Photochemical & Photobiological Sciences

PAPER

Cite this: *Photochem. Photobiol. Sci.*, 2016, **15**, 1299

Enhanced photocatalytic degradation of phenol over anatase TiO₂ in neutral water on addition of iron(III) substituted polyoxotungstate

Linlin Hao,^a Meiqin Hu,^b Xianqiang Xiong^a and Yiming Xu*^a

 $PW_{12}O_{40}$ -type polyoxometalates have been widely used as electron mediators of TiO₂ photocatalysis for organic degradation in water, but they are stable only at pH 1–2, which greatly limits their application for water treatment. Herein we report an iron(III)-substituted $PW_{11}O_{39}$ ($PW_{11}Fe$) capable of mediating the photocatalytic degradation of phenol and 2,4-dichlorophenol in an aerated aqueous suspension of anatase TiO₂ at pH 2.0–7.2. As the initial concentration of $PW_{11}Fe$ or the initial pH of the suspension increased, the rate of phenol degradation increased, and then decreased. A maximum reaction rate was achieved at 2.0 mM PW₁₁Fe and pH 5.5, which was 3.9 times higher than that measured without $PW_{11}Fe$. In all cases, the rates of phenol degradation were of the first order in phenol, implying the recycling behavior of $PW_{11}Fe$. Through electrochemical measurement, a possible mechanism is proposed, which involves the interfacial electron transfer from the irradiated TiO₂ to $PW_{11}Fe$, and the reduction of O_2 by the reduced $PW_{11}Fe$. This would improve the efficiency of the charge separation of TiO₂, and consequently increase the rate of phenol degradation at interfaces.

Received 26th June 2016, Accepted 22nd August 2016 DOI: 10.1039/c6pp00223d

www.rsc.org/pps

Introduction

Semiconductor photocatalysis for environmental remediation has been studied for over 30 years.^{1–3} To date, anatase TiO_2 is still the most appropriate photocatalyst in terms of activity, stability, and cost. More importantly, this type of TiO_2 has a conduction band electron (e^{-}) and valence band hole (h^{+}) capable of O2 reduction to O2 - and H2O oxidation to 'OH, respectively.⁴ Without any doubt, the formation efficiencies of these reactive species are essential to organic degradation. However, the quantum yield of TiO₂ photocatalysis for organic degradation is usually low (about 10%),⁵ mainly due to the fast recombination of e_{cb}^{-} and h_{vb}^{+} . To improve the hole oxidation of organic substrates, one of the strategies is to speed up the electron transfer from TiO₂ to O₂. For example, noble metals such as Pt and Pd are often used as co-catalysts for the TiO₂-photocatalyzed reduction of O₂,^{6,7} but they would be expensive for water treatment. Therefore, a non-noble-metal catalyst for the reduction of O_2 is in great demand.

Ozer and Ferry report that the addition of a heteropolymetalate (POM) into the irradiated aqueous suspension of TiO_2 (P25) can result in great enhancement in the rate of 2,4-dichlorobenzene (DCB) degradation.⁸ Such a positive effect of POM is ascribed to the electron transfer from the irradiated TiO₂ to POM, followed by O₂ reduction to regenerate POM (Scheme 1).^{8,9} Interestingly, both the POM-induced rate enhancement of DCB degradation,⁸ and the efficiency of the interfacial electron transfer from TiO₂ to POM¹⁰ are determined by the one-electron reduction potential of POM, which increases in the order of $PW_{12}O_{40}^{3-} > SiW_{12}O_{40}^{4-} > H_2W_{12}O_{40}^{6-}$. Later on, $PW_{12}O_{40}^{3-}$ has been widely used as a co-catalyst for the TiO₂-photocatalyzed degradation of many other organics, including chlorophenol, bisphenol A, aromatic sulfides, methanol, and acetate.⁹⁻¹³ Unfortunately, these POMs are stable only in a very acidic aqueous solution (pH < 2), which greatly limits their application.

Scheme 1 Possible mechanism for the POM-induced rate enhancement of phenol degradation over TiO_2 , where POM and ph represent polyoxometalate and phenol, respectively.

