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Abstract

In this paper, we present an enhanced Pictorial Struc-
ture (PS) model for precise eye localization, a fundamen-
tal problem involved in many face processing tasks. PS is
a computationally efficient framework for part-based ob-
ject modelling. For face images taken under uncontrolled
conditions, however, the traditional PS model is not flexi-
ble enough for handling the complicated appearance and
structural variations. To extend PS, we 1) propose a dis-
criminative PS model for a more accurate part localization
when appearance changes seriously, 2) introduce a series of
global constraints to improve the robustness against scale,
rotation and translation, and 3) adopt a heuristic predic-
tion method to address the difficulty of eye localization with
partial occlusion. Experimental results on the challenging
LFW (Labeled Face in the Wild) database show that our
model can locate eyes accurately and efficiently under a
broad range of uncontrolled variations involving poses, ex-
pressions, lightings, camera qualities, occlusions,etc.

1. Introduction

The task of detecting and localizing eye positions in a
given image which contains a face is crucial for the initial-
ization of many face processing applications such as face
tracking, face recognition, face expression analysis, eye be-
havior analysis,etc. There is a subtle difference between
eye detection and eye localization; that is, the latter gen-
erally requires a much more accurate prediction of the eye
positions (usually only a few pixels of errors are allowed)
than the former. Recent research has disclosed that an inac-
curate eye localization will cause serious problems for au-
tomatic face recognition systems [19], especially for those
based on techniques heavily relying on the quality of the ge-

Figure1. Illustration of the complicated appearances of eyes (im-
ages from the LFW database [10]).

ometrically normalized face images, such as eigenface and
fisherface.

Similar to other general object detection tasks such as
face detection [22], people detection [3] and animal detec-
tion [12], the major challenge of eye localization comes
from the fact that, as illustrated in Figure 1, the appearances
of eyes are complicated due to various factors, from normal
behaviors of eyes (e.g., opening, closing,etc.) to environ-
mental changes (e.g., outdoor lighting, pose, scale, reflec-
tion of glasses, partial occlusion by hairs,etc.). To address
the problem, various approaches have been proposed. These
approaches can be roughly classified into three categories
[23,26], i.e., template-based approaches, appearance-based
approaches and feature-based approaches.

Most of the early methods, such as the deformable tem-
plates methods [24], belong to the template-based category,
where a generic eye model is designed based on eye shapes
and then used to search eyes in the images. These meth-
ods usually have good accuracy, however, generally they are
computationally expensive and require good image contrast
which is not always available in practice.

Appearance-based approaches aim to localize eyes based
on their photometric appearance using various statistical
classification techniques, such as principal component anal-
ysis (e.g., eigeneyes [16]), support vector machines [9],
neural networks [5], Boosting [14],etc. Everinghamet al.
[2] compared several kinds of appearance-based approaches
and found that the simple Bayesian model outperforms the
other methods including a regression-based and a Boosting-
based method. In general, appearance-based eye localiza-



tion methods are more robust against complicated appear-
ance changes than template-based ones due to the capabil-
ity of learning from examples, yet the problem of reliably
separating true small eye regions from other regions with a
low false positive rate remains unsolved.

Feature-based approaches attempt to exploit special
characteristics of the eyes such as the dark pupil and white
sclera to distinguish the eyes from other objects [25]. Such
eye-specific features can be regarded as the context in which
the true eye lies. However, when the input image is with low
contrast or with closed or occluded eyes, the eye-specific
features are difficult to be detected.

Overall, most of the existing methods are only feasible
under rather constrained conditions, and few work studies
the problem of precise eye localization under uncontrolled
conditions such as situations with extreme lighting changes,
large expression variations and partial occlusions, although
addressing these issues is important for real applications,
e.g., uncontrolled face recognition [6,7].

In this paper, we present a new approach for precise and
robust eye localization. Previous studies [1,3] disclosed
that the accuracy as well as the false positive rate of fea-
ture localization can be improved effectively by exploiting
the context information of the object of interest. Here, by
context information of eyes, we mean any facial features
that are helpful for identifying the eye positions, such as
the places of nose, mouth,etc. Compared with mouth, nose
can be detected more reliably due to the fact that its appear-
ance is less sensitive to expression changes and occlusions
(say, by beard), hence being used in this work. Actually,
the nose position may also be useful in face normalization
algorithms.

