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Abstract 

Poly(3-hydroxybutyrate) (PHB) is a bacterial polymer of great commercial importance due to its properties similar to 

polypropylene. With an aim to develop a recombinant system for economical polymer production, PHB biosynthesis 

genes from Bacillus aryabhattai PHB10 were cloned in E. coli. The recombinant cells accumulated a maximum level 

of 6.22 g/L biopolymer utilizing glycerol in shake flasks. The extracted polymer was confirmed as PHB by GC–MS and 

NMR analyses. The polymer showed melting point at 171 °C, thermal stability in a temperature range of 0–140 °C 

and no weight loss up to 200 °C. PHB extracted from sodium hypochlorite lysed cells had average molecular weight 

of 143.108 kDa, polydispersity index (PDI) 1.81, tensile strength of 14.2 MPa and an elongation at break of 7.65%. 

This is the first report on high level polymer accumulation in recombinant E. coli solely expressing PHB biosynthesis 

genes from a Bacillus sp. As an alternative to sodium hypochlorite cell lysis mediated polymer extraction, the effect of 

combined treatment with ethylenediaminetetraacetic acid and microwave was studied which attained 93.75% yield. 

The polymer recovered through this method was 97.21% pure, showed 2.9-fold improvement in molecular weight 

and better PDI. The procedure is simple, with minimum polymer damage and more eco-friendly than the sodium 

hypochlorite lysis method.
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Introduction
Polyhydroxyalkanoates (PHAs) are a group of polyesters 

accumulated in microorganisms as intracellular gran-

ules in response to unbalanced growth conditions (Rehm 

2003). In bacteria, PHAs act as a reserve for carbon and 

energy and are utilized when external supply of car-

bon is limited (Gao et al. 2001). �eir molecular weight 

and monomer composition varies depending on the 

 microorganism and the growth conditions, which reflect 

in their physical properties (Urtuvia et  al. 2014). Based 

on chain length of PHA monomers, they are grouped 

into three: short-chain-length (SCL, 3–5 carbon atoms), 

medium-chain-length (MCL, 6–14 carbon atoms) and 

SCL–MCL PHA copolymers (containing SCL as well as 

MCL monomers) (Phithakrotchanakoon et al. 2013; Pillai 

and Kumarapillai 2017).

Bacterial PHAs are regarded as a green-substitute for 

synthetic plastics due to their complete biodegradabil-

ity in environment, possibility to produce from renew-

able resources, and plastic-like properties. But their wide 

spread application as commodity plastics is hampered 

mainly by high cost of production and extraction from 

bacterial biomass (Muhammadi et al. 2015). To circum-

vent this, several alternative approaches including the use 

of cheap substrates and hyper producing bacterial strains 

are being tested (Khanna and Srivastava 2005; Madison 

and Huisman 1999). PHA production from recombinant 

E. coli is a proven strategy for improvement of poly-

mer yield and easier polymer recovery (Lee et  al. 1994; 
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Lee and Chang 1995; Lee 1997). E. coli is an ideal host 

for PHA production owing to several advantages over 

wild‐type PHA producers such as their faster growth rate 

and ability to grow at high cell densities utilizing easily 

available cheap carbon sources (Lee 1996; Madison and 

Huisman 1999). In addition, the fragility of E. coli cells 

facilitates easy recovery of the polymer and as they do 

not produce any PHA depolymerase enzymes, the accu-

mulated PHAs are not utilized (Choi and Lee 1999; Li 

et al. 2007).

Recovery of polymer from bacterial cell mass is the 

major factor contributing more than 50% of the PHA 

production cost (Samori et  al. 2015a, b). An ideal poly-

mer extraction process should be simple, inexpensive, 

environmental friendly, yielding polymer of high purity 

and of higher recovery rate (Heinrich et  al. 2012). Sev-

eral studies have been reported for polymer recovery 

using organic solvents, chemicals, enzymes, mechani-

cal disruption, etc. (Ramsay et  al. 1994; Berger et  al. 

1989; Kapritchkoff et  al. 2006; Pötter and Steinbüchel 

2005; Tamer et  al. 1998; Heinrich et  al. 2012). But at 

industrial scale, most of these processes are found to be 

either affecting the quality of the extracted polymer or 

increasing the overall production cost. �e widely used 

methodology, utilizing sodium hypochlorite solution 

for cell lysis and polymer release, cause severe degrada-

tion of polymer chains resulting a considerable reduction 

in molecular weight of the extracted PHA (Berger et al. 

1989). �is demands development of new strategies for 

the extraction of high quality PHAs from bacterial cell 

mass with minimum environmental pollution and maxi-

mum polymer recovery.