^aState Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China. E-mail: xuym@zju.edu.cn
^bNingbo Institute of Technology, Zhejiang University, Ningbo 315100, P. R. China

In this study, we report a Fe(m) substituted POM capable of mediating the electron transfer from the irradiated anatase TiO₂ to O₂ for phenol degradation in aqueous suspensions at pH 2–7. This POM has a formula of $[PW_{11}O_{39}Fe(m)(H_2O)]^{4-}$, denoted as $PW_{11}Fe$. Several studies have reported that $PW_{11}Fe$ is a good electrocatalyst for the reduction of nitrite to ammonia in aqueous solution at pH 2–8,¹⁴ and for the reduction of O₂ to H₂O₂ for dimethylphthalate degradation in aqueous solution at pH 6.86.¹⁵ Very recently, we have shown that a complex of FePW₁₁ with H₂O₂ is active under visible light for chlorophenol degradation in aqueous solution at pH 2.2–7.2.¹⁶ However, the use of PW₁₁Fe as the electron shuttle of TiO₂ photocatalysis has not yet been found in the literature.

Experimental section

The sodium salt of $PW_{11}Fe$ was synthesized by following literature methods.^{17,18} Sodium tungstate, disodium hydrogen phosphate, and ferric nitrate, purchased from Shanghai Chemicals, Inc., were used as starting materials. The resulting powder of $PW_{11}Fe$ was pale yellow in color, and highly soluble in water. Anatase TiO₂ was purchased from Sigma–Aldrich. Its crystal structure was confirmed by XRD (X-ray powder diffraction) on a D/max-2550/PC diffractometer (Rigaku). This oxide had a Brunauer–Emmett–Teller specific surface area of 144 m² g⁻¹, as measured by N₂ adsorption at 77 K on a Micromeritics ASAP 2020 apparatus.

Photoreactions were carried out in a Pyrex-glass reactor, attached with a water jacket (Scheme 2). The light source was a high pressure mercury lamp (300 W, Shanghai Yamin), and placed in the front of the reactor at a fixed distance of 10 cm. Unless stated otherwise, experiments were carried out under fixed conditions (1.00 g L^{-1} TiO₂, 0.43 mM phenol, 2.0 mM PW₁₁Fe, and initial pH 5.5). Phenol and its reaction intermediates were analyzed by HPLC (high performance liquid chromatography) on a Dionex P680 (Apollo C18 reverse column, and 50% CH₃OH/H₂O as an eluent).

Electrochemical measurement was carried out on a CHI660E Electrochemical Station (Chenhua, Shanghai) using a saturated calomel electrode (SCE) as a reference electrode, and

Scheme 2 Experimental setup. (1) Hg lamp, (2) glass reactor, (3) magnetic stirrer, (4) water inlet, and (5) water outlet.

a platinum gauze as a counter electrode. The working electrode was a TiO₂ film on an indium-doped tin oxide (ITO) substrate. It was prepared by the doctor blade method,¹⁹ followed by annealing at 500 °C for 3 h. Then, the resulting ITO glass was cut into pieces, each of which had an exposed area of 1 cm \times 1 cm. Linear sweep voltammetry was recorded with a scan rate of 10 mV s⁻¹.

Results and discussion

Fig. 1A shows the results of phenol degradation in the aqueous suspensions of TiO_2 at initial pH 5.5. Obviously, the

Fig. 1 Photocatalytic degradation of (A) phenol, and (B) 2,4-dichlorophenol in aqueous suspension at initial pH 5.5. (C) The corresponding hydroquinone (HQ), benzoquinone (BQ), and catechol (CA) formed in the absence (open symbols) and presence (solid symbols) of PW₁₁Fe. Note that the negative time for (A) and (B) means the time before light irradiation.

rate of phenol degradation in the presence of PW11Fe was much larger than that in the absence of PW₁₁Fe. A control experiment in the homogeneous solution of PW11Fe showed negligible degradation of phenol under UV light. Similar results were also observed from the photocatalytic degradation of 2,4-dichlorophenol (DCP, Fig. 1B). In this case, DCP strongly adsorbed onto TiO₂ in aqueous solution, as measured in the dark and before light irradiation. Upon addition of PW₁₁Fe, the amount of DCP adsorption was decreased, indicative of POM competition for the surface sites of TiO₂. However, the rate of phenol degradation measured with PW11Fe was still notably larger than that obtained without PW₁₁Fe. In general, the rate of organic degradation is proportional to the amount of organic adsorption over TiO₂ in aqueous solution.²⁰ These observations indicate that PW11Fe is beneficial to the TiO₂-photocatalyzed degradation of both weakly and strongly adsorptive phenols in aqueous solution.