The Pictorial Structure (PS) model [3,4] is well suited
for our purpose. It is a computationally efficient frame-
work for part-based modelling and recognition of objects,
and has been successfully applied to face identification [3],
people finding [3] and other object recognition and detec-
tion tasks [12]. The essence of the PS model is to consider
the components (or parts) of an object in the context of its
overall interior configurations, aiming to finding out the lo-
cation of each component as well as its spatial configuration
through encoding them into a global object function. In
contrast to pure appearance-based approaches where each
object is handled by a single appearance model, the PS
method provides a powerful framework for modelling an
object in terms of its components and the geometrical rela-
tionship between components.

The main contribution of this paper is to enhance the tra-
ditional PS model such that it can be used to handle the
complicated appearance and structural changes of eyes un-
der uncontrolled conditions. Extensive experiments on the
challenging LFW (Labeled Face in the Wild) database show
that the proposed model can localize eyes accurately and ef-

ficiently under uncontrolled conditions.
The rest of this paper is organized as follows. Section 2

briefly introduces the Pictorial Structure model. Section 3
proposes our enhanced PS model. Section 4 presents meth-
ods for fitting the learned PS model to test images and han-
dling partial occlusion. Section 5 reports on our experi-
ments. Finally, Section 6 concludes.

2. Background

In this section, we briefly introduce the statistical frame-
work of Pictorial Structure following the denotations in [3].
In PS an object is first decomposed into parts and then the
best part candidates are searched subject to some spatial
constraints such that the likelihood of generating the con-
cerned image is maximized. Hence a PS model can also
be viewed as a specific Markov Random Field (MRF) with
parts as its sites.

The PS model [3,4] can be expressed naturally in terms
of an undirected graphG = (V, E), where the vertices
V = {v1, · · · , vNp

} correspond toNp parts, and the edge
setE = {(vi, vj), i 6= j} characterizes the local pairwise
spatial relationship between different parts. An instance
of an object is given by a configurationL = (l1, · · · , li),
where eachli = (xi, yi) specifies the location of the com-
ponentvi on the image plane. For example, a face can be
represented by four parts (i.e., two eyes, one nose and one
mouth) and the spatial relationship between these four parts.
Hence the appearance and structural information are com-
bined into a unified framework.

Specifically, given an imageI containing a face, the like-
lihood of generating this image by the facial parts at some
locations isp(I|L, θ), whereθ is the model parameter. As-
sume that we are working on the region output by a face
detector, and therefore we need not model the background.
To infer the locations of the facial parts from this model, we
can look for the maximuma posteriorp(L|I, θ), i.e., the
probability that a face configuration isL given the modelθ
and an imageI. According to Bayes rule, the posterior can
be written as

p(L|I, θ) ∝ p(I|L, θ)p(L|θ), (1)

wherep(I|L, θ) is the generative model of appearance and
p(L|θ) measures the prior probability that a face appears
at the locationL. Here the model parameter is denoted by
θ = (u, c), whereu = (u1, · · · , uNp

) expresses the appear-
ance whilec = {cij |(vi, vj) ∈ E} expresses structural con-
straints on edges. Felzenszwalb and Huttenlocher [3] also
included the set of edgesE as model parameter in order to
simplify the underlying graphical structure (e.g., letting it
be a tree), but this is not necessary for our purpose of eye
localization.

Assuming that the parts are statistically independent, we



have

p(I|L, θ) = p(I|L, u) ∝
Np∏

i=1

p(I|li, ui), (2)

where the appearance of each component can be mod-
elled by unimodal Gaussian distributionp(I|li, ui) ∝
N (α(li), µi,Σi).

With a similar independent assumption on the spatial re-
lationship between pairs of parts, we have the structural
model

p(L|θ) = p(L|c) =
∏

(vi,vj)∈E

p(li, lj |cij), (3)

where the edge constrains between the components can also
be modelled by Gaussian distribution

p(li, lj |cij) = p(xli , xlj |cij)p(yli , ylj |cij)
= N (xli − xlj , sij ,Σij)N (yli − ylj ), s

′
ij ,Σ

′
ij).

