
166 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.2 November 2012

Enhanced Performance of Particle Swarm
Optimization with Generalized Generation

Gap Model with Parent-Centric
Recombination Operator

Chukiat Worasucheep1 , Charinrat Pipopwatthana2 ,

Sujitra Srimontha3 , and Wilasini Phanmak4 , Non-members

ABSTRACT

Particle Swarm Optimization (PSO) algorithm has
recently gained more attention in the global opti-
mization research due to its simplicity and global
search ability. This paper proposes a hybrid of PSO
and Generalized Generation Gap model with Parent-
Centric Recombination operator (G3PCX) [25], a
well-known real-coded genetic algorithm. The pro-
posed hybrid algorithm, namely PSPG, combines fast
convergence and rotational invariance of G3PCX as
well as global search ability of PSO. The performance
of PSPG algorithm is evaluated using 8 widely-used
nonlinear benchmark functions of 30 and 200 deci-
sion variables having different properties. The experi-
ments study the effects of its new probability parame-
ter Px and swarm size for optimizing those functions.
The results are analyzed and compared with those
from the Standard PSO [14] and G3PCX algorithms.
The proposed PSPG with Px = 0.10 and 0.15 can
outperform both algorithms with a statistical signif-
icance for most functions. In addition, the PSPG is
not much sensitive to its swarm size as most PSO al-
gorithms are. The best swarm sizes are 40 and 50 for
unimodal and multimodal functions, respectively, of
30 decision variables.

Keywords: Particle Swarm Optimization, Real-
Coded Genetic Algorithm, Parent-Centric Recombi-
nation, Hybrid algorithm, Optimization.

1. INTRODUCTION

Particle Swarm Optimization (PSO) , originally
proposed by Eberhart and Kennedy, is a population-
based algorithm for optimization over continuous
search space [1]. Inspired by the social behavior of
bird flocking, PSO consists of a swarm of particles, or
a group of candidate solutions, each of which moves

Manuscript received on September 1, 2011 ; revised on Jan-
uary 31, 2012.
1,2,3,4 The authors are with Applied Computer Science

program, Department of Mathematics, Faculty of Sci-
ence, King Monkut’s University of Technology Thonburi,
Bangkok, Thailand, E-mail: chukiat.wor@kmutt.ac.th,
charinrat p@hotmail.com, susiexx56@hotmail.com and
wilasinip@gmail.com

through the multi-dimensional search space. The po-
sition of each particle is updated with a velocity,
which is constantly updated by the previous best per-
formance of that particle and its neighbors. Due to
its effectiveness and simple concept, PSO has become
popular for solving nonlinear optimization problems
in various domains, e.g. power system [2], economics
[3], financial [4], and manufacturing [5]. Many at-
tempts have been made to further improve the per-
formance of original PSO, resulting in a number of
well-known variants [6]-[12], including the Standard
PSO 2007 (SPSO07 thereafter) [13][14]. Some vari-
ants are discussed in section 2.

The conventional PSO algorithms usually provide
a good convergence to the search subspace that an
optimum is located. However, the oscillating behav-
ior of particles often prolongs the swarm from reach-
ing such optimum [15]. In addition, the conventional
PSO variants often face troubles with some complex
problems because they are generally not rotational in-
variant, as all computations are performed coordinate
by coordinate [16]. Also, the performance of conven-
tional PSO deteriorates quickly due to degeneracy of
particles’ velocities when the number of decision vari-
ables is high [17]. As the result, several studies have
incorporated some specialized operators of Evolution-
ary Algorithms (EAs) into PSO, in an attempt to
improve its performance or to compensate the limita-
tions of algorithm. Some successful hybridizations of
PSO are as follows. In Takahama et al. [18]’s hybrid
PSO and GA, the processes of PSO update and GA’s
operations were performed in each iteration. Kao et
al. [19] proposed a method of running genetic opera-
tions and particle swarm operations to each halve of
the population in each generation. Cai and Wunsch
[20] introduced the PSO’s velocity update into EAs,
while Esmin et al. [21] introduced the mutation oper-
ator into PSO. Chiam et al. [4] proposed the imple-
mentation of PSO as a local optimizer in evolutionary
search for training neural networks. Many hybrids of
PSO with other population-based algorithms also ex-
ist such as PSO with Ant Colony Optimization [22],
PSO with Extremal Optimization [23], PSO with Dif-
ferential Evolution [24], etc.