By means of HPLC and by comparison to a standard sample, hydroquinone (HQ) and benzoquinone (BQ) were identified as the major intermediates of phenol degradation (Fig. 1C). Interestingly, in the presence of $PW_{11}Fe$, the major intermediates were HQ and catechol (CA), without BQ detected in the filtrate. Moreover, the amount of HQ produced in $PW_{11}Fe/TiO_2$ at a given time was about 8 times that formed in TiO₂. However, in both TiO₂ and $PW_{11}Fe/TiO_2$, the total amount of the intermediates produced was much lower than that of the phenol degraded. This means that most of the intermediates have degraded to some products undetectable by HPLC. Since these intermediates are the hydroxylated products of phenol, it follows that $PW_{11}Fe$ has a positive effect on the formation of 'OH, and/or on the formation of phenol⁺⁺, followed by hydrolysis.

All the time profiles for organic degradation satisfactorily fit the pseudo-first-order rate equation. The resulting rate constants (k_{obs}) were 0.00138 and 0.00538 min⁻¹ for phenol degradation in the absence and presence of PW₁₁Fe, respectively, whereas the values of $k_{\rm obs}$ for DCP degradation without and with PW₁₁Fe were 0.00243 and 0.00860 min⁻¹, respectively. On one hand, organic degradation is initiated by the reactive species produced from the irradiated TiO₂. Under fixed conditions, these reactive species would be constant in concentration. As a result, the rate of phenol degradation was of the first order in phenol at low concentration.²¹ Upon the addition of PW11Fe up to 4.0 mM (see below), the first-order kinetics of phenol degradation remained unchanged. This implies that PW₁₁Fe is probably recyclable during the reaction process. A large rate constant of phenol degradation is indicative of a large amount of the reactive species produced from the irradiated TiO₂. In other words, PW₁₁Fe has a positive effect on the TiO2-photocatalyzed formation of the reactive species. On the other hand, there is a lot of e_{cb}^{-} and h_{vb}^{+} available to the reactants on the oxide surface. If these photogenerated carriers are not immediately used for chemical reactions, they would quickly recombine to heat. In the present case, the POM-caused rate increase of phenol degradation implies an improvement in the quantum efficiency of TiO₂ photocatalysis.

According to those values of k_{obs} , one may conclude that the photocatalytic activity of TiO₂ upon the addition of PW₁₁Fe was increased 2.9 times for phenol degradation, and 2.5 times for DCP degradation. The smaller rate increase of DCP degradation than that of phenol degradation after POM addition is probably due to the negative effect of POM on the adsorption of DCP, and consequently on the rate of DCP degradation over TiO₂.

Fig. 2A shows the results of phenol degradation in aqueous solution as a function of $PW_{11}Fe$ concentration, measured at a fixed initial pH (5.5) and TiO₂ loading (1.0 g L⁻¹). As the amount of $PW_{11}Fe$ added in the suspension increased, the rate

Fig. 2 Apparent rate constants of phenol degradation over TiO₂ in aqueous suspension, measured as a function of (A) PW₁₁Fe concentration at initial pH 5.5, and (B) suspension initial pH at 2.0 mM PW₁₁Fe. Plot C refers to the time profiles for phenol degradation in the N₂-purged aqueous suspension of TiO₂ (a) in the absence, and (b) presence of 2.0 mM PW₁₁Fe.

