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In this paper, we present an enhanced Pictorial Struc-
ture (PS) model for precise eye localization, a fundamen-
tal problem involved in many face processing tasks. PS is
a computationally efficient framework for part-based ob-
ject modelling. For face images taken under uncontrolled 0metrically normalized face images, such as eigenface and
conditions, however, the traditional PS model is not flexi- fisherface.
ble enough for handling the complicated appearance and Similar to other general object detection tasks such as
structural variations. To extend PS, we 1) propose a dis- face detection [22], people detection [3] and animal detec-
criminative PS model for a more accurate part localization tion [12], the major challenge of eye localization comes
when appearance changes seriously, 2) introduce a series ofrom the fact that, as illustrated in Figure 1, the appearances
global constraints to improve the robustness against scale,of eyes are complicated due to various factors, from normal
rotation and translation, and 3) adopt a heuristic predic- behaviors of eyes (e.g., opening, closiegs.) to environ-
tion method to address the difficulty of eye localization with mental changes (e.g., outdoor lighting, pose, scale, reflec-
partial occlusion. Experimental results on the challenging tion of glasses, partial occlusion by haies¢.). To address
LFW (Labeled Face in the Wild) database show that our the problem, various approaches have been proposed. These
model can locate eyes accurately and efficiently under aapproaches can be roughly classified into three categories
broad range of uncontrolled variations involving poses, ex- [23,26],i.e., template-based approaches, appearance-based
pressions, lightings, camera qualities, occlusiagts, approaches and feature-based approaches.

Most of the early methods, such as the deformable tem-

plates methods [24], belong to the template-based category,
1. Introduction where a generic eye model is designed based on eye shapes
and then used to search eyes in the images. These meth-

The task of detecting and localizing eye positions in a ods usually have good accuracy, however, generally they are
given image which contains a face is crucial for the initial- computationally expensive and require good image contrast
ization of many face processing applications such as facewhich is not always available in practice.
tracking, face recognition, face expression analysis, eye be- Appearance-based approaches aim to localize eyes based
havior analysisetc. There is a subtle difference between on their photometric appearance using various statistical
eye detection and eye localization; that is, the latter gen-classification techniques, such as principal component anal-
erally requires a much more accurate prediction of the eyeysis (e.g., eigeneyes [16]), support vector machines [9],
positions (usually only a few pixels of errors are allowed) neural networks [5], Boosting [14&tc. Everinghanet al.
than the former. Recent research has disclosed that an inad2] compared several kinds of appearance-based approaches
curate eye localization will cause serious problems for au- and found that the simple Bayesian model outperforms the
tomatic face recognition systems [19], especially for those other methods including a regression-based and a Boosting-
based on techniques heavily relying on the quality of the ge-based method. In general, appearance-based eye localiza-

Figurel. lllustration of the complicated appearances of ejras (
ages from the LFW database [10]



tion methods are more robust against complicated appearficiently under uncontrolled conditions.

ance changes than template-based ones due to the capabil- The rest of this paper is organized as follows. Section 2

ity of learning from examples, yet the problem of reliably briefly introduces the Pictorial Structure model. Section 3

separating true small eye regions from other regions with aproposes our enhanced PS model. Section 4 presents meth-

low false positive rate remains unsolved. ods for fitting the learned PS model to test images and han-
Feature-based approaches attempt to exploit speciadling partial occlusion. Section 5 reports on our experi-

characteristics of the eyes such as the dark pupil and whitements. Finally, Section 6 concludes.

sclera to distinguish the eyes from other objects [25]. Such

eye-specific features can be regarded as the contextin whicl2, Background

the true eye lies. However, when the input image is with low

contrast or with closed or occluded eyes, the eye-specific N this section, we briefly introduce the statistical frame-
features are difficult to be detected. work of Pictorial Structure following the denotations in [3].