In this work, we propose the hybrid of PSO



Enhanced Performance of Particle Swarm Optimization with Generalized Generation Gap Model with Parent-Centric Recombination Operator167

and Generalized Generation Gap model with Parent-
Centric Recombination operator (G3PCX) evolution-
ary algorithm [25]. G3PCX is a well-known rotational
invariant Real-Coded Genetic Algorithms (RCGA)
[26]. G3PCX has shown its superior performance over
many other real-valued Evolutionary Algorithms [25].
However, G3PCX is occasionally prone to get trapped
in local optima in some complex functions. For this
reason, this paper focuses on enhancing the perfor-
mance of conventional PSO algorithm with G3PCX.
The goal is to take advantage of rotational invari-
ance capability and the convergence speed of G3PCX
while maintaining the global diversity with conven-
tional PSO. The proposed hybrid algorithm, namely
PSPG, blends G3PCX into the particles framework
of PSO. In each generation, the particle’s position
is updated either by PSO’s particle movement equa-
tions or G3PCX’s recombination operator, depend-
ing on a new probability parameter. This predefined
probability balances between the exploration ability
of PSO and the exploitation ability of G3PCX. The
performance of proposed hybrid algorithm is evalu-
ated using 8 widely-used scalable nonlinear bench-
mark functions of 30 and 200 dimensions (indicating
the number of decision variables). The 200 dimen-
sions are sufficient to handle almost all complex prob-
lems in real world. Tackling problems with a higher-
dimensionality will require specific algorithm design
and mechanics, such as problem decomposition and
cooperative coevolution [27], and thus is beyond the
scope of this work. Our experiments study the ef-
fects of an introduced probability parameter and the
swarm size. The results are compared with those from
pure G3PCX [25] and SPSO07 [14]. Although an im-
proved performance can be anticipated from the pro-
posed hybrid algorithm, we do not intend to compare
with the state-off-the-art stochastic algorithms such
as Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [28][29].

The rest of this article is organized as follows. Sec-
tion 2 briefly reviews the concepts of PSO and some
recombination operators of real-coded genetic algo-
rithms. Section 3 presents the proposed PSPG algo-
rithm. Section 4 explains the experimentation of per-
formance evaluation using the benchmark functions.
Section 5 reports and analyzes the experimental re-
sults of the proposed PSPG against a conventional
PSO and G3PCX. Finally, section 6 concludes this
work with suggested parameter tuning.

2. PSO AND REAL-CODED GENETIC AL-
GORITHMS

2.1 Particle Swarm Optimization Algorithm

PSO is a population-based optimization technique,
where the population is called a swarm of particles.
Each particle represents a possible solution to the op-
timization task at hand. This paper will base on the
unconstrained minimization problems,

min
x∈Ω

f(x), (1)

where Ω ⊂ RD → R is a continuous real-valued func-
tion, and the search space Ω is a multidimensional
interval specified by a lower and an upper bounds xl,
xu ∈ RD, respectively.

The original version of PSO, introduced by its orig-
inators [1], consists of a group or a swarm of N par-
ticles. The position of particle i at iteration t is rep-
resented by vector x⃗i(t) = (xi1, xi2, . . . , xiD) and its
velocity v⃗i(t) = (vi1, vi2, . . . , viD), where D is the di-
mension of optimization problem. During each it-
eration, each particle adjusts its position in a direc-
tion toward its personal best (pbest) position and the
position of “some other” particles. There are many
ways to identify such “some other” particles, result-
ing in different forms of PSO. The most commonly
used forms are gbest and lbest. This paper bases on
gbest PSO with an inertia weight w [6], in which the
trajectory of particles is influenced by the best par-
ticle of entire swarm. For a particle i, its velocity is
calculated as

vij(t+1) = w ·vij(t)+c1 ·r1j(t) ·(pbestij(t)−xij(t))

+ c2 · r2j(t) · (gbestij(t)− xij(t)) (2)

The particle’s position is changed according to

x⃗i(t+ 1) = x⃗i(t) + v⃗i(t+ 1) (3)

where pbest and gbest are the personal best and
global best positions, respectively, of that particle i.
Subscript j indicates dimension and j ∈ {1, . . . , D}.
The c1 and c2 parameters, termed as cognitive and
social components, are acceleration coefficients that
pull the particle toward pbest and gbest respectively.
r1 and r2 are vectors of random numbers with uni-
form distribution between 0 and 1. w is an inertia
weight that balances the exploration and exploita-
tion abilities of the swarm in search of an optimal
solution. The adjustment of velocity and position for
each particle is repeated until some stopping criteria
are met.