PHB is a SCL-PHA with physical properties similar to 

that of polypropylene (Griffin 1994) and has tremendous 

application potential in various fields (Sharma and Ray 

1995). B. aryabhattai PHB10 is an efficient PHB accumu-

lating strain described in our previous studies (Pillai et al. 

2017a, b). In this study we engineered a recombinant E. 

coli accumulating PHB using biosynthesis genes from B. 

aryabhattai PHB10 and evaluated a microwave–EDTA 

treatment method for cell lysis in perspective of easier 

and more eco-friendly polymer extraction.

Materials and methods
Bacterial strains, plasmids and primers

�e bacterial strains, plasmids and oligonucleotide prim-

ers used in this study are listed in Table 1.

DNA manipulations

DNA isolation, restriction enzyme digestion, DNA liga-

tion and agarose gel electrophoresis were performed by 

standard protocols (Sambrook and Russell 2001) and 

following the manufacturer’s instructions. Restriction 

enzymes were purchased from �ermo Fisher Scientific 

Table 1 Bacterial strains, plasmids and primers used in this study

Strain/plasmid/primer Relevant characteristics Reference/source

Bacterial strains

 B. aryabhattai PHB10 PHB accumulating environmental isolate Pillai et al. (2017a), 
MTCC Accession no. 
12561

 E. coli JM109 endA1, glnV44, recA1, gyrA96, thi, hsdR17 (rk
−, mk

+), relA1, supE44, ∆(lac-proAB), [F′ 
traD36, proAB, laqIqZ∆M15]

Promega Corporation

Plasmids

 pUC18 Cloning vector;  AmpR Thermo Fisher Scientific

 pGEM-T easy T/A cloning vector;  AmpR Promega Corporation

 pTZ57R/T T/A cloning vector;  AmpR Thermo Fisher Scientific

 pHB4485 pUC18 carrying 4.48 kb PHA gene cluster from B. aryabhattai PHB10 This work

 pHB5803 pUC18 carrying 4.48 kb PHA gene cluster and phaA from B. aryabhattai PHB10 This work

Primers

 PHA4485F 5′-GTT ACC CCA AAT TCT TGA GC-3′ This work

 PHA4485R 5′-CAG GAG TCT TCG CCT TGC -3′ This work

 PHA1278F 5′-GAA AGG AAA TTG AGC AAG CG-3′ This work

 PHA1278R 5′-TGC TCC AAT AAC CAT AAC TG-3′ This work

 T7 promoter primer 5′-TAA TAC GAC TCA CTA TAG GG-3′ Promega Corporation

 SP6 promoter primer 5′-TAT TTA GGT GAC ACT ATA G-3′ Promega Corporation

 M13/pUC sequencing primer 5′-GCC AGG GTT TTC CCA GTC ACGA-3′ Thermo Fisher Scientific

 M13/pUC reverse sequencing primer 5′-GAG CGG ATA ACA ATT TCA CAC AGG -3′ Thermo Fisher Scientific
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(Massachusetts, USA). DNA purification was carried out 

with Illustra GFX PCR DNA and Gel Band Purification 

Kit (GE Healthcare, Illinois, USA) and DNA transforma-

tion was carried out according to Hanahan (1985).

Construction of recombinant vector system

A 4.48  kb DNA fragment, phaPQRBC coding for PHA 

gene cluster and 1.2 kb fragment of acetyl-CoA C-acetyl-

transferase (phaA) were amplified with the primer sets 

PHA4485F–PHA4485R and PHA1278F–PHA1278R 

respectively, using genomic DNA of B. aryabhattai 

PHB10 as template. �e phaPQRBC was ligated with 

pGEM-T Easy vector (Promega Corporation, Wisconsin, 

USA) and the phaA was ligated with pTZ57R/T clon-

ing vector (�ermo Fisher Scientific). �e ligation mix-

tures were independently transformed into E. coli JM109 

chemical competent cells. From the resulting plasmids, 

the multiple cloning sites harbouring the inserts were 

amplified using vector specific primers. �e PCR product 

harbouring phaPQRBC insert was digested with EcoRI 

and ligated to pUC18 linearized with EcoRI. �e ligation 

mixture was transformed into chemically competent E. 

coli JM109 cells to obtain the plasmid pHB4485. phaA 

fragment was inserted into pHB4485 by XbaI–BamHI 

double digestion and subsequent ligation. �e resulting 

plasmid pHB5803 confers ampicillin resistance and PHA 

biosynthesis property to the E. coli cells.

�e sequences of phaPQRBC and acetyl-CoA 

C-acetyltransferase (phaA) are available at NCBI Gen-

Bank under accession numbers NOXE01000006.1 and 

NOXE01000003.1.