(4)

Plugging (3) and (2) into (1), we get the global objective
function

p(L|I, θ) ∝
{

Np∏

i=1

p(I|li, ui)
∏

(vi,vj)∈E

p(li, lj |cij)

}
. (5)

The first term at the right hand of (5) is the appearance
model, while the second term expresses the spatial con-
straints. Taking the negative logarithm of (5), we get the en-
ergy function of the PS model. For tree-structured models,
Felzenszwalb and Huttenlocher [3] have developed com-
putationally efficient algorithms for learning from training
data and fitting test images.

3. Enhanced Pictorial Structure

Possible criticisms to the PS model include that the uni-
modal generative appearance model may not be capable to
provide a good approximation to multimodal distributions
of eye appearance under uncontrolled conditions, and the
local pairwise prior may impose overly strong constraints
on the spatial relationship between the parts. We will ad-
dress these issues in this section.

3.1. Discriminative Pictorial Structure

One important observation from our work is that in a
complicated setting, the distribution of eye patterns are mul-
timodal in nature, which could not be approximated well
with a unimodal Gaussian model.1 More importantly, our
goal is to localize the eyes precisely rather than describe the
whole face object using facial features. So, a discriminative

1One option is to replace the simple unimodal Gaussian generative
model with a more complex one like Gaussian mixture model (GMM), at
the cost of higher model complexity and hence lower detection efficiency.

model which focuses more on the points that count is more
appropriate.

For this purpose, we introduce a class labelz ∈
{1, · · · , Np} for each part, denoting one ofNp possible se-
mantic labels (e.g., Right-eye,Left-eye, Nose,etc.) for that
part. The appearance model of (2) can then be rewritten as

p(I|L, θ) = p(I|L, u) ∝
Np∏

i=1

p(I|li, ui)

=
Np∏

i=1

∑
z

p(I, z|li, ui) =
Np∏

i=1

∑
z

p(I|z)p(z|li, ui).

(6)

Note thatp(I|z) gives the probability of generating an
image given its part labels. This can be useful if we detect
eyes directly in general background (i.e., without face con-
text). In our setting, however, the localizer takes the image
region output by a face detector as input, where the part la-
bels of interest are assumed to be known. Hence we need
not model any preference over the labels in imageI; this
implies thatp(I|z) is a constant and we can omit it for sim-
plicity. This simply reduces (6) to

p(I|L, θ) ∝
Np∏

i=1

∑
z

p(I|z)p(z|li, ui) =
Np∏

i=1

∑
z

p(z|li, ui).

(7)
Furthermore, we restrict the region for searching each

kind of part (e.g., right eye, left eye, nose,etc.) by col-
lecting statistics about their true positions with respect to
the corresponding output window of our face detector. This
allows us to model only the parts from certain predefined re-
gion with known labels, thus not only reducing the number
of candidate locations for each part significantly, but also
simplifying our model significantly to

p(I|L, θ) ∝
Np∏

i=1

∑
z

p(z|li, ui) =
Np∏

i=1

p(zi|li, ui), (8)

where the posterior distribution,p(zi|li, ui), characterizes
the probability that the label of the partvi is a certain label
valuezi given its appearanceui and positionli. To this end
we derive a discriminative model completely within the PS
framework. There were many work [1,12] which use a dis-
criminative appearance model, yet none has been designed
for eye localization.

There are many ways to approximatep(zi|li, ui) [8],
among which the energy-based methods (e.g., conditional
random fields and logistic regression) are very popular due
to the convenience of incorporating arbitrary functions of
training examples and the nonparametric nature in the sense
of no need to assume any particular distribution. Here, for
simplicity we choose to model the decision boundary with



ahyperplane in some feature space, and then fit it with a lo-
gistic sigmoid function to give an approximation probability
of interest [18].