A generic PSO algorithm can be implemented
based on the following steps.

1. Initialize the swarm by assigning a random
position in the multidimensional problem space
to each particle.

2. Evaluate the fitness function for each particle.
3. For each individual particle, compare the

particle’s fitness value with its pbest’s value. If
the current value is better than its pbest’s value,
then set this particle as the pbest.

4. Identify the particle that has the best fitness
value as gbest.

5. Update the velocities and positions of all
particles using (2) and (3).



168 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.2 November 2012

6. Repeat steps 2-5 until a stopping criterion is
met (e.g. maximum number of iterations, or a
satisfied fitness value).

Many attempts have been made to further improve
the performance of original PSO, resulting in a num-
ber of well-known variants, e.g. time-varying iner-
tia weight [6], constriction factor [7], self-organizing
hierarchical PSO with time-varying acceleration co-
efficients [8], cellular-based PSO [9], co-evolutionary
PSO [10] for constrained optimization problems, PSO
for multi-objective problems [11], and adaptive multi-
swarm approach for optimization problems with dy-
namic environment [12]. In 2007, M. Clerc et al.
had published a version of Standard PSO 2007 on
http://www.particleswarm.info, which was aimed to
replace the original versions. This standard version
accommodates several improvements in PSO commu-
nity since its inception, and is intended for use as a
baseline for performance testing of further improve-
ment [14]. Some major improvements in this version
are the randomized number of neighbours for commu-
nication, instead of using the whole swarm, and slight
changes in values of both the weight and acceleration
coefficients [14]. Thus we will use this Standard PSO
2007 [14] are a baseline for performance comparison.

2.2 G3PCX

In a Real-Coded Genetic Algorithm (RCGA), the
solution is represented as a vector of real-valued de-
cision variables. First, a population of solutions is
randomly created within the search space. Then ge-
netic operations (such as recombination and muta-
tion) are performed to create a new population in
an iterative manner. Most RCGA differs from each
other mainly by the means of their recombination.
The commonly used recombination operators in RC-
GAs are SBX [30], UNDX [31], and SPX [32]. In
2002, Deb et al. proposed the parent-centric recom-
bination (PCX), which is an extension of two-parent
SBX operator for any number of parents. The PCX
operator assigns more probability for creating an off-
spring close to each parent, not the centroid of them
[25], and can be briefly described as follows. For each

offspring, the direction vector d⃗(p) is calculated from
a randomly chosen parent to the centroid of them,
g⃗, i.e., d⃗(p) = x⃗(p)−g⃗ . The offspring is then created
from the orthonormal bases that span the subspace
perpendicular to each of the direction vectors above.
Please refer to [25] for more details of the PCX algo-
rithm.

PCX was introduced along with the Generalized
Generation Gap (G3) evolutionary model, which is
a steady-state and elite-preserving algorithm. The
G3 method always selects the best individual to
participate as a parent. First, two other parents
are randomly selected. After offspring are created,
the method replaces those randomly selected parents
with the best two solutions from a combined popula-

tion, which includes two parents and the newly gen-
erated offspring. The performance of G3 with PCX
was demonstrated to be superior to the standard Dif-
ferential Evolution algorithms and many real-coded
GA proposed earlier [25].

3. THE PROPOSED HYBRID PSO WITH
G3PCX

This section describes the proposed hybrid PSO
algorithm with G3PCX module, namely PSPG, as
shown in Fig. 1. The probability Px is first intro-
duced here and used to select the running of either
PSO module or G3PCX module in each generation.
If a uniform randomized value is greater than the pre-
defined probability Px, then the velocity and position
updates of the PSO module is performed; otherwise,
the G3PCX module takes action. The µ parents used
by G3PCX are chosen from the gbest particle and
µ−1 other particles randomly selected. Next, the G3
module works as described in subsection 2.2. That is,
µ parents will generate λ offspring using the PCX op-
erator. Then, the best λ particles from the combined
(µ + λ) particles will replace the previously chosen
subset RP , which is composed of the gbest particle
and other λ− 1 particles randomly selected from the
swarm. At the end of evolution process, the G3PCX
module is run again in order to perform further re-
finement. In this work, the selection probability Px

is set constant, and Clerc and Kennedy’s PSO algo-
rithm with constriction factor [7], which helps ensure
the convergence, is used as the PSO module. With
the constriction factor χ, the velocity update equa-
tion (2) is replaced with

vij = χ [w · vij + c1 · r1j · (pbestij − xij)