Culture conditions

Recombinant E. coli strains were grown at 37  °C in 

Luria–Bertani (LB) medium supplemented with 100 µg/

mL ampicillin. �e medium was solidified with 15  g/L 

agar, when required. For blue–white screening, 4-chloro-

3-indolyl-β--galactopyranoside (X-gal) and isopropyl-

β--thiogalactopyranoside (IPTG) were added to the 

culture medium at final concentrations of 50  µg/mL 

and 0.5  mM respectively. Shake-flask experiments for 

polymer production in recombinant E. coli were per-

formed with M9 minimal medium containing 10  g/L 

glycerol as carbon source at 37  °C with agitation rate of 

250  rpm. �e medium was supplemented with 0.67 g/L 

yeast extract, 1.2 g/L peptone and 0.1 g/L ampicillin. B. 

aryabhattai PHB10 was cultured in basal medium sup-

plemented with 20 g/L glucose for polymer accumulation 

at 30 °C and 180 rpm (Aneesh et al. 2016). After 48 h fer-

mentation, the cells were harvested by centrifugation at 

5000 rpm, lyophilized and the cell dry mass (CDM) was 

calculated. �e fermentation studies were conducted in 

triplicate and the mean values were taken. �e polymer 

was extracted from the cells according to Shi et al. (1997) 

and quantified spectrophotometrically after converting 

PHB to crotonic acid by sulphuric acid treatment (Law 

and Slepecky 1961).

Visualization of polymer accumulated cells

Sudan Black B staining

�e staining was carried out according to Burdon (1946). 

A thin smear was prepared on a glass slide, heat fixed and 

stained with Sudan Black B solution (0.05% in ethanol) 

for 10 min. It was followed by destaining in xylene for a 

few seconds and counter staining with 0.5% safranin for 

5 min. �e smear was observed under 100× oil immer-

sion objective lens of light microscope Nikon YS100 

(Nikon Corporation, Tokyo, Japan).

Nile Red staining

Nile Red staining was performed as described by Jen-

drossek et al. (2007) with modifications by Aneesh et al. 

(2016). �e cells were imaged on a Nikon A1R-Si laser 

scanning confocal spectral microscope with 50× mag-

nification (Nikon Corporation, Tokyo, Japan) excited at 

561 nm.

Scanning electron microscopy (SEM)

SEM analysis was conducted by following the protocol 

described by Soo-Hwan et al. (2011) with slight modifica-

tions by Pillai et al. (2017a). After the fixation and drying, 

5 μL of the cell suspension was sputter coated with gold 

and analyzed in a Scanning Electron Microscope JEOL 

Model JSM-6390LV (JEOL USA, Inc., Massachusetts, 

USA).

Transmission electron microscopy (TEM)

TEM analysis was performed according to Akai et  al. 

(2011) with slight modification. Polymer accumulated 

bacterial cells were harvested, washed in phosphate buff-

ered saline and fixed in 4% paraformaldehyde and 2% 

glutaraldehyde in 200 mM sodium phosphate buffer (pH 

7.3) followed by a post fixation in 1% osmium tetroxide 

in 50  mM sodium phosphate buffer. �e samples were 

dehydrated by washing with increasing concentrations 

of methanol and embedded in Epon812 resin. Ultra-thin 

sections were taken and stained with uranyl acetate and 

lead citrate solutions. �e sections were imaged with a 

TECNAI 200 kV transmission electron microscope (Fei, 

Electron Optics, Oregon, USA).

EDTA–microwave assisted cell lysis and polymer extraction

�e cell lysis studies were carried out in polymer accumu-

lated recombinant E. coli cells. �e experiment was also 

conducted in PHB accumulated B. aryabhattai PHB10 

cells, as a representative of Gram positive bacteria. Cell 
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mass harvested from 250  mL bacterial culture was sus-

pended in 10 mM EDTA solution and kept for one h at 

room temperature with intermittent shaking. �e cell 

suspensions were then kept individually at the centre of 

a 2450 MHz microwave oven (Whirlpool MagiCook 20L 

Classic-S) and exposed to microwave at maximum power 

(700 W) for 10 min. Microwaving was stopped at regu-

lar intervals to prevent frothing of the suspension. After 

the treatment, cells were pelleted, washed with distilled 

water and ethanol. �e pellet was suspended in boiling 

chloroform and filtered through glass wool. �e filtrate 

was poured into glass Petri plates and the polymer films 

obtained were kept open for 1  week in room tempera-

ture for complete evaporation of the solvent. Polymer 

extracted with chloroform from bacterial cells treated 

with sodium hypochlorite (Shi et al. 1997; Aneesh et al. 