In particular, we use a support vector machine (SVM)
to calculate the optimal separating hyperplane in the fea-
ture space, which corresponds to a nonlinear boundary in
the complicated input space. Other options such as Rele-
vance Vector Machine (RVM [21]) and Adaboost can also
be considered. The SVM solver outputs an optimal hyper-
plane in the general form of̂f(u) = β̂ +

∑N
i=1 α̂iK(u, ui),

whereN is the number of training examples andK is a
predefined kernel function (Gaussian kernel is used in this
paper). Then, the estimate of posterior probability is fitted
by p(z = 1|u) = 1/{1 + e−Af̂(u)−B} using the binomial
log-likelihood as loss function [18].2

In practice, the learned support vectors are usually not
sufficiently sparse to meet the requirement of real-time de-
tection. One way to address this issue is to use areduced set
method to reduce the number of support vectors and hence
the computational complexity. In this work we adopt the
method in [15] for this purpose and find that typically 10 to
20 support vectors are enough for each part.

To speed up the detection further, in implementation we
train two hierarchical SVM classifiers. The first-level SVM
works on the simple gray-intensity feature of each part in
order to reject quickly a large number of negatives. The
second-level SVM uses the Gabor features as input, which
are known to be robust against scale, illumination and other
appearance changes. The cascaded SVMs are trained in a
way similar to the Viola-Jones face detector [22], where a
threshold is learned for each level of SVM on the training
set according to the given performance criterion (i.e., true
positive rate & false positive rate). Through this process,
we reduce the number of candidate positions for each parts
from about 400 to 20 efficiently and effectively.

3.2. Global and Local Constraints

As introduced before, the traditional PS models the spa-
tial configuration between a pair of parts with a separate
Gaussian distribution, yet we find that such local pairwise
constraints may be overly strong and only work well un-
der normal conditions (i.e., the spatial relationship does not
change too much), while in practice the configuration be-
tween facial parts may be deformed largely due to variation
such as scale, rotation and expression changes.

To illustrate such limitation, in Figure 2 we give an ex-
ample of the fitted Gaussian distribution of relative location
of the left eye with respect to the location of the right eye
(c.f. Eq.(3)) along the vertical axis. This can be understood
as some confidence score indicating to what extent a given

2Herewe abuse the notation ofz to indicate whether or not a particular
facial feature (e.g., left eye) with appearance parameteru is detected.

Figure2. The fitted Gaussian distribution of relative location of the
left eye with respect to the location of the right eye (c.f. Eq.(3))
along the vertical axis.

Figure 3. Illustration of some commonly encountered structural
changes between eyes. From left to right: the original, scaled and
rotated images.

configuration follows a prior spatial regularity. The confi-
dence score reaches its peak at the position of mean value
and decreases otherwise. In the example of Figure 2, the
mean value of the distribution is very close to zero, which
implies that the best vertical positions of two eyes should
be on the same horizon line, thus imposing a very strong
constraint on the spatial relationship between two eyes, eas-
ily being violated in the case of rotation,e.g., the rightmost
image in Figure 3. Similarly, the constraint on relative loca-
tions in the horizontal axis is problematic since face images
may be taken under different scales,e.g., the middle image
in Figure 3.

To address the above-mentioned deficiency, we intro-
duce an improved structural description method which is
more robust to rotation, scale and translation. The idea is
to incorporate global structural constraints with local ones.
By global structure we mean the spatial relationship among
more than two parts. In our case, this is simply the triangle
formed by the two eyes and the nose (c.f. the leftmost im-
age in Figure 3); if more facial features need to be detected,
more triangles like this can be added. Moreover, instead
of modelling therelative locationbetween parts in previ-
ous studies, we adoptrelative distancesto encode the local
constraints.

In particular, we model three pieces of structural infor-
mation based on the facial feature triangle, that is, 1) the
length of each edge, 2) the length ratio between a pair of
edges, and 3) the inner angle between any two edges. The
first one is local constraint and the latter two are global con-
straints. They have nice affine-invariant properties. First,



the edge lengths are invariant to 2D rotation and transla-
tion; Second, both the length ratio and inner angle between
two edges are invariant to scale, 2D rotation and 2D trans-
lation. As the consequence, these three structural mea-
surements make our model more robust against structural
changes caused by expression and pose variations which are
commonly encountered in real applications.