+c2 · r2j · (gbestij − xij)] , (4)

with the explicit time step t omitted for notational
convenience. The constriction factor χ is defined as
[7],

χ =
2

|2− φ−
√
φ2 − 4φ|

, φ = c1 + c2, φ ≥ 4. (5)

4. PERFORMANCE EVALUATION

4.1 Test Functions

The proposed hybrid PSO with G3PCX algorithm
is evaluated using 8 nonlinear benchmark functions
selected from [33] and [34].These functions, listed in
Table 1, are scalable minimization problems with a
wide range of characteristics such as unimodal, mul-
timodal, separable and non-separable, as well as dis-
continuity and noises. While there exist many bench-
mark functions in literature, most of them share sim-
ilar characteristics with those used here. Ref. [33]
and [34] give detailed descriptions of those functions.



Enhanced Performance of Particle Swarm Optimization with Generalized Generation Gap Model with Parent-Centric Recombination Operator169

Fig.1: Algorithm of the proposed PSPG.

Table 1: Benchmark function. D: dimensions, C: Characteristics, U: Unimodal, M: Multimodal, S: Separa-
ble, N: Non-separable.

Table 2: Profile of the experiments.



170 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.2 November 2012

4.2 Experimental Setups and Performance
Criteria

Two experiments are performed to test the perfor-
mance of proposed hybrid algorithm. Experiment 1
studies the effects of probability Px that controls the
selection of running either PSO or G3PCX modules
in each generation. The simulation is set with its
dimension or number of decision variables D equal
to 30 and 200. Experiment 2 studies the effects of
swarm size. Table 2 summarizes the configurations
of each experiment. The detailed configuration, re-
sults and discussions of these experiments are given
in Section 5. For each algorithm or variant, 100 in-
dependent runs with different seeds for the random
number generator are performed per function tested
at 30D, and 50 independent runs at 200D to avoid
excessive computational time.

The population is asymmetrically initialized to a
lower 40% portion of each dimension, so that the
global optimum will not lie in the middle of the initial
population2. Each run will terminate when the max-
imum number of objective function calls (MaxNFC)
(as shown in Table 2) is reached. The average con-
vergence graphs of some important functions are illus-
trated in Fig. 2 for discussion. The statistical results
(means and standard deviations) of the achieved op-
timal values are reported in Table 3 and analyzed for
a comparison with those from pure G3PCX [25] and
SPSO07 [14].

The parameters of G3PCX, in both pure and
the proposed PSPG, are set to the same values
as suggested [25], i.e. µ = 3 and λ = 2. In
fact, other values of these parameters are also
tested, but the best results are still from such rec-
ommendations. The proposed PSPG algorithms
were written in Java language. The C codes for
G3PCX and SPSO07 used in this experiment were
downloaded from www.iitk.ac.in/kangal/codes.shtml
and www.particleswarm.info/Programs.html, respec-
tively. All program codes use the common routine of
random number generator, and the simulations are
performed on Windows 7 with Core2Duo 2.0 GHz
CPU.

5. RESULTS AND DISCUSSIONS

5.1 Experiment 1: Effects of probability Px.

The first experiment aims at comparing the perfor-
mance of proposed hybrid algorithm (PSPG) against
SPSO07 [14] and pure G3PCX [25]. Adding more di-
mensions to a problem space will result in the expo-
nential growth of associated volume [36]. This rapid
growth in volume significantly increases the complex-
ity of problem. The performance of an algorithm
with excellent search ability at a moderate dimen-
sion (such as 20-30) may deteriorate quickly when

2This initialization scheme was suggested by Angeline [35] and
widely used in PSO community since then.

the dimension increases beyond 100. Therefore, this
experiment tests the scalable benchmark functions at
both 30 and 200 dimensions. In the case of testing
at 200 dimensions, the MaxNFCs are extended from
100,000 to 500,000 to provide more search opportu-
nity.