of phenol degradation increased, and then decreased after reaching a maximum at 2.0 mM PW₁₁Fe. The former is surely indicative of the positive effect of POM. The rate decrease of phenol degradation beyond 2.0 mM PW₁₁Fe is ascribed to the excess PW11Fe that absorbs the incident light, and consequently reduces the number of photons reaching TiO₂. Therefore, an optimum loading of PW11Fe was observed, at which the rate of phenol degradation reached a maximum. These observations are similar to those obtained from the $PW_{12}O_{40}^{3}$ /TiO₂ system.^{8,11,20} Fig. 2B shows the effect of the initial pH on the rate of phenol degradation, measured at a fixed loading of TiO_2 (1.0 g L⁻¹) and PW₁₁Fe (2.0 mM). In the absence of PW₁₁Fe, the rate of phenol degradation increased with the initial pH of the suspension. In the presence of PW₁₁Fe, the rate of phenol degradation increased, and then decreased after reaching a maximum at pH 5.5. Interpretation of the observed pH effect is not straightforward, because several factors are pH-dependent, including the redox potentials of O₂ and phenol. However, as the co-catalyst of TiO₂ photocatalysis, PW₁₁Fe is clearly superior to PW₁₂O₄₀³⁻, because the latter is stable only in a very acidic aqueous solution.^{8,11,20} The unique effect of $PW_{11}Fe$, observed in a wide range of the initial pH from 2.0 to 7.0, would be very useful for water treatment by using TiO₂ photocatalysis.

Fig. 2C shows the results of phenol degradation, measured in the N₂-purged aqueous suspension of TiO₂ at initial pH 5.5. In the absence of PW₁₁Fe, phenol degradation was negligible, simply due to the absence of an electron scavenger such as O₂. In the presence of $PW_{11}Fe$, phenol degradation occurred, but the reaction eased after 180 min. These observations indicate that the electrons of TiO_2 are removable by $PW_{11}Fe$, so that the counterpart holes of TiO₂ have oxidized phenol. When all of PW₁₁Fe was used up, the electrons of TiO₂ would recombine with its holes, without phenol degradation. In aqueous solution at pH 5, the one-electron reduction of PW₁₁Fe^{III} is about 0.22 V versus the normal hydrogen electrode (NHE).¹⁴ This potential is more positive than the conduction band edge potential of anatase TiO_2 (-0.42 V vs. NHE).²² This would allow an interfacial electron transfer to occur from the irradiated TiO₂ to PW₁₁Fe^{III}. When the experiment was performed in air, O_2 would compete with $PW_{11}Fe^{III}$ for the electrons of TiO₂. However, the rate of phenol degradation determined in air was proportional to the $PW_{11}Fe$ concentration (Fig. 2A). This implies that PW₁₁Fe^{III} is more reactive than O₂ toward the electrons of TiO₂. This judgment is in agreement with the driving force that is larger for the reduction of PW₁₁Fe^{III} to $PW_{11}Fe^{II}$ than that for the reduction of O_2 to O_2 . In aqueous solution at pH 5, the one-electron reduction potential of $PW_{11}Fe^{III}$ is more positive than that of O₂ (-0.33 V vs. NHE). After PW₁₁Fe^{III} is reduced by the electrons of TiO₂, the resulting PW₁₁Fe^{II} would immediately react with O₂ to regenerate $PW_{11}Fe^{III}$.^{23,24} In fact, the first-order kinetics of phenol degradation was observed either in the absence or presence of $PW_{11}Fe$ (Fig. 1A). Since the electrons and holes of TiO_2 are photogenerated in a pair, such PW₁₁Fe-induced promotion in the electron transfer from TiO₂ to O₂ would be accompanied

by enhancement in the hole transfer from TiO_2 to phenol, as proposed in Scheme 1. As a result, the rate of phenol degradation over the irradiated TiO_2 is significantly enhanced upon the addition of $PW_{11}Fe$.

The PW₁₁Fe-mediated electron transfer from TiO₂ to O₂ was also examined through electrochemical measurement. Fig. 3 shows the current-voltage curves of the TiO₂ film electrode, measured in 0.5 M NaClO₄ at initial pH 5.5. The current of the TiO₂ film electrode obtained in air was much larger than that measured under N2. This observation indicates that the reduction of O₂ on the electrode is the dominant process. Upon addition of PW11Fe, the electrode current became notably larger under either N₂ or air. But the current measured under N₂ was lower than that obtained in air. It is highly possible that $PW_{11}Fe$ is reduced by the stored electrons on TiO_2 under N₂, followed by regeneration through the reduction of O₂ in air. A similar result was also observed with a bare ITO electrode in the presence of PW11Fe. However, in air and in the presence of PW₁₁Fe, the current obtained from the TiO₂ film electrode was larger than that obtained from the ITO electrode. That is, the observed current enhancement of the TiO₂ film electrode upon addition of PW11Fe is due to the interaction of $PW_{11}Fe$ with the TiO₂ film, rather than the ITO substrate. Moreover, the current of the ITO electrode, measured in air and in the presence of PW₁₁Fe, was larger than the current of the TiO₂ film electrode, measured in air and in the absence of $PW_{11}Fe$. It implies that $PW_{11}Fe$ is more easily reduced than O_2 . These electrochemical observations indicate that PW₁₁Fe has a positive effect on the interfacial electron transfer from TiO₂ to O_2 .