In implementation, the length of edgeLij is defined by
the Euclidean distance between partsvi andvj on the image
plane,i.e.,

Lij =
√

(xli − xlj )2 + (yli − ylj )2

∀i, j ∈ {1, 2, 3}, i 6= j,
(9)

and the length ratiorij and the cosine anglecos(αij) be-
tween edges are defined respectively as

rij = Lik/Ljk (10)

and

cos(αij) =
L2

ij + L2
jk − L2

jk

2LijLik
. (11)

All of the above definitions can be expressed as a func-
tion of edge lengthe. Here, we definee1 , L12, e2 , L13

ande3 , L23, and thus the energy functionE(e1, e2, e3) of
our structural model is

E(e1, e2, e3) = −
3∑

i=1

ϕ1(ei)−
3∑

i,j=1,i6=j

ϕ2(ei, ej)

−
3∑

i,j,k=1,i6=j 6=k

ϕ3(ei, ej , ek), (12)

whereϕ1, ϕ2 andϕ3 are the potentials corresponding to the
aforementioned three structural constraints, respectively,
modelled by Gaussians. Considering that different subjects
have different configurational biases, we weight these Gaus-
sian potentials with their variances respectively before com-
bining them; the weights can be considered as a prior for
different constraints. The values of the above structural pa-
rameters can be learned from independent training data us-
ing the maximum likelihood method.

4. Matching Algorithm

4.1. Fitting the Model

The best fit of the enhanced PS model in an unseen test
image is

L∗ = argmin
L




Np∑

i=1

(− log p (zi|li, ui)) + E (e1, e2, e3)


 .

(13)
An exact inference for the non-tree-structured model is

difficult and so we adopt an approximation method. We first

Figure 4. Illustration of three typical eye occlusion conditions.
From left to right: one or two eyes are weakly occluded; only one
eye is occluded and almost undetectable; both eyes are completely
occluded.

run the appearance model to filter the noise candidates out,
then find the best configuration which minimizes the struc-
tural model. The major computational cost comes from the
first stage where(Nleye + Nreye + Nnose) positions need
to be examined. The cascaded-SVM classifier described
in Section 3.1 effectively reduces the cost involved in this
stage. The second stage is proven to be very efficient due to
that it works on the 2D image plane and that the first stage
helps reduce considerable number of candidate positions.
Our current implementation has not been optimized, but it
takes about only 0.1 seconds to fit a100 × 100 image on a
2.8GHz P4 machine; we believe it is acceptable for many
real applications.

4.2. Predicting with Partial Occlusion

In many real-world images such as those collected from
the web, the eyes may be partially occluded by hand, hair,
glasses,etc. This will impose difficulty for our appearance
model. Here, we adopt a heuristic method to handle the
following typical partial occlusions, as illustrated in Fig-
ure 4. 1) One or two eyes are weakly occluded but can still
be detected by our discriminative model (i.e., its posterior
exceeds some threshold). This situation does not need any
special treatment and we simply use the learned model to
fit it as if they were not occluded. 2) Only one eye is oc-
cluded and could not be detected reliably but the other eye
and the nose have good response values. In this situation,
we can use the positions of the two reliable features to pre-
dict that of the difficult one,i.e., only the structural model is
used to predict the position of the occluded eye. A similar
method has been used by Leunget al. [13] in finding faces
in cluttered scenes. 3) Both eyes are occluded and unde-
tectable. This is the worst case, however, if the nose can be
detected, we can still use it as the starting point to trigger
the structural model fitting; otherwise we have to include
more context facial features or rely on the prior positions of
eyes output by the face detector.

5. Experiments

We evaluate the proposed method on databases including
LFW (Labeled Faces in the Wild) [10], FERET [17],etc.,
and achieve encouraging results on all databases. Due to the



pagelimit, considering that LFW is the most challenging
database, we only present the results on LFW in this section.

5.1. Data

LFW [10] is a large WWW database in which all faces
were collected from real-life featuring variations on pose,
lighting, expression, background, camera quality, occlusion
and image noise. The appearance of eye region in an im-
age is largely changed by these variations, hence posing
great challenge to eye localization techniques. From the
total 13,233 target face images, we randomly select 2,000
images and split them into two data sets with 1,000 im-
ages each, using one for training and the other for testing.
Various transformations such as rotation, blurring, contrast
modification and addition of Gaussian white noise are then
applied to the initial set of training images, yielding about
17,000 new images in total. The final training set contains
3,000 images, among which 500 images are randomly se-
lected from the initial set and 2,500 from the generated im-
ages. Some example test images are shown in Figure 1. The
LFW database does not provide the ground-truth eye posi-
tions, so we invite two human volunteers to manually label
the eye positions and take the average as the ground-truth.
We define the ground-truth as the pupil of eyes by default,
and when the eyes are completely occluded (say, by sun-
glasses), we define it as the center of eyeball. The extensive
labor work is the reason why we have used a subset of 2,000
images instead of the total 13,233 images in LFW.

5.2. Settings

All images undergo the same preprocessing pipeline
prior to analysis, as illustrated in Figure 5. For face de-
tection, we use the publicly available implementation of the
Viola-Jones face detector [22] from the OpenCV library; it
outputs a bounding box indicating the predicated center of
the face and its scale. After verifying with a SVM classi-
fier, we scale the detected face images to a standard size of
100 × 100 pixels (i.e., the maximum likelihood estimation
of the scale of face detector windows), which helps reduce
the amount of translation and scale variation in the image.
The geometrically normalized images then undergo illumi-
nation normalization which compensates for low-frequency
lighting variations and suppresses noise with a Difference
of Gaussians filter. This technique has recently been shown
to lead to state-of-the-art performance on face recognition
[20] and we find it is also useful in eye localization. Finally,
using statistics about the eye/nose positions relative to face
detector window, the search regions for two eyes and the
nose are separately estimated [2].

The training patches consist of both positive and nega-
tive samples. They are collected according to the ground-
truth, while the negative set undergoes an additional boot-
strap procedure to filter out samples with low utility value.

Figure 5. Illustration of the overall preprocessing pipeline (the
bounding box in the rightmost image is the search region).

The size of each patch is determined by cross-validation on
the training set.

To evaluate the precision of eye localization, we adopt
the measure proposed by Jesorskeyet al. [11]. The localiza-
tion criterion is defined in terms of the eye center positions
according to

deye =
max(dl, dr)
‖Cl − Cr‖ , (14)

where Cl and Cr are the ground-truth positions anddl

and dr are the Euclidean distances between the detected
eye centers and the ground-truths. For eye detection, usu-
ally deye < 0.25 is required [25], but for eye localization,
deye < 0.05 or deye < 0.1 is more desired.

We compare our method with the traditional PS method
[3] and the Bayesian method [2]. The simple Bayesian
method has recently been shown to perform better on
eye localization than several classical appearance-based
approaches such as regression method, Boosting-based
method and SVM-based method [2].

5.3. Results

Figure 6 plots the cumulative error distribution curves
of the compared methods, where the horizontal axis is nor-
malized Euclidean distance (i.e., deye) between the pre-
dicted eye position and ground-truth position, while the
vertical axis is the cumulative localization score, showing
the percentage of images that have been successfully pro-
cessed corresponding to a certain localization error. As ex-
pected, the PS method outperforms the Bayesian method,
partially due to the fact that the PS method has stronger ca-
pability of structural validation while many images in the
database exhibit different extent of rotation either in the
plane or out of plane. By replacing the generative appear-
ance model with a discriminative model, and by incorporat-
ing the global shape constraints, our enhanced PS method
performs the best among the compared methods. To make
this clear, we tabulate the percentage of successful local-
ization subject todeye < 0.05 anddeye < 0.1 in Table 1.
It can be found that our method promotes the performance
of the traditional PS method from53.4% to 80.2% when
deye < 0.05, and achieves the best correct localization rate
of 98.4% at deye < 0.1, about5% higher than the other
two methods. Figure 5.3 presents some example images
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Figure6. Comparing the cumulative error distribution curves.

in which our method correctly localizes the eyes while the
other two methods failed; most of the incorrect localizations
by the other two methods are caused by the complicated ap-
pearance or structural changes due to lighting, pose, expres-
sion and partial occlusions.