The swarm size or population size N is kept un-
changed. The suggested population size for using
G3PCX, or other evolutionary algorithms, is gener-
ally larger than that of a PSO algorithm for optimiz-
ing a function having the same dimension [25]. Hence,
the swarm sizes of PSPG and SPSO07 are set N =
25, whereas the population sizes of pure G3PCX are
150 and 200. In fact, we tested G3PCX at different
population sizes of 50, 100, 150, 200 and 250. The op-
timal results are from those runs with 150 and 200;
thus, they are listed in Table 3. In order to investi-
gate the effects of probability Px in PSPG, 18 values
of Px were tested: 0.005, 0.01, 0.05, 0.10, 0.15, 0.2,
0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95,
and 0.99. However, only the results from a range of
0.01 to 0.20 can outperform others, and thus they are
included in Table 3.

Table 3 reports the means and standard deviations
of the objective function values achieved from running
each algorithm for all runs. To determine the signif-
icance of difference, we conduct the statistical t-test
comparisons with a 95% confidence interval between
PSPG against SPSO07 and G3PCX. For each bench-
mark tested, the better result from either G3PCX-
N200 or G3PCX-N150 is used for comparison. From
Table 3, the results of PSPG with Px = 0.05 and 0.10
outperform those from other Px values; thus we only
conduct statistical t-test for both of them as the rep-
resentatives of PSPG. The t-test results are reported
in Table 4 with the following notations: “+” tag in-
dicates that the average result from PSPG is signifi-
cantly better than the result from SPSO07 or G3PCX
depending on the column; “-” tag indicates that the
difference between two results is not significant; and
“-” tag indicates the PSPG’s result is significantly
worse than the result from SPS07 or G3PCX. Fig. 2
illustrates the average convergence graphs for some
important functions of 30D in Experiment 1.

From both Table 3 and 4 and the average conver-
gence graphs in Fig. 2, we can observe the following.

1. The performance of PSPG with Px= 0.05, 0.10
and 0.15 are in fact comparable. On the other
hand, the performance of G3PCX with N = 200
is somewhat better than G3PCX with N = 150.
We may observe from Table 3 that the performance
of G3PCX degrades quickly when the number of
decision variables increases from D = 30 to 200,
especially in unimodal functions.

2. For 30-dimensional tests, PSPG with Px= 0.10
performs the best in unimodal functions. PSPG
with Px= 0.10 and 0.15 outperform SPSO07 with
a statistical significance for 4 functions, whereas



Enhanced Performance of Particle Swarm Optimization with Generalized Generation Gap Model with Parent-Centric Recombination Operator171

Table 3: Mean and standard deviation (in parenthesis) of the optimization results from Experiment 1.

their differences are not significant for the remain-
ing 4 functions. Being compared to G3PCX,
PSPG statistically outperforms in 5 functions,
but is defeated only in Rosenbrock function. This
function is non-separable and multimodal when
the number of variables is more than three [25],
and is well known for its difficult fitness landscape.
Also, the conventional PSO algorithms are known
to have troubles optimizing it [16]. The rotation-
ally invariant crossover in G3PCX, which is im-
planted into PSPG, can assist the hybrid algorithm
in solving this function better than conventional
PSO. But the occasional runs of rotational
crossover in PSPG cannot take full advantage
as compared with the pure G3PCX. In case of
the Griewank and Penalized functions, no single
algorithm/variant in this test can outperform the

others with a statistical significance.

3. For 200-dimensional tests, Table 4 clearly shows
the outstanding performance of PSPG with
Px = 0.10 and 0.15 over both SPSO07 and
G3PCX with a statistical significance for all
cases, except one. This exception is the highly-
multimodal Rastrigin function, in which the
difference between PSPG and SPSO07 is not
statistically significant.

5.2 Experiment 2: Effects of swarm size

The swarm size or number of particles in PSO algo-
rithm is known to cause some effects on performance.
This experiment tests the performance of PSPG using
Px= 0.05, which is the optimal value observed from
previous experiment. The same benchmark functions



172 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.2 November 2012

Table 4: Statistical t-test comparison results of PSPG-0.05 and PSPG-0.10 against SPSO07 and G3PCX.

