4. Conclusions 

In this study, highly flexible strain sensors of CNT/TPU nanocomposites were 

fabricated by 3D printing, and 1-pyrenecarboxylic acid was introduced to 

non-covalently modify the CNTs and enhance the interfacial interactions. One can see 

that the dispersibility of the CNTs in the TPU matrix is improved with the 

introduction of PCA and this is accompanied by significantly improved tensile and 

electrical properties of the 3D printed sensors. The 3D printed 1.5 wt% M-CNT/TPU 

nanocomposite exhibited higher tensile modulus (20.3 MPa) and strength (16.5 MPa) 

and comparative elongation (710%) relative to the printed neat TPU sample. 

Compared with the printed 3 wt% CNT/TPU nanocomposite, the resistivity of 

M-CNT/TPU decreased by 37 times in the cross-layer direction at the same CNT 

loading. The sensor exhibited a high sensitivity (GF = 117213 at a strain of 250% for 

the printed sensor of 1.5wt% M-CNT/TPU) and a large detectable strain. Besides, the 

sensor performs well in the frequency range of 0.01~1Hz and shows the capability to 



 

 

monitor the strains with different frequencies. Both strain softening and Mullins effect 

can be observed for the printed sensors, while the stress-strain and ΔR/R0-strain 

relationships tend to stablize after a few strain cycles. In addition, this sensor shows 

excellent stability during the cyclic strain testing up to 1000 cycles. The strain sensing 

properties of the sensor are greatly improved by the strong non-covalent interactions 

due to the introduction of PCA. A modeling study based on tunneling theory was 

carried out to understand the strain sensing mechanism, and the theoretical results 

agreed well with the experimental data. We also demonstrated the sensor’s capability 

in monitoring human motions, including finger movements, joint movements, 

respiratory frequency, and speech recognition. This work provides a guideline for 

producing 3D printed high-performance flexible strain sensors with potential 

applications in intelligent robots, prosthetics and wearable devices where 

customizability and complex design are demanded. 
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