We also examine the relative localization performance
of each eye. Breifly, here we only report the results on the
right eye (results on the left eye are similar). Table 2 gives
an overall estimation of the performances of the compared
methods. In particular, the table discloses that in90% of
images the eye is located within 1.90 pixels by our method,
much better than the other two methods (2.96 pixels by the
Bayesian method, 2.72 pixels by the traditional PS method).
Although it is difficult to make a quantitative comparison
with other methods in literatures due to the lack of com-
mon evaluation data set, we notice that the best reported
result in [2] is 2.04 pixels and 2.74 pixels with the same er-
ror measures on the FERET data set and a WWW data set,
respectively.

To study the localization behavior further on the right
eye in x and y axes, we report the displacements by the
compared methods in Table 3. Note that although the mean
value of the traditional PS method is slightly better than that
of the Bayesian method inx-axis, its standard deviation is
much larger than that of the Bayesian method,3 which may
due to the use of overly strong local structural constraints.
It is clear that our method outperforms both the traditional
PS method and the Bayesian method significantly.

We also study the scalability of the proposed method
by removing the local search region for each part. In this
case, the appearance model (8) is modified as:p(I|L, θ) ∝∏Np

i=1

∑
z p(z|li, ui) ≈

∏Np

i=1 maxzp(z|li, ui). The results
are shown in Table 4. As expected, the performance of all
the compared methods degenerates when the search region
increases. However, the efficiency of model inference of our
method is still improved since it filters out a large number

3This should not be confused with the results in Figure 6 where a dif-
ferent evaluation criterion is used.

Table 1. Percentages of successful localizations subject todeye <
0.05 anddeye < 0.1, respectively.

Method deye < 0.05 deye < 0.1
Bayesianmethod 44.0% 91.9%
Traditional PS 53.4% 93.1%
Our method 80.2% 98.4%

Table 2. Errors of right eye localization, measured by Euclidean
distance in pixels in normalized images. In90% images the eyes
are located within 1.90 pixels by our method.

Method 50% images 90% images
Bayesianmethod 1.51 pixels 2.96 pixels
Traditional PS 1.39 pixels 2.72 pixels
Our method 0.97 pixels 1.90 pixels

Table 3. Pixel coordinate error (mean± std.) in original images
when searching in reduced space.

Method x-coordinates y-coordinates
Bayesianmethod 1.38± 5.17 1.22± 3.88
Traditional PS 1.33± 7.18 1.38± 8.19
Our method 0.93± 4.36 0.71± 1.84

Table 4. Pixel coordinate error (mean± std.) in original images
when searching in whole image.

Method x-coordinates y-coordinates
Bayesianmethod 4.76± 122.62 2.00± 32.05
Traditional PS 1.93± 18.80 2.68± 49.78
Our method 1.06± 5.47 0.97± 11.52

of noise candidates at first.
Finally, we examine the effectiveness of our method for

handling partial occlusions, and some typical results are
shown in Figure 5.3. It can be seen that our method is more
robust against partial occlusions caused by pose, hair, sun-
glasses, and other things like baseball pole. It is interesting
to note that sometimes we human beings may be cheated
by our own eyes, that is, the eyes may not be occluded by
sunglasses as much as we may have thought and can still be
precisely located by our method (c.f. Figure 5.3).

6. Conclusion

In this paper, we present a new method for eye localiza-
tion under uncontrolled conditions. We enhance the Picto-
rial Structures (PS) model [3] by replacing the generative
model with a discriminative model, incorporating global
geometrical constraints on facial features, and adopting an
effective heuristic method to deal with occlusion. Experi-
ments on the challenging LFW database [10] show encour-
aging results on a broad range of appearance variations and
imaging conditions. The proposed method is possible to be



(a)On images without occlusions (b) On images with occlusions

Figure 7. Examples results of eye localization on LFW images(from top to bottom: Bayesian method, traditional PS method, our method).

extended to localize other facial features.
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