Table 5: Mean and standard deviation (in parenthesis) of the optimization results from Experiment 2: Effects
of swarm size.



Enhanced Performance of Particle Swarm Optimization with Generalized Generation Gap Model with Parent-Centric Recombination Operator173

Fig.2: Average convergence graphs for some functions of 30 dimensions in Experiment 1.

are selected for this study. The swarm sizes are varied
from 20 to 70.

Table 5 reports the means and standard deviations
of optimization results averaged over 100 runs. In
each function, it can be observed that the results are
not much different as the swarm size is changed. Con-
sequently, we perform t-test comparison, with a 95%
confidence interval, to determine whether the differ-
ences of the best and worst results are statistically
significant. The last column indicates t-test results:
“+” tag means the difference between the best and
worst variant is significant, and “O” tag means the
difference is not statistically significant. According
to the experimental results from running with varied
swarm size, there are no statistically differences in 6
out of 8 tested functions. This demonstrates that the
proposed algorithm PSPG is not much sensitive to its
swarm size.

However, in order to find the optimal swarm size,
all PSPG variants are ranked according to their
means (in Table 5) for each function. Table 6 reports
these ranks, together with their averages grouped by
modality: unimodal and multimodal. The variant
with a lower value of averaged rank means can better
achieve the optima than the variant with a higher av-
eraged rank. It can be observed that the swarm size

of 40 offers the best results for unimodal functions
(with the average rank of 2.7), whereas the swarm
size of 50 is better for multimodal functions (average
rank of 2.8). This behaves similarly to the case of
generic PSO algorithms.

6. CONCLUSION

PSO algorithm is well-known for its good conver-
gence to the search subspace that an optimum is sit-
uated, but it is sometimes prolonged to reach such
optimum due to its oscillating behavior. In contrast,
G3PCX is well-known for its superior convergence
speed particularly in those functions with noncom-
plex fitness landscape. This paper proposes a hy-
brid algorithm, namely PSPG, which combines both
the global search efficiency of PSO with the conver-
gence capability of G3PCX. Two experimentations
are conducted to investigate the convergence behavior
of three algorithms: Standard PSO 2007 (SPSO07)
[14], G3PCX [25], and the proposed PSPG, using
eight well known nonlinear benchmark functions of 30
and 200 dimensions. The probability Px of PSPG al-
lows users to balance the executions of both PSO and
G3PCX modules, depending upon the characteristics
of problem at hand. According to the experimental



174 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.2 November 2012

results, a small value of Px (about 0.01-0.05) is rec-
ommended for simple or unimodal functions, while
a larger value (0.10) is suitable for multimodal func-
tions. For a problem with unknown characteristics,
setting Px= 0.05 is recommended. Similarly to the
case of generic PSO algorithms, a moderate swarm
size of about 40 is recommended for optimizing 30
dimensional functions. Slightly more particles are ef-
fective for functions with complex fitness landscape
or high dimensions, while fewer particles are sufficient
for fast convergence in simple functions.

References

[1] J. Kennedy, R. C. Eberhart, “Particle swarm op-
timization,” Proceedings of IEEE International
Conference on Neural Networks, Piscataway, NJ,
1995, pp. 1942-1948.

[2] J.B. Park, Y.W. Jeong, J.R. Shin, and K.Y.
Lee, “An Improved Particle Swarm Optimiza-
tion for nonconvex economic dispatch problems,”
IEEE Transactions on Power Systems, vol. 25,
pp. 156–166, 2010.

[3] T. Zhang, and B.W. Brorsen, “Particle Swarm
Optimization Algorithm for Agent-Based Arti-
ficial Markets,” Computational Economics, vol.
34, pp. 399–417, 2009.

[4] S.C. Chiam, K.C. Tan, A.Al. Mamun, “A
memetic model of evolutionary PSO for com-
putational finance applications,” Expert Systems
with Applications, vol. 36, pp. 3695–3711, 2009.

[5] T. Navalertporna, N.V. Afzulpurkar, “Optimiza-
tion of tile manufacturing process using particle
swarm optimization,” Swarm and Evolutionary
Computation, vol. 1, pp. 97–109, 2011.