2016) was kept as control. �e purity (%) of the extracted 

polymer was calculated as:

where ‘m’ is the mass of polymer as quantified spectro-

photometrically and ‘M’ is the total mass of sample used 

for the analysis, as described by Bhattacharyya et  al. 

(2012).

�e polymer yield (%) was calculated as:

where ‘m’ is the mass of the polymer film obtained after 

extraction, ‘p’ is the purity percentage, ‘CDM’ is the cell 

dry mass taken and ‘PHB’ is the percentage polymer con-

tent (Fiorese et al. 2009).

Characterization of extracted polymer

Gas chromatography–mass spectrometry (GC–MS) analysis

Samples for GC analysis were prepared by methanolysis 

of the extracted polymer (Juengert et al. 2018). A mixture 

of 1  mL chloroform and 1  mL acidified methanol (15% 

v/v  H2SO4) was added to 10 mg of polymer sample and 

incubated in an oil bath at 100 °C for 2 h. Phase separa-

tion was achieved by adding 1  mL deionised water and 

1  mL chloroform containing an internal standard (0.2% 

v/v methyl benzoate) to the mixture. �e bottom organic 

phase was collected, dehydrated with anhydrous  Na2SO4 

and 1 μL of the sample was injected directly into the gas 

chromatograph Shimadzu GC–MS QP2010S fitted with 

a Rxi-5Sil MS (30 m × 0.25 mm × 0.25 μm) capillary col-

umn. �e carrier gas (Helium) flow rate was set at 1 mL/

min and the injection temperature was 280 °C. �e initial 

column temperature of 90 °C was maintained for 3 min, 

purity (%) =

m

M
× 100

yield (%) =

m × p

CDM × PHB
× 100

then increased to 190 °C at the rate of 7 °C/min, held for 

5 min and then finally increased to 270 °C at the rate of 

8 °C/min, and held for 5 min. After a solvent cut time of 

3.6 min, mass spectra were recorded under scan mode in 

the range of 50–500  m/z. �e peaks were identified by 

comparing to the mass spectral libraries (NIST 17 and 

Wiley).

Nuclear magnetic resonance (NMR) spectroscopy

Proton NMR (1H NMR) spectra were recorded in model 

 BrukerAvanceII 500 NMR spectrometer (Bruker Corpo-

ration, Massachusetts, USA) at 500  MHz and magnetic 

field strength of 11.7 T. 13C NMR analysis was carried out 

in  BrukerAvanceIII 400 NMR spectrometer at 400  MHz 

and 9.4 T. �e polymer samples suspended in high purity 

deuterochloroform  (CDCl3) were used for the tests (Sal-

gaonkar et  al. 2013). �e spectra were compared with 

standard PHB (Sigma Aldrich, Missouri, USA).

Di�erential scanning calorimetry (DSC)

2–5  mg of polymer sample was taken for DSC analy-

sis in PerkinElmer DSC6000-Pyris Series instrument 

(PerkinElmer, Inc., Massachusetts, USA) under flowing 

nitrogen atmosphere at a heating rate of 10  °C per min 

(Gunaratne et al. 2004).

Thermo gravimetric analysis (TGA)

TGA was carried out over a temperature range of 

28–600  °C at a heating rate of 10  °C/min in SDT Q600 

V8.3 Build 101 thermal analyzer instrument (TA Instru-

ments, Inc., Delaware, USA) (Salgaonkar et al. 2013).

Gel permeation chromatography (GPC)

�e analysis conducted in a Waters HPLC system 

(Waters Corporation, Massachusetts, USA) with chlo-

roform as eluent as described by Su (2013) and Qi and 

Rehm (2001). Polystyrene standards of molecular weight 

1,865,000, 34,300 and 685  Da were used for relative 

calibration.

Tensile properties

Tensile characteristics of the polymer were tested in a 

universal testing machine (UTM) (Make: Tinius Olsen, 

Model: 50ST) (Tinius Olsen TMC, Pennsylvania, USA) 

under room temperature with a 50 kN load cell at fixed 

cross-head speed of 50 mm/min. �ree independent tests 

were carried out following the ASTM (American Society 

for Testing and Materials) standard (D882-12) procedure 

and average values were taken.
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Results
Expression of PHA genes in E. coli and visualization 

of polymer accumulated cells

�e 4.4 kb long phaPQRBC gene cluster and the 1.2 kb 

phaA gene were amplified from B. aryabhattai PHB10 

with custom designed primer sets. �e products were 

cloned into T/A cloning vectors for DNA sequenc-

ing and for convenience in further sub-cloning steps. 