In PS an object is first decomposed into parts and then the
best part candidates are searched subject to some spatial
constraints such that the likelihood of generating the con-

conditions such as situations with extreme lighting changes,gem,ed |mdage IS ma?;!mll\;edk Hgnc% a PE_ %Odl\j:?;an ilhso
large expression variations and partial occlusions, although e viewed as a specific Markov Random Field ( ) wi

addressing these issues is important for real applications,parts as Its sites. .
e.g, uncontrolled face recognition [6,7] The PS model [3,4] can be expressed naturally in terms

f an undirected grapli = (V, E), where the vertices

In this paper, we presenta new apprqach for precise and?/ — {v1,-++ vy, } correspond tav,, parts, and the edge
robust eye localization. Previous studies [1,3] disclosed v, . ] U
setE = {(v,v,),i # j} characterizes the local pairwise

that the accuracy as well as the false positive rate of fea- . : ; : .

L . : . spatial relationship between different parts. An instance
ture localization can be improved effectively by exploiting S . .

. . . . of an object is given by a configuratiah = (I1,--- ,{;),
the context information of the object of interest. Here, by o .
) . ; where eachi; = (z;,y;) specifies the location of the com-
context information of eyes, we mean any facial features :
ponenty; on the image plane. For example, a face can be

that are helpful for identifying the eye positions, such as :

the places of nose. mouttic. Compared with mouth. nose represented by four parts (i.e., two eyes, one nose and one
P ' o P o mouth) and the spatial relationship between these four parts.

can be detected more reliably due to the fact that its appeary, .o the appearance and structural information are com-

ance is less sensitive to expression changes and occlu:siongined into a unified framework

(say, by beard), hence being used in this work. Actually, )

o . L Specifically, given an imagkcontaining a face, the like-
the nose position may also be useful in face normalization . . o .
algorithms. lihood of generating this image by the facial parts at some

o ) ) locations isp(I|L, #), wheref is the model parameter. As-
The Pictorial Structure (PS) model [3,4] is well suited sume that we are working on the region output by a face

for our purpose. It is a computationally efficient frame-  jos00t0r and therefore we need not model the background.
work for part-based modelling and recognition of ObJects, q inter the locations of the facial parts from this model, we

and has been successfully applied to face identification [3]’can look for the maximuna posteriorp(L|I, 6), i.e., the
people finding [3] and other object recognition and deteC'Probability that a face configurationIsgiven’ the modeb
al

tion tasks [12]. The essence of the PS model is to conside nd an imagd. According to Bayes rule, the posterior can
the components (or parts) of an object in the context of its be written as

overall interior configurations, aiming to finding out the lo-

cation of each component as well as its sp_atial confi_guration p(L|1,6) o p(I|L,0)p(L|6), (1)

through encoding them into a global object function. In

contrast to pure appearance-based approaches where eagfherep(I|L, ) is the generative model of appearance and

object is handled by a single appearance model, the PS,(L|9) measures the prior probability that a face appears

method provides a powerful framework for modelling an at the location.. Here the model parameter is denoted by

object in terms of its components and the geometrical rela-g = (u, c), whereu = (uy,--- ,uy,) expresses the appear-

tionship between components. ance whilec = {c;;|(vi,v;) € E} expresses structural con-
The main contribution of this paper is to enhance the tra- straints on edges. Felzenszwalb and Huttenlocher [3] also

ditional PS model such that it can be used to handle theincluded the set of edgds as model parameter in order to

complicated appearance and structural changes of eyes ursimplify the underlying graphical structure.g., letting it

der uncontrolled conditions. Extensive experiments on thebe a tree), but this is not necessary for our purpose of eye

challenging LFW (Labeled Face in the Wild) database show localization.

that the proposed model can localize eyes accurately and ef- Assuming that the parts are statistically independent, we

Overall, most of the existing methods are only feasible
under rather constrained conditions, and few work studies
the problem of precise eye localization under uncontrolled



have model which focuses more on the points that count is more

No appropriate.
pUI|L,0) = p(I| L, w) o [T p(T]li, wi), & For this purpose, we introduce a class lahel €
=1 {1,---, N,} for each part, denoting one &, possible se-
where the appearance of each component can be modmantic labels (e.g Right-eye L eft-eye Nose,etc.) for that
elled by unimodal Gaussian distribution(Z|l;,u;) o part. The appearance model of (2) can then be rewritten as
N (als), pris ).
With a similar independent assumption on the spatial re- Np
lationship between pairs of parts, we have the structural p(I|L,0) = p(I|L,u) o Hp(l\li,ui)
model =1 (6)
N, N,
p(L[#) = p(L|c) = H p(lis Lileij), 3) = H Zp([, 2|l ui) = H Zp([|z)p(z|li,ui).
(vi,v;)EE i=1 =z i=1 =z