[6] Y. Shi, R. C. Eberhart, “A modified parti-
cle swarm optimizer,” Proceedings of the IEEE
Congress on Evolutionary Computation 1998,
1998, pp. 69–73.

[7] M. Clerk and J. Kennedy, “The particle swarm-
explosion, stability, and convergence in a multi-
dimensional complex space,” IEEE Trans. Evo-
lutionary Computation, vol. 6, pp. 58–73, 2002.

[8] A. Ratnaweera, S. K. Halgamuge, and H. C.
Watson, “Self-organizing hierarchical particle
swarm optimizer with time-varying acceleration
coefficients,” IEEE Trans. Evolutionary Compu-
tation, vol. 8, pp. 240–255, 2004.

[9] Y. Shi, H. Liu, L. Gao, G. Zhang, “Cellular parti-
cle swarm optimization”, Information Sciences,
vol. 181, pp. 4460-4493, 2011.

[10] R.A. Krohling, L. dos Santos Coelho, “Coevo-
lutionary Particle Swarm Optimization Using
Gaussian Distribution for Solving Constrained
Optimization Problems,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B, vol. 36,
pp. 1407–1416, 2006.

[11] C.A.C. Coello, G.T. Pulido, M.S. Lechuga,
“Handling multiple objectives with particle

swarm optimization,” IEEE Trans. Evolutionary
Computation, vol. 8, pp. 256–279, 2004.

[12] T. Blackwell, “Particle Swarm Optimization in
Dynamic Environments,” Studies in Computa-
tional Intelligence, vol. 51, 2007, pp. 29–49, 2007.

[13] D. Bratton, J. Kennedy, “Defining a Stan-
dard for Particle Swarm Optimization,” Proc. of
the 2007 IEEE Swarm Intelligence Symposium,
2007, pp. 120–127.

[14] M. Clerc et al. Standard PSO 2007. http://www.
particleswarm.info (standard pso 2007.c), 2007.

[15] F. van den Bergh, A.P. Engelbrecht, “A study
of particle swarm optimization particle trajecto-
ries,” Information Sciences, vol. 176, pp. 937–
971, 2006.

[16] N. Hansen, R. Ros, N. Mauny, M. Schoenauer,
A. Auger, “PSO facing non-separable and ill-
conditioned problems,” Research Report RR-
6447, INRIA 2008.

[17] T. Korenaga, T. Hatanaka, and K. Uosaki, “Per-
formance improvement of particle swarm opti-
mization for high-dimensional function optimiza-
tion,” Proc. of IEEE Congress on Evolutionary
Computation, 2007. Sept. 2007, pp. 3288–3293.

[18] T. Takahama, S. Sakai, and N. Iwane, “Con-
strained optimization by the constrained hybrid
algorithm of particle swarm optimization and ge-
netic algorithm,” in Proc. of the 18th Australian
Joint Conference on Artificial Intelligence 2005,
LNCS, 3809, Springer, Berlin, 2005, pp. 389–400.

[19] Y.-T. Kao, E. Zahara, “A hybrid genetic algo-
rithm and particle swarm optimization for mul-
timodal functions,” Applied Soft Computing, vol.
8, pp. 849–857, 2008.

[20] X. Cai, D.C. Wunsch, “Engine Data Classifica-
tion with Simultaneous Recurrent Network using
a Hybrid PSO-EA Algorithm, in Procs. of 2005
IEEE International Joint Conference on Neural
Networks, vol. 4, 2005, pp. 2319–2323.

[21] A.A. Esmin, G. Lambert-Torres, G. B. Al-
varenga, “Hybrid evolutionary algorithm based
on PSO and GA mutation,” Proceedings of the
Sixth International Conference on Hybrid Intel-
ligent Systems, 2006, pp. 57.

[22] P.S. Shelokar, Patrick Siarry, V.K. Jayaraman,
B.D. Kulkarni, “Particle swarm and ant colony
algorithms hybridized for improved continuous
optimization,” Applied Mathematics and Com-
putation, vol. 188, pp. 129–142, 2007.

[23] M.-R. Chen, X. Li, X. Zhang, Y.Z. Lu, “A novel
particle swarm optimizer hybridized with ex-
tremal optimization,” Applied Soft Computing,
vol. 10, pp. 367–373, 2010.