In conclusion, we have shown that $PW_{11}Fe$ present in the aerated aqueous suspension of TiO_2 is beneficial to the photocatalytic degradation of phenol and 2,4-dichlorophenol at a neutral pH value. Through the kinetic study of phenol degradation and the electrochemical reduction of O_2 , it is proposed that there is an interfacial electron transfer from the irradiated TiO_2 to $PW_{11}Fe$, followed by O_2 reduction to regenerate

Fig. 3 Current–voltage curves for the TiO_2 film ITO electrode (a) without, and (b) with 2.0 mM PW₁₁Fe, and (c) for the ITO electrode with 2.0 mM PW₁₁Fe, measured in 0.5 M NaClO₄ at initial pH 5.5 under N₂ (dotted lines), or in air (solid lines).

 $PW_{11}Fe$. Since $PW_{11}Fe$ is more reducible than O_2 , such a $PW_{11}Fe$ -mediated electron transfer would make the photogenerated holes of TiO₂ live longer. As a result, the efficiency of the charge separation of TiO₂ is improved, and the rate of phenol degradation is increased. There are many transition-metal-substituted POMs which may be stable in aqueous solution at neutral pH. These POMs would have different electrochemical properties greatly influencing the efficiency of the interfacial electron transfer with TiO₂,¹⁰ and the rate of O₂ reduction as well.²⁵ Therefore, there is a great possibility of obtaining a highly active photocatalyst through the surface modification of TiO₂ with a PW_{11} Fe-like POM. The present result would be useful to semiconductor photocatalysis for energy and environmental application.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 21377110).

Notes and references

- 1 A. Mills, R. H. Davies and D. Worsley, Water purification by semiconductor photocatalysis, *Chem. Soc. Rev.*, 1993, 22, 417–425.
- 2 M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Environmental application of semiconductor photocatalysis, *Chem. Rev.*, 1995, **95**, 69–96.
- 3 U. I. Gaya and A. H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress, and problems, *J. Photochem. Photobiol.*, *C*, 2008, **9**, 1–12.
- 4 T. Tachikawa, M. Fujitsuka and T. Majima, Mechanistic insight into the TiO₂ photocatalytic reactions: design of new photocatalysts, *J. Phys. Chem. C*, 2007, **111**, 5259–5275.
- 5 A. V. Emeline, X. Zhang, M. Jin, T. Murakami and A. Fujishima, Application of a "Black Body" like reactor for measurements of quantum yields of photochemical reactions in heterogeneous systems, *J. Phys. Chem. B*, 2006, **110**, 7409–7413.
- 6 C. M. Wang, A. Heller and H. Gerischer, Palladium catalysis of O₂ reduction by electrons accumulated on TiO₂ particles during photoassisted oxidation of organic compounds, *J. Am. Chem. Soc.*, 1992, **114**, 5230–5234.
- 7 B. Sun, P. G. Smirniotis and P. Boolchand, Visible light photocatalysis with platinized rutile tio₂ for aqueous organic oxidation, *Langmuir*, 2005, **21**, 11397–11403.
- 8 R. R. Ozer and J. L. Ferry, Investigation of the Photocatalytic activity of TiO₂-polyoxometalate systems, *Environ. Sci. Technol.*, 2001, **35**, 3242–3246.
- 9 H. Park and W. Choi, Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in uv-illuminated suspensions of TiO₂ and Pt/TiO₂, *J. Phys. Chem. B*, 2003, **107**, 3885–3890.