where the edge constrains between the components can also Note thatp(I|z) gives the probability of generating an
be modelled by Gaussian distribution image given its part labels. This can be useful if we detect
eyes directly in general backgrourice(, without face con-
p(li; lleig) = p(wi, @1y |eig )p(yi, yiyleig) 4) text). In our setting, however, the localizer takes the image
= N(z1, — w15, 815, Zig )N (w1, — w1,)5 535, 2ij)- region output by a face detector as input, where the part la-
bels of interest are assumed to be known. Hence we need

Plugging (3) and (2) into (1), we get the global objective not model any preference over the labels in imdg¢his

function implies thatp(I|z) is a constant and we can omit it for sim-
N, plicity. This simply reduces (6) to
p(L|1,0) { HP(I|li7Uz‘) H p(livljcij)}- (5) N N
i=1 (’Ui,’Uj)GE d i
pUIL,0) o [T pUl2)p(alli i) = [T D walli, wi).
The first term at the right hand of (5) is the appearance i=1 z i=1 =z
model, while the second term expresses the spatial con- @)

straints. Taking the negative logarithm of (5), we get the en- _ Furthermore, we restrict the region for searching each
ergy function of the PS model. For tree-structured models, Kind of part €.g, right eye, left eye, nosetc.) by col-

Felzenszwalb and Huttenlocher [3] have developed com-€cting statistics about their true positions with respect to
putationally efficient algorithms for learning from training the corresponding output window of our face detector. This
data and fitting test images. allows us to model only the parts from certain predefined re-

gion with known labels, thus not only reducing the number
of candidate locations for each part significantly, but also
simplifying our model significantly to

Possible criticisms to the PS model include that the uni- N
modal generative appearance model may not be capable to »
providega good appﬁgximation to muItimgdaI distribuptions p(I|L,0) o [T D p(zlliui) = [ pzillius),  (®)
of eye appearance under uncontrolled conditions, and the =1z i=1
local pairwise prior may impose overly strong constraints
on the spatial relationship between the parts. We will ad-
dress these issues in this section.

3. Enhanced Pictorial Structure

Np

where the posterior distributionz;|l;, u;), characterizes
the probability that the label of the partis a certain label
valuez; given its appearanag and positiort;. To this end
we derive a discriminative model completely within the PS
framework. There were many work [1,12] which use a dis-
One important observation from our work is that in a criminative appearance model, yet none has been designed
complicated setting, the distribution of eye patterns are mul-for eye localization.
timodal in nature, which could not be approximated well There are many ways to approximatéz;|l;, ;) [8],
with a unimodal Gaussian modél.More importantly, our ~ among which the energy-based methods (e.g., conditional
goal is to localize the eyes precisely rather than describe therandom fields and logistic regression) are very popular due
whole face object using facial features. So, a discriminative to the convenience of incorporating arbitrary functions of
1 — . : . . training examples and the nonparametric nature in the sense
One option is to replace the simple unimodal Gaussian generative . - .
model with a more complex one like Gaussian mixture model (GMM), at Of N0 need to assume any particular distribution. Here, for
the cost of higher model complexity and hence lower detection efficiency. Simplicity we choose to model the decision boundary with

3.1. Discriminative Pictorial Structure




ahyperplane in some feature space, and then fit it with a lo-
gistic sigmoid function to give an approximation probability >
of interest [18]. \

In particular, we use a support vector machine (SVM) \
to calculate the optimal separating hyperplane in the fea-
ture space, which corresponds to a nonlinear boundary in
the complicated input space. Other options such as Rele-
vance Vector Machine (RVM [21]) and Adaboost can also A
be considered. The SVM solver outputs an optimal hyper- rigure2. The fitted Gaussian distribution of relative location of the
plane in the general form of(u) = 5+ 372, di K (u, u;), left eye with respect to the location of the right eyef (Eq.(3))
where N is the number of training examples aid is a along the vertical axis.
predefined kernel function (Gaussian kernel is used in this
paper). Then, the estimate of posterior probability is fitted
by p(z = 1|u) = 1/{1 + e~Af(W)=B} using the binomial
log-likelihood as loss function [18}