Both the PHA biosynthesis DNA fragments were 

inserted into the linearized pUC18 in succession, to 

get the final recombinant circular vector, pHB5803 

(Fig.  1). �e recombinant construct was transformed 

into chemically competent E. coli JM109 and the clones 

were screened for polymer accumulation. Sudan Black 

B stained culture smear showed cells filled up with 

darkly stained granules (Fig.  2A) and the cells stained 

with Nile Red when exposed to UV light, exhibited 

bright red cytoplasmic granules (Fig.  2B). TEM analy-

sis revealed 10–50 polymer granules having a size range 

of 0.1–0.3  μm occupying almost the entire recombi-

nant cell volume (Fig. 2C). Polymer accumulation level 

was estimated as 6.22 ± 0.08 g/L which corresponds to 

83.18% of CDM (w/w).

Characterization of extracted polymer

Polymer recovered by solvent extraction with chloro-

form from sodium hypochlorite lysed recombinant E. 

coli cells was characterized. �e gas chromatogram of 

the polymer (Fig.  3) showed a major peak with reten-

tion time 3.629 min, which was identified as 3-hydroxy-

butyric acid methyl ester by comparing molecules in the 

GC–MS database. �e retention time of internal stand-

ard benzoic acid methyl ester was observed as 5.828 min. 

Fig. 1 Physical map of plasmid pHB5803 (Generated using SnapGene software, GSL Biotech, Illinois, USA)
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Fig. 2 Visualization of polymer accumulation in recombinant E. coli. A Cells stained with Sudan Black B observed through light microscope. B 

Confocal microscopic images of cells stained with Nile Red (×50 magnification). C TEM images of cells with PHB granules (magnified view in the 

circle, scale bar = 1 μm)

Fig. 3 Gas chromatogram of PHB obtained from recombinant E. coli 
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�e 1H NMR spectrum (Fig.  4) showed the expected 

resonances for PHB as demonstrated by a methine 

group (–CH–) between 5.24 and 5.34 ppm, a methylene 

group (–CH2–) between 2.47 and 2.66 ppm, and a methyl 

group (–CH3) between 1.29 and 1.31 ppm as in standard 

PHB. Scans of 13C NMR (Fig. 5) showed peaks at 169.13, 

Fig. 4 1H NMR spectra of the polymer suspended in  CDCl3. a PHB standard (Sigma), b PHB from the recombinant strain
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67.62, 40.81 and 19.76 ppm representing carbonyl carbon 

(–C–), ester (–O–CH–) group, methylene (–CH2–) and 

methyl (–CH3) groups respectively, as in the standard. 

DSC analysis revealed the melting point of the polymer 

as 171 °C and its thermal stability at temperature range of 

0–140 °C (Fig. 6a). Figure 6b shows the TGA thermogram 

Fig. 5 13C NMR spectra of the polymer suspended in  CDCl3. a PHB standard (Sigma), b PHB from the recombinant strain
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of the PHA film. �e polymer showed no weight loss at 

temperature up to 200  °C. �ermal degradation occurs 

after 200  °C and maximum degradation at 260  °C. GPC 

analysis revealed the number average molecular weight 

(Mn) of 78.947  kDa and a weight average molecular 

weight (Mw) of 143.108  kDa with polydispersity index 

(PDI) 1.81. �e tensile strength and elongation at break 

of the polymer were observed as 14.2  MPa and 7.65% 

respectively.

EDTA–microwave assisted cell lysis and polymer extraction

�e B. aryabhattai PHB10 accumulated PHB at 76.29% 

of CDM (w/w) in basal medium supplemented with 

glucose. Biomass obtained from the recombinant E. coli 

as well as the PHB10 cultures was used for the cell lysis 

experiments. �e effect of EDTA and microwave on 

bacterial cell wall was visualized through SEM (Fig. 7). 

�e images indicated partial disturbances of the E. coli 

cell wall, when the cells were treated with EDTA and 

Fig. 6 a DSC curve of the polymer. b TGA curve
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subjected to microwave radiation independently. �e 

combined treatment of EDTA and microwave radia-

tion resulted in complete breakage of the cells. But the 

treatments did not make any significant change in the 

morphology of the B. aryabhattai cells tested. �e dif-

ference in yield, purity, molecular weight and polydis-

persity of PHB obtained by solvent extraction after cell 

disruption by EDTA–microwave and sodium hypochlo-

rite treatments is given in Table  2. �e EDTA–micro-

wave method showed a polymer yield of 93.75% with 

purity of 97.21% from recombinant E. coli. �e GPC 

analysis showed 2.9 fold improvement in molecular 

weight for the PHB extracted from E. coli, compared 

with that of sodium hypochlorite lysed sample. �e 

polydispersity was also enhanced to 1.67 in comparison 

with 1.81 of the sodium hypochlorite treatment. �e 

molecular weight of polymer from the Gram positive 

strain B. aryabhattai PHB10 was improved by 0.39 fold, 

but there was an increase in PDI from 2.67 to 3.77.