- 10 T. Tachikawa, S. Tojo, M. Fujitsuka and T. Majima, Oneelectron redox processes during polyoxometalate-mediated photocatalytic reactions of TiO₂ studied by two-color twolaser flash photolysis, *Chem. – Eur. J.*, 2006, **12**, 3124–3131.
- 11 C. Chen, P. Lei, H. Ji, W. Ma and J. Zhao, Photocatalysis by titanium dioxide and polyoxometalate/TiO₂ cocatalysts. intermediates and mechanistic study, *Environ. Sci. Technol.*, 2004, **38**, 329–337.
- 12 N. Lu, Y. Lu, F. Liu, K. Zhao, X. Yuan, Y. Zhao, Y. Li, H. Qin and J. Zhu, H₂PW₁₂O₄₀/TiO₂ Catalyst-induced photodegradation of bisphenol A (BPA): kinetics, toxicity and degradation pathways, *Chemosphere*, 2013, **91**, 1266–1272.
- 13 C. Gu and C. J. Shannon, Investigation of the photocatalytic activity of TiO₂-polyoxometalate systems for the oxidation of methanol, *J. Mol. Catal. A: Chem.*, 2007, **262**, 185–189.
- 14 J. E. Toth and F. C. Anson, Electrocatalytic reduction of nitrite and nitric oxide to ammonia with iron-substituted polyoxotungstates, *J. Am. Chem. Soc.*, 1989, **111**, 2444–2451.
- 15 C. Wang, Y. Hua and Y. Tong, Novel electro-fenton-like system using $PW_{11}O_{39}Fe(III)(H_2O)^{4-}$ as an electrocatalyst for wastewater treatment, *Electrochim. Acta*, 2010, **55**, 6755–6760.
- 16 M. Hu and Y. Xu, Visible light induced degradation of chlorophenols in the presence of H₂O₂ and iron substituted polyoxotungstate, *Chem. Eng. J.*, 2014, 246, 299–305.
- 17 C. Brevard, R. Schimpf, G. Tourne and C. M. Tourne, Tungsten-183 NMR: a complete and unequivocal assignment of the tungsten-tungsten connectivities in heteropolytungstates via two-dimensional 183 W NMR techniques, *J. Am. Chem. Soc.*, 1983, **105**, 7059–7063.
- 18 F. Zonnevijlle, C. M. Tourné and G. F. Tourné, Preparation and characterization of Iron(III)- and Rhodium(III)-containing heteropolytungstates. Identification of novel Oxobridged Iron(III) dimers, *Inorg. Chem.*, 1982, 21, 2751–2757.
- 19 L. Hao, X. Xiong and Y. Xu, Borate-mediated hole transfer from irradiated anatase TiO₂ to phenol in aqueous solution, *J. Phys. Chem. C*, 2015, **119**, 21376–21385.
- 20 K. Lv and Y. Xu, Effects of polyoxometalate and fluoride on adsorption and photocatalytic degradation of organic dye X3B on TiO₂: the difference in the production of reactive species, *J. Phys. Chem. B*, 2006, **110**, 6204–6212.
- 21 D. F. Ollis, Kinetics of liquid phase photocatalyzed reactions: an illuminating approach, *J. Phys. Chem. B*, 2005, **109**, 2439–2444.
- 22 D. Duonghong, J. Ramsden and M. Grätzel, Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems, *J. Am. Chem. Soc.*, 1982, **104**, 2977–2985.
- L. I. Kuznetsova and E. N. Yurchenko, Oxidation of hydrogen sulfide by oxygen in presence of PW₁₁M(H₂O)O₃₉⁵⁻ (M = Fe, Co, Ni), *React. Kinet. Catal. Lett.*, 1989, **39**, 399–404.
- 24 J. E. Toth, J. D. Melton, D. Cabelli, B. H. J. Bielski and F. C. Anson, Electrochemistry and redox chemistry of $H_2OFe(III)SiW_{11}O_{39}^{5-}$ in the presence of H_2O_2 and OH, *Inorg. Chem.*, 1990, **29**, 1952–1957.
- 25 I. A. Weinstock, Homogeneous-phase electron-transfer reactions of polyoxometalates, *Chem. Rev.*, 1998, 98, 113– 170.