In practice, the learned support vectors are usually not
sufficiently sparse to meet the requirement of real-time de-
tection. One way to address this issue is to uszlaced set
method to reduce the number of support vectors and hence
the computational complexity. In this work we adopt the Figure 3. lllustration of some commonly encountered structural
method in [15] for this purpose and find that typically 10 to change_s between eyes. From left to right: the original, scaled and
20 support vectors are enough for each part. rotated images.

To speed up the detection further, in implementation we
train two hierarchical SVM classifiers. The first-level SVM configuration follows a prior spatial regularity. The confi-

works on the simple gray-intensity feature of each part in gence score reaches its peak at the position of mean value

order to reject quickly a large number of negatives. The gnq decreases otherwise. In the example of Figure 2, the
second-level SVM uses the Gabor features as input, whichmnean value of the distribution is very close to zero, which

are known to be robust against scale, illumination and Otherimplies that the best vertical positions of two eyes should
appearance changes. The cascaded SVMs are trained inge on the same horizon line, thus imposing a very strong
way similar to the Viola-Jones face detector [22], where a ¢onstraint on the spatial relationship between two eyes, eas-
threshold i; learned fqr each level of SVM. on_.the training ily being violated in the case of rotatioe,g., the rightmost

set according to the given performance criterioe.(true  jmage in Figure 3. Similarly, the constraint on relative loca-
positive rate & false positive rate). Through this process, tions in the horizontal axis is problematic since face images

we reduce the number of candidate positions for each partsyay pe taken under different scalesy, the middle image
from about 400 to 20 efficiently and effectively. in Figure 3.

ooz L=-023

To address the above-mentioned deficiency, we intro-
3.2. Global and Local Constraints duce an improved structural description method which is
more robust to rotation, scale and translation. The idea is
to incorporate global structural constraints with local ones.
By global structure we mean the spatial relationship among
more than two parts. In our case, this is simply the triangle
formed by the two eyes and the nose (thfe leftmost im-
age in Figure 3); if more facial features need to be detected,
more triangles like this can be added. Moreover, instead
of modelling therelative locationbetween parts in previ-
ous studies, we adoptlative distanceso encode the local
constraints.

In particular, we model three pieces of structural infor-

As introduced before, the traditional PS models the spa-
tial configuration between a pair of parts with a separate
Gaussian distribution, yet we find that such local pairwise
constraints may be overly strong and only work well un-
der normal conditions (i.e., the spatial relationship does not
change too much), while in practice the configuration be-
tween facial parts may be deformed largely due to variation
such as scale, rotation and expression changes.

To illustrate such limitation, in Figure 2 we give an ex-
ample of the fitted Gaussian distribution of relative location

of the left eye with respect to the location of the right eye . . i :
4 P ght ey mation based on the facial feature triangle, that is, 1) the

(c.f. Eq.(3)) along the vertical axis. This can be understood length of each edge, 2) the length ratio between a pair of

as some confidence score indicating to what extent a given 4
9 9 edges, and 3) the inner angle between any two edges. The

2Herewe abuse the notation afto indicate whether or not a particular ﬁrSt_One is local ConStr?-int an_d th_e |attler two are g.|0ba| con-
facial feature €.g, left eye) with appearance parametss detected. straints. They have nice affine-invariant properties. First,




the edge lengths are invariant to 2D rotation and transla-
tion; Second, both the length ratio and inner angle between
two edges are invariant to scale, 2D rotation and 2D trans-
lation. As the consequence, these three structural mea-
surements make our model more robust against structural
changes caused by expression and pose variations which argig e 4. Illustration of three typical eye occlusion conditions.
commonly encountered in real applications. From left to right: one or two eyes are weakly occluded; only one
In implementation, the length of edds; is defined by  eye is occluded and almost undetectable; both eyes are completely
the Euclidean distance between pastandv; on the image  occluded.
plane,i.e.,

run the appearance model to filter the noise candidates out,

Lij = \/(T/li =2, + (g, —y,)? then find the best configuration which minimizes the struc-