Discussion
PHA production in recombinant E. coli strains has been 

proved as an ideal strategy for cost effective biopolymer 

synthesis (Li et al. 2007; Choi et al. 1998). In this study, 

a recombinant E. coli system was developed using PHB 

biosynthesis genes from B. aryabhattai PHB10, which 

was reported previously as an efficient PHB producer 

(Pillai et  al. 2017a). �is wild strain harbours a cluster 

(phaPQRBC) of five genes involved in PHA metabolism 

viz., phaP (polyhydroxyalkanoic acid inclusion protein), 

phaQ (poly-beta-hydroxybutyrate-responsive repressor), 

phaR (polyhydroxyalkanoic acid synthase subunit R), 

phaB (acetoacetyl CoA reductase), and phaC [poly(R)-

hydroxyalkanoic acid synthase subunit] typical to the 

genus Bacillus (McCool and Cannon 2001; Pillai et  al. 

2017b). In contrast to the PHB gene cluster in Ralsto-

nia eutropha, the gene coding for acetyl-CoA C-acetyl-

transferase (phaA) is not a part of the PHB operon in the 

genus Bacillus and is located elsewhere in the genome. 

Hence the two DNA fragments phaPQRBC and phaA 

Fig. 7 SEM images depicting the effect of EDT and microwave on cell morphology (magnification: B. aryabhattai—×3000; recombinant E. 

coli—×5000)

Table 2 Yield, purity, molecular weight and  polydispersity of  PHB obtained by  solvent extraction after  cell disruption 

by EDTA–microwave and sodium hypochlorite treatments

Yield and purity values are means from three independent experiments (standard deviation in parenthesis)

Parameter B. aryabhattai Recombinant E. coli

Sodium hypochlorite EDTA–microwave Sodium hypochlorite EDTA–microwave

Yield (%) 89.77 (± 2.04) 51.12 (± 3.12) 96.81 (± 1.47) 93.75 (± 2.61)

Purity (%) 91.22 (± 1.97) 93.01 (± 2.09) 93.64 (± 1.83) 97.21 (± 2.22)

Mw (kDa) 199.740 277.593 143.108 553.366

PDI 2.67 3.77 1.81 1.67
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were amplified individually and introduced into the plas-

mid vector, pUC18 for heterologous expression.

�e recombinant E. coli harbouring pHB5803 accumu-

lated PHA granules in their cytoplasm when cultivated 

in presence of glycerol and were visualized by the light-

fluorescent microscopies and TEM. Similar observations 

were previously reported in PHA accumulating recom-

binant E. coli (Jari et al. 2015; Bresan et al. 2016; Horng 

et al. 2011). In the recombinant construct, the PHB genes 

were inserted along with their own original promoter 

sequences from the wild strain and hence the genes were 

expressed without external supply of IPTG for induction. 

At large scale PHA production process, recombinant sys-

tems expressing without IPTG induction will be helpful 

in reducing the polymer production cost (Lee and Keas-

ling 2006).

Genetic elements from Gram negative bacteria are gen-

erally of high preference while attempting heterologous 

production of PHAs in E. coli, as they are more compat-

ible with in E. coli protein expression machinery (Agnew 

et al. 2012; Le Meur et al. 2013). Hence there have been 

only a limited number of reports on the construction of 

recombinant vector system for PHB production in E. coli 

using PHB biosynthesis genes from Gram positive bacte-

ria. Nevertheless, we have achieved a maximum polymer 

accumulation level 6.22 ± 0.08  g/L (83.18% of CDM) in 

the recombinant strain engineered solely with the genes 

taken from a Bacillus sp. Mahishi et al. (2003) have con-

structed a recombinant E. coli system with Streptomy-

ces aureofaciens, and demonstrated the accumulation of 

PHB using genes from a Gram positive bacterium with 

polymer yield of 60% of CDM. Later, Desetty et al. (2008) 

constructed a recombinant plasmid using the PHB gene 

cluster from Bacillus thuringiensis and reported 24% 

PHB accumulation in E. coli. However, they have comple-

mented the locus with phaA from R. eutropha to achieve 

this polymer production level. Davis et  al. (2008) have 

attempted to clone Pseudomonas aeruginosa genes PHA 

synthase1 (phaC1) and (R)-specific enoyl CoA hydratase1 

(phaJ1) along with phaA and phaB from a Bacillus sp. 