[24] C. Zhang, J. Ning, S. Lu, D. Ouyang, T. Ding,
“A novel hybrid differential evolution and par-
ticle swarm optimization algorithm for uncon-
strained optimization,”Operations Research Let-
ters, vol. 37, pp. 117–22, 2009.



Enhanced Performance of Particle Swarm Optimization with Generalized Generation Gap Model with Parent-Centric Recombination Operator175

[25] K. Deb, A. Anand, and D. Joshi, “A computa-
tionally efficient evolutionary algorithm for real-
parameter optimization,” IEEE Trans. Evolu-
tionary Computation, vol. 6, pp. 371–395, 2002.

[26] A. Iorio and X.Li, “Rotationally invariant
crossover operators in evolutionary multi-
objective optimization,” in T.-D. Wang et al.
(Eds.): SEAL 2006, LNCS 4247, 2006, pp. 310–
317, Springer-Verlag Berlin Heidelberg, 2006.

[27] Z. Yang, K. Tang, X. Yao, “Large scale evolu-
tionary optimization using cooperative coevolu-
tion”, Information Sciences, vol. 178, pp. 2985–
2999, 2008.

[28] N. Hansen, A. Ostermeier, “Completely deran-
domized self-adaptation in evolution strategies,”
Evolutionary Computation, vol. 9, pp. 159–195,
2001.

[29] A. Auger, N. Hansen, “A restart CMA evolution
strategy with increasing population size,” Proc.
of the IEEE Congress on Evolutionary Compu-
tation, pp. 1777–1784, 2005.

[30] K. Deb, R. B. Agrawal, “Simulated binary
crossover for continuous search space,” Complex
Systems, vol. 9, pp. 115–148, 1995.

[31] I. Ono, H. Kita, and S. Kobayashi, “A Real-
Coded Genetic Algorithm Using the Unimodal
Normal Distribution Crossover,” Advances in
Evolutionary Computing, Springer-Verlag, New
York, 2003, pp. 213–237.

[32] T. Higuchi, S. Tsutsui, M. Yamamura, “Theoret-
ical analysis of simplex crossover for real-coded
genetic algorithms,” Parallel Problem Solving
from Nature (PPSN-VI), 2000, pp. 365–374.

[33] X. Yao, Y. Liu, G. Lin, “Evolutionary program-
ming Made Faster,” IEEE Trans. Evolutionary
Computation, vol. 3, pp. 82–102, 1999.

[34] J. Brest, S. Greiner, B. Borko, M. Marjan, Ž.
Vilgem, “Self-Adapting Control Parameters in
Differential Evolution: A comparative study on
numerical benchmark problems,” IEEE Trans.
Evol. Comp., vol. 10, no. 6, pp. 646–657, 2006.

[35] P. J. Angeline, “Evolutionary optimization ver-
sus particle swarm optimization: Philosophy and
performance differences,” in V. W. Porto and
et al., editors, Evolutionary Programming, vol.
1447 of Lecture Notes in Computer Science, pp.
601–610. Springer, 1998.

[36] R. Bellman, Adaptive control processes: a guided
tour. Princeton University Press, 1961.

Chukiat Worasucheep received B.Eng.
(Computer Engineering) from Chula-
longkorn University, Thailand, and
M.Sc. (Computer Science) from School
of Electrical Engineering and Computer
Science, Oregon State University, USA.
He is currently an assistant professor
of Applied computer science program,
Faculty of Science, KMUTT, Thailand.
His research interests are computational
intelligence for business and scientific

problems.

Charinrat Pipopwatthana was a stu-
dent in Applied computer science pro-
gram, KMUTT. Her senior project is
under the supervision of Chukiat Wora-
sucheep in 2008. Since graduation she
has been working at Gosoft (Thailand)
Co.,Ltd. where she is currently a soft-
ware testing leader.

Sujitra Srimontha was a student
in Applied computer science program,
KMUTT. Her senior project is under
the supervision of Chukiat Worasucheep
in 2008. Now she has been working as
a programmer in IT-Consumer Banking
Solution department of Bank of Ayud-
hya PCL.

Wilasini Phanmak was a student
in Applied computer science program,
KMUTT. Her senior project is under the
supervision of Chukiat Worasucheep in
2008. Now she has been working as a
programmer in Business Operation So-
lution Delivery section of Bank of Ayud-
hya PCL.