9)

Vi, j e {1,2,3),i # j, tgral model. The major computational cost comes from the
first stage wher¢Njeye + Nyeye + Npose) POSitions need
and the length ratie;; and the cosine angles(a;;) be- to be examined. The cascaded-SVM classifier described
tween edges are defined respectively as in Section 3.1 effectively reduces the cost involved in this
stage. The second stage is proven to be very efficient due to
rij = Lik/Ljk (10)  that it works on the 2D image plane and that the first stage
helps reduce considerable number of candidate positions.
and ) . o .
L+ L?k _ L?k Our current implementation has not been optimized, but it

cos(w;) = (11) takes about only 0.1 seconds to fit@ x 100 image on a

2L L 2.8GHz P4 machine; we believe it is acceptable for many
All of the above definitions can be expressed as a func-rea| applications.

tion of edge lengtle. Here, we define; £ Lo, e3 = L3
ande; = Lo3, and thus the energy functidii(es, e2,e3) of 4.2, Predicting with Partial Occlusion

our structural model is )
In many real-world images such as those collected from

3 3 . .

Eler ez es) = — S oi(e))— S walee;) the web, the eyes may be par'_ua_llly occluded by hand, hair,
i=1 i,j=1,i#] glassesetc. This will impose difficulty for our appearance

3 model. Here, we adopt a heuristic method to handle the

- > e3(es, ej,ex),  (12) following typical partial occlusions, as illustrated in Fig-
LK1k ure 4. 1) One or two eyes are weakly occluded but can still

wherey:, v, andys are the potentials corresponding to the be detected by our discriminative model (i.e., its posterior
aforementioned three structural constraints, respectively,exceeds some threshold). This situation does not need any
modelled by Gaussians. Considering that different subjectsspecial treatment and we simply use the learned model to
have different configurational biases, we weight these Gausit it as if they were not occluded. 2) Only one eye is oc-
sian potentials with their variances respectively before com-cluded and could not be detected reliably but the other eye
bining them; the weights can be considered as a prior forand the nose have good response values. In this situation,
different constraints. The values of the above structural pa-we can use the positions of the two reliable features to pre-
rameters can be learned from independent training data usdict that of the difficult onei.e., only the structural model is

ing the maximum likelihood method. used to predict the position of the occluded eye. A similar
method has been used by Leustgal. [13] in finding faces
4. Matching Algorithm in cluttered scenes. 3) Both eyes are occluded and unde-
o tectable. This is the worst case, however, if the nose can be
4.1. Fitting the Model detected, we can still use it as the starting point to trigger
The best fit of the enhanced PS model in an unseen testhe structural model fitting; otherwise we have to include
image is more context facial features or rely on the prior positions of
eyes output by the face detector.
NP
L* = arginin Z(— logp(zz|l“ub)) +E(€1,62,€3) . 5 EXpel’imentS
i=1

(13) We evaluate the proposed method on databases including
An exact inference for the non-tree-structured model is LFW (Labeled Faces in the Wild) [10], FERET [1&ic.,
difficult and so we adopt an approximation method. We first and achieve encouraging results on all databases. Due to the



pagelimit, considering that LFW is the most challenging
database, we only present the results on LFW in this section.

5.1. Data
LFW [10] is a large WWW database in which all faces

[N 8
were collected from real-life featuring variations on pose,
lighting, expression, background, camera quality, occlusion Figure 5. lllustration of the overall preprocessing pipeline (the
and image noise. The appearance of eye region in an im-bounding box in the rightmost image is the search region).
age is largely changed by these variations, hence posing
great challenge to eye localization techniques. From theThe size of each patch is determined by cross-validation on
total 13,233 target face images, we randomly select 2,000the training set.
images and split them into two data sets with 1,000 im-  To evaluate the precision of eye localization, we adopt
ages each, using one for training and the other for testing.the measure proposed by Jesorsiegl. [11]. The localiza-

Various transformations such as rotation, blurring, contrasttion criterion is defined in terms of the eye center positions
modification and addition of Gaussian white noise are then according to

applied to the initial set of training images, yielding about max(dy, d,)
17,000 new images in total. The final training set contains deye = o, — . (14)

. . : 1C1 = Crl
3,000 images, among which 500 images are randomly se- N
lected from the initial set and 2,500 from the generated im- Where C; and C, are the ground-truth positions and,
ages. Some example testimages are shown in Figure 1. Thand d, are the Euclidean distances between the (_jetected
LFW database does not provide the ground-truth eye posi-€Y€ centers and the ground-truths. For eye detection, usu-
tions, so we invite two human volunteers to manually label @y deye < 0.25 is required [25], but for eye localization,
the eye positions and take the average as the ground-truthfeye < 0.050rdeye < 0.1 is more desired.
We define the ground-truth as the pupil of eyes by default, We compare our method with the traditional PS method
and when the eyes are completely occluded (say, by sun{3] and the Bayesian method [2]. The simple Bayesian
glasses), we define it as the center of eyeball. The extensivénethod has recently been shown to perform better on
labor work is the reason why we have used a subset of 2,00Ye localization than several classical appearance-based

images instead of the total 13,233 images in LFW. approaches such as regression method, Boosting-based
method and SVM-based method [2].

5.2. Settings
5.3. Results

All images undergo the same preprocessing pipeline
prior to analysis, as illustrated in Figure 5. For face de-  Figure 6 plots the cumulative error distribution curves
tection, we use the publicly available implementation of the of the compared methods, where the horizontal axis is nor-
Viola-Jones face detector [22] from the OpenCYV library; it malized Euclidean distance.€., d.,.) between the pre-
outputs a bounding box indicating the predicated center ofdicted eye position and ground-truth position, while the
the face and its scale. After verifying with a SVM classi- vertical axis is the cumulative localization score, showing
fier, we scale the detected face images to a standard size dhe percentage of images that have been successfully pro-
100 x 100 pixels (i.e., the maximum likelihood estimation cessed corresponding to a certain localization error. As ex-
of the scale of face detector windows), which helps reduce pected, the PS method outperforms the Bayesian method,
the amount of translation and scale variation in the image. partially due to the fact that the PS method has stronger ca-
The geometrically normalized images then undergo illumi- pability of structural validation while many images in the
nation normalization which compensates for low-frequency database exhibit different extent of rotation either in the
lighting variations and suppresses noise with a Difference plane or out of plane. By replacing the generative appear-
of Gaussians filter. This technique has recently been showrance model with a discriminative model, and by incorporat-
to lead to state-of-the-art performance on face recognitioning the global shape constraints, our enhanced PS method
[20] and we find it is also useful in eye localization. Finally, performs the best among the compared methods. To make
using statistics about the eye/nose positions relative to facehis clear, we tabulate the percentage of successful local-
detector window, the search regions for two eyes and theization subject tal.,. < 0.05 andd.,. < 0.1 in Table 1.
nose are separately estimated [2]. It can be found that our method promotes the performance

The training patches consist of both positive and nega- of the traditional PS method from3.4% to 80.2% when
tive samples. They are collected according to the ground-d.,. < 0.05, and achieves the best correct localization rate
truth, while the negative set undergoes an additional boot-of 98.4% at d.,. < 0.1, about5% higher than the other
strap procedure to filter out samples with low utility value. two methods. Figure 5.3 presents some example images



Table 1. Percentages of successful localizations subjett,to<

-
1

oo - »"""‘"‘-;.- 0.05 andd.,. < 0.1, respectively.
08 it Method deye < 0.05  deye < 0.1
8 07} rd prae Bayesiarmethod 44.0% 91.9%
£ ool yi S Traditional PS 53.4% 93.1%
£ os ',' ',:' Our method 80.2% 98.4%
EE, 0.4r ,"' ,"
£ 0af ,!" ," , Table 2. Errors of right eye localization, measured by Euclidean
02 ‘,-‘ ,0' distance in pixels in normalized images. 98% images the eyes
oal "_.’ .’.-' " = enhanced pictorial model are located within 1.90 pixels by our method.
N ‘ = = = Bayesian model ‘ Method 50% images 90% images
° O ormalized stcidean distance(pirels) o Bayesiammethod  1.51 pixels  2.96 pixels
Figure6. Comparing the cumulative error distribution curves. Traditional PS 1.39 pixels ~ 2.72 pixels

Our method 0.97 pixels 1.90 pixels

in which our method correctly localizes the eyes while the : . o
. . o Table 3. Pixel coordinate error (meanstd.) in original images
other two methods failed; most of the incorrect localizations L
. when searching in reduced space.
by the other two methods are caused by the complicated ap- . .
Method z-coordinates y-coordinates

pearance or structural changes due to lighting, pose, expres- -
Bayesiamrmethod  1.38t 5.17 1.22+ 3.88

sion and partial occlusions. -
We also examine the relative localization performance ~ lraditional PS 13&7.18  1.38£8.19
Our method 0.93 4.36 0.71+ 1.84

of each eye. Breifly, here we only report the results on the
right eye (results on the left eye are similar). Table 2 gives
an overall estimation of the performances of the comparedTable 4. Pixel coordinate error (meanstd.) in original images
methods. In particular, the table discloses tha9(ff of when searching in whole image.
images the eye is located within 1.90 pixels by our method, Method z-coordinates y-coordinates
much better than the other two methods (2.96 pixels by the ~ Bayesiarmethod 4.76+ 122.62 2.00t 32.05
Bayesian method, 2.72 pixels by the traditional PS method).  Traditional PS 1.93 18.80 2.68+ 49.78
Although it is difficult to make a quantitative comparison Our method 1.06- 5.47 0.97+ 11.52
with other methods in literatures due to the lack of com-
mon evaluation data set, we notice that the best reported
resultin [2] is 2.04 pixels and 2.74 pixels with the same er- of noise candidates at first.
ror measures on the FERET data set and a WWW data set, _. . .

Finally, we examine the effectiveness of our method for

r ively. : . . )
espectively handling partial occlusions, and some typical results are

To study the localization behavior further on the right g :
X . shown in Figure 5.3. It can be seen that our method is more
eye inx andy axes, we report the displacements by the . . . .
robust against partial occlusions caused by pose, hair, sun-

compared methods in Table 3. Note that although the mean . : o .
o S glasses, and other things like baseball pole. It is interesting
value of the traditional PS method is slightly better than that . .
. . . ... 1o note that sometimes we human beings may be cheated
of the Bayesian method in-axis, its standard deviation is

much larger than that of the Bayesian methbathich may by our own eyes, that is, the eyes may not be occluded_ by
.. sunglasses as much as we may have thought and can still be
due to the use of overly strong local structural constraints. recisely located by our method (cFigure 5.3)
It is clear that our method outperforms both the traditional P y y 9 e
PS method and the Bayesian method significantly. .
We also study the scalability of the proposed method 6. Conclusion
by removing the local search region for each part. In this . .
case. the appearance model (8) is modifiedp&L. 0 In this paper, we present a new method for eye localiza-
N, pp N, RBLL, 0) tion under uncontrolled conditions. We enhance the Picto-
[ 22 p(2lli, wi) = [[;2y maw=p(z|li, wi). Theresults  ja) stryctures (PS) model [3] by replacing the generative
are shown in Table 4. As expected, the performance of all o 4e| with a discriminative model, incorporating global
the compared methods degenerates when the search regiqfometrical constraints on facial features, and adopting an
increases. However, the efficiency of model inference of our gftective heuristic method to deal with occlusion. Experi-
method is still improved since it filters out a large number 1 ants on the challenging LFW database [10] show encour-
3This should not be confused with the results in Figure 6 where a dif- ?-ging results ona broad range of appearance Vari_ations and
ferent evaluation criterion is used. imaging conditions. The proposed method is possible to be




(a) On images without occlusions

(b) On images with occlusions

Figure 7. Examples results of eye localization on LFW imggresn top to bottom: Bayesian method, traditional PS method, our method)

extended to localize other facial features. [12]
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