�e cloning resulted in accumulation of PHB and mcl-

PHA in E. coli. In another study, Tomizawa et al. (2011) 

have engineered a recombinant construct harbouring 

phaR and phaC from Bacillus cereus complemented with 

phaA and phaB from R. eutropha to yield 7.44  g/L of 

PHB. Recently, El Rabey et  al. (2017) have reported the 

construction of a recombinant system exclusively using 

the PHB synthesis genetic background from B. cereus, 

but PHB accumulation was not mentioned. A few other 

studies on PHB production by recombinant E. coli incor-

porating genetic elements from Gram negative bacteria 

have reported a maximum yield of 0.21 g/L and 2.02 g/L 

(Arifin et al. 2011; de Almeida et al. 2010). �e novelty of 

the recombinant E. coli strain harbouring pHB5803 dis-

cussed in this study is the highest level of PHB accumula-

tion reported till date, solely expressing the genes from 

a Gram positive bacterium. �e value was also found to 

be higher when compared to the yield (3.26 g/L) reported 

from the wild strain B. aryabhattai PHB10 (Pillai et  al. 

2017a).

�e plasmid pUC18 was used as the vector for the con-

struction of pHB5803 and requires ampicillin as selection 

pressure to maintain stability of the recombinant plas-

mid. Antibiotics supplementation during fermentation is 

an important factor contributing to the overall polymer 

production cost, which is not desirable at industrial lev-

els of PHB production. Integration of PHB biosynthesis 

operon into E. coli chromosome by homologous recom-

bination is an established strategy (Lee and Lee 2003) 

to overcome this problem. For an industrial production 

process, the recombinant strain used should be capable 

of accumulating very high polymer content in their cells 

than the normal laboratory strains. Genetically engi-

neered E. coli, with some deletions such as mtgA and 

mreB were observed to be improving PHB production via 

enhanced inclusion body accumulation and cell enlarge-

ment (Jiang et  al. 2015; Kadoya et  al. 2015). Integration 

of amylase gene into recombinant E. coli is a strategy to 

make use of starch as the sole carbon source for PHB 

production (Bhatia et al. 2015). Application of these tech-

niques in the recombinant strain developed in this study 

may improve it’s the industrial applicability.

GC–MS analysis revealed the monomer composi-

tion of the extracted polymer. �e peak obtained at 

3.629 min represented butyric acid methyl ester indicat-

ing the material is a homopolymer of 3-hydroxy-butyric 

acid, i.e., poly-3-hydroxybutyrate. �e 1H NMR spectrum 

demonstrated the resonances for the methine (–CH–), 

methylene (–CH2–) and methyl (–CH3) groups of poly(3-

hydroxybutyrate) as obtained in the standard PHB sam-

ple. �e resonances for the methylene (–CH2–), methyl 

(–CH3), ester (–O–CH–) groups and the carbonyl car-

bon (–C–) atom were demonstrated by 13C NMR. �e 

analyses proved the polymer from the recombinant bac-

terial culture was PHB and the resonance values were 

in agreement with the observations of Salgaonkar et  al. 

(2013). �e DSC and TGA analyses revealed the thermal 

properties of the extracted polymer as stable in a temper-

ature range of 0–171 °C and resistant to mass loss upon 

heating up to 200 °C. �ese observations proved that the 

polymer from the recombinant E. coli is of good thermal 

characteristics matching with commercial grade PHB. 

However the molecular weight and PDI of the extracted 

polymer were found to be inferior when compared to 

previous reports on PHB production in recombinant E. 

coli (Nikel et al. 2006; Phithakrotchanakoon et al. 2013). 
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�e sodium hypochlorite mediated extraction would 

have affected the polymer chain length and was reflected 

in the lower molecular weight and PDI (Hahn et al. 1994). 

�e polymer has a tensile strength of 14.2  MPa and an 

elongation at break of 7.65%. Tensile strength is the stress 

required to break a sample and the elongation at break is 

the strain when it ruptures. �e values obtained is found 

lower when compared to the standard PHB, which were 

calculated to be 28 MPa and 9% respectively (Parra et al. 

2006). �is lower mechanical strength may be due to the 

low molecular weight of the extracted polymer, as the 

mechanical strength of PHB is positively correlated with 

its molecular weight (Iwata 2005).

Sodium hypochlorite is a highly preferred cell lysing 

agent in the recovery of PHAs from harvested cell mass 

(Heinrich et  al. 2012). Despite of its several advantages, 

it severely affects the molecular weight and PDI of the 

extracted polymer which deteriorates the processibility 

of the polymer. �is demands new cell lysis methods for 

better polymer recovery. �e impact of EDTA and micro-

wave radiation on bacterial cell wall has been reported 

previously (Gray and Wilkinson 1965; Woo et  al. 2000) 

and their effect on PHA extraction from bacterial cells 

was tested during this study on the recombinant as well 

as the wild strain. �e SEM observation suggested that an 

integrated application of EDTA and microwave radiation 

can disintegrate E. coli cells aiding the release of accu-

mulated polymer granules from the cytoplasm. Previous 

reports stated that the damage caused on the E. coli cells 

are due to the specific electromagnetic effects of micro-

wave radiation rather than its thermal effect (Shamis 

et al. 2011). �e same treatment was found insufficient to 

lyse the Gram positive B. aryabhattai cells for polymer 

recovery.

�e purity of PHB (97.21%) attained by the EDTA–

microwave mediated lysis was comparable to the value 

(98.3%) obtained through chloroform extraction by Ibra-

him and Steinbüchel (2009) and is higher than the value 

(95.66%) obtained through sodium hypochlorite extrac-

tion as reported by Heinrich et  al. (2012). �e polymer 

yield by EDTA–microwave method (93.75%) is better 

than the previously reported values 85.0% and 91.32% 

(Ibrahim and Steinbüchel 2009; Heinrich et  al. 2012). 

However the yield was a little lower in comparison to the 

hypochlorite mediated extraction done as the control 

experiment, which may be due to the polymer loss at the 

filtration step, but the purity was better. �e B. aryabhat-

tai cells were resistant to the lysis method which reflected 

in the polymer yield. �is might be due to the thick 

cell wall content in the Gram positive bacterium which 

resisted the combined EDTA–microwave treatment. 

�e pioneer studies in this field (Gray and Wilkinson 

1965; Woo et  al. 2000) also reported the ineffectiveness 

of EDTA and microwave radiation in making damage to 

Gram positive cell walls. Recently, Akdoğan and Çelik 

(2018) reported the effect of microwaving as a method 

of dehydration for biomass pre-treatment during solvent 

extraction of PHA. �ey concluded that the method is 

more effective and economical than other drying meth-

ods such as freeze-drying and ethanol/heat-treatment.

�e polymer extracted from the recombinant strain by 

the combined EDTA–microwave method showed a 2.9-

fold improvement in molecular weight (Mw) with lower 

PDI, in comparison to the conventional hypochlorite lysis 

method. PDI is a measure of homogeneity of a polymer, 

which indicates that the extracted polymer chains were 

more intact than from the conventional method. Sodium 

hypochlorite causes severe degradation of polymer 

chains during cell lysis (Hahn et  al. 1994) which might 

be the reason for the reduction in molecular weight of 

the polymer obtained through this method. �e EDTA–

microwave assisted lysis did not use sodium hypochlorite 

and thereby improved the molecular weight and PDI of 

the recovered polymer.

EDTA is considered as an environmental pollutant, if it 

is released into the surroundings (Oviedo and Rodríguez 

2003), but it is not acutely toxic to aquatic organisms, 

known to be biodegradable under certain conditions and 

the EDTA-Fe(III) chelates in the environment are also 

susceptible to photo-degradation (Wolf and Gilbert 1992; 

Sillanpää 1997). After the separation of the polymer and 

cell debris, the EDTA solution can be reused one or two 

times which will considerably reduce the overall quantity 

released into the environment. Hence the EDTA–micro-

wave assisted extraction method described here can be 

considered environmental friendly. However, the process 

still utilized chloroform at the final stage of the recovery 

process which needs to be avoided to make the process 

applicable to industrial levels in a more environment 

friendly manner. �e present study is the first attempt to 

evaluate the efficacy of EDTA and microwaves in release 

of PHAs from bacterial cells.

PHB accumulating recombinant E. coli strain was engi-

neered by expressing B. aryabhattai PHB10 PHA-bio-

synthesis gene cluster. �e strain did not need external 

induction for PHB production. �e polymer accumula-

tion was visualized by different microscopic techniques 

and the polymer yield is the highest known value for a 

recombinant system employing solely Bacillus PHA bio-

synthesis genes. �e physical as well as thermal proper-

ties of the polymer were studied and found as of good 

quality, comparable to that of commercial grade PHB. An 

alternative EDTA–microwave assisted cell lysis method 

was evaluated for polymer recovery from recombinant 

E. coli cells. �e PHB extracted through this approach 

was of higher molecular weight, better PDI and purity 
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when compared to sodium hypochlorite lysis mediated 

extraction.
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