
Enhanced Property Specification and
Verification in BLAST�

Ondřej Šerý

Charles University in Prague
Malostranské náměst́ı 25

118 00 Prague 1
Czech Republic

ondrej.sery@dsrg.mff.cuni.cz
http://dsrg.mff.cuni.cz

Abstract. Model checking tools based on the iterative refinement of
predicate abstraction (e.g., Slam and Blast) often feature a specifica-
tion language for expressing complex behavior rules. The source code
under verification is instrumented by artificial variables and statements
in order to transform the problem of checking such a rule into the problem
of program location reachability. This way, the source code get bloated
and additional predicates have to be discovered and tracked during the
verification. We suggest that a significant performance improvement can
be achieved by tracking state of the behavior rules aside from the source
code instead of instrumenting them. We have implemented an extension
to Blast, which accepts a specification language (a simplified version of
behavior protocols), and checks its validity without modifying the input
source code. An experiment with two Linux kernel drivers confirms the
performance gain using the extension.

1 Introduction

For the last few years, the explicit state and predicate abstraction based model
checking techniques have developed rather independently to each other. Success
stories of the predicate abstraction based tools, like Slam [2] and Blast [14],
earned a lot of both research and industry attention. Basically, these tools create
a very coarse existential abstraction (over-approximation) of a system, try to
find an error trace (if there is none, the system is safe), decide whether the
error trace is a real one (i.e., the system is erroneous) or not, in which case
the existential abstraction is refined and the cycle repeats. The technique has
very good performance on single-threaded programs even those containing high
level of data nondeterminism. On the other hand, these tools typically feature
a very limited support for multi-threading, complex data types (e.g., floats and
arrays), reasoning about heap objects, and perform poorly on certain inputs
(e.g., containing for cycles).
� This work was partially supported by the Grant Agency of the Czech Republic

project 201/08/0266.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 456–469, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Enhanced Property Specification and Verification in BLAST 457

Fig. 1. Architecture of the Blast model checker

In contrast, the explicit state model checkers, like Java PathFinder [20] and
Spin [15], which are based on explicit representation and exploration of the
state space, perform complementary in many cases. They are typically equipped
with optimizations for dealing with multi-threaded programs (e.g., partial order
reduction, transactions), and complex data types as well as heap objects are
represented explicitly without much trouble. A major obstacle, however, is data
nondeterminism, for which the predicate abstraction based tools excel.

In general, this suggests not only that for some inputs one or the other tech-
nique is preferred but also that relying on one technique only might not be
enough; that mixing these two techniques in a single tool is a promising idea.
Quite recently, approaches to mixing explicit state and abstraction based model
checking have been published [13,17,8].

In this paper, we apply the idea on the Blast model checker. We propose
an extension for tracking the state of a behavior specification during verification
explicitly rather then encoding it into the source program and then using the
purely abstraction based verification (as done in Blast). The original process is
depicted on Fig. 1. Before the actual verification, the input source code is instru-
mented so that the problem of checking a rule is converted into the problem of
program location reachability. The resulting program is bloated by a code whose
only purpose is to identify the error states. To analyze the instrumented code,
additional costly theorem prover calls are necessary. In contrast, our extension
tracks the state of the behavior specification explicitly without any modification
of the source program and with no unnecessary theorem proving overhead.

Blast has a specification language [5] for stating the behavior rules. Although
the language is very powerful (almost arbitrary C statements can be used) and
well suited for simple rules, we argue that it is not very user-friendly for specify-
ing more complex rules concerning function call sequencing and nesting. In such
a case, a user has to manually encode the rule into an additional state variable(s)
and ensure proper state transitioning, which is very impractical and error prone.

1.1 Goals and Structure of the Paper

The goal of this paper is twofold, (i) to extend Blast’s algorithm for verification
of behavior rules by explicit state representation of the rule without modification
of the input source code and any additional theorem proving overhead, and (ii)

458 O. Šerý

to allow for specification of behavior rules restricting sequencing and nesting of
function calls in a lightweight easy-to-use formalism.

The rest of the paper is structured in the following way. First, we summarize
the Blast’s concept of configurable program analysis (Sect. 2), which we em-
ploy in our technique on both the formal and the implementation level. Then
(Sect. 3), we present the simplified formalism of behavior protocols to be used
for behavior specification (Sect. 3.1) along with necessary extensions to the con-
figurable program analysis concept (Sect. 3.2) and a note about the prototype
extension of the Blast model checker (Sect. 3.3). Experimental evaluation of the
proposed technique and discussion in the context of the related work (Sect. 5, 4)
are followed by list of directions for future research (Sect. 6) and concluding
remarks (Sect. 7).

2 Configurable Program Analysis

For the sake of completeness, we summarize the concept of Configurable Program
Analysis (CPA) as published by the Blast authors in [7]. The CPA concept
stems from abstract interpretation [12] and was originally introduced to support
a uniform view on model checking and static analysis. Nevertheless, later in
Section 3, we will use CPA with advance as a means for plugging the explicit
state space of behavior specification into Blast.

The basic idea is to have multiple CPAs for tracking different kinds of infor-
mation (e.g., predicates, heap shape) about the program under analysis. Each
CPA tracks the information in either a path sensitive or insensitive way. By
combining the different CPAs, various configurations of the resulting analysis
can be achieved.

Definition 1 (Configurable Program Analysis). A configurable program
analysis is a four-tuple D = (D, �, merge, stop), where D is an abstract domain,
� is a transfer function, merge is an operator for merging states, and stop is a
termination check.

Informally, D represents the state space of a CPA. It consists of a set of concrete
states C, a semi-lattice (with a preorder � and a join operator �) of abstract
states E, and a concretization function relating the abstract and concrete states.
For explicit state CPAs featuring no abstraction, the semi-lattice is the trivial
flat lattice over the set of concrete states (E = C∪{�, ⊥}). The transfer relation
� ⊆ E × G × E contains transitions among the abstract states of D, where G
is a set of labels, which contains statements of the program under analysis.

The two operators merge and stop play their role during the state space traver-
sal. The termination check stop : E × 2E → B is used to decide whether a newly
discovered state (first parameter) is covered by the already explored states (sec-
ond parameter). If so, the new state is not analyzed any further. For purposes of
this paper, the operator merge : E × E → E is not of high importance. An intu-
itive idea that merge is used to merge information from a newly discovered state
(first parameter) to each already visited state (second parameter), i.e., merging

Enhanced Property Specification and Verification in BLAST 459

Algorithm: traverseCPA(D, e0)
Input: a configurable program analysis D = (D, �, merge, stop), an initial ab-
stract state e0 ∈ E, let E denote the set of abstract states of D
Output: a set of reachable abstract states
Variables: a set reached of elements of E, a set waitlist of elements of E

waitlist := {e0}
reached := {e0}
while waitlist �= ∅ do

pop e from waitlist
for each e′ with e � e′ do

for each e′′ ∈ reached do
// Combine with already visited abstract states.
enew := merge(e′, e′′)
if enew �= e′′ then

waitlist := (waitlist ∪ {enew}) \ {e′′}
reached := (reached ∪ {enew}) \ {e′′}

if ¬stop(e′, reached) then
waitlist := waitlist ∪ {e′}
reached := reached ∪ {e′}

return reached

Fig. 2. Algorithm for CPA state space traversal taken from [7]

information from different execution paths, would suffice. A special case of the
operators is stopsep(e, R) = (∃e′ ∈ R : e � e′) and mergesep(e, e′) = e′. These
correspond to a model checking CPA without merging of information from dif-
ferent execution paths.

In [7], the authors describe a number of CPAs for predicate abstraction, shape
analysis, and pointer analysis. They also present a way how to combine more
CPAs into a single composite CPA and an algorithm for state space traversal of
a CPA. We recapitulate the algorithm in Fig. 2. For further details on CPA, the
reader is kindly referred to the original paper.

3 Checking Behavior

Having the CPA concept explained, we first show what kind of behavior speci-
fication we are interested in and how it can be encoded using the CPA concept.

3.1 Behavior Specification

The behavior specification used in this paper stems from the formalism of be-
havior protocols [18,1], which comes from the software component world. In a
syntax close to regular expressions, a behavior protocol specifies a behavior as a
set of finite traces of method calls that are allowed to occur on the component’s
interfaces. The reason for using behavior protocols (besides our long experience
with the formalism) lies in their relative simplicity, which makes them easy to
use even for a nonprofessional.

460 O. Šerý

In this paper, a slightly modified definition of behavior protocols, tailored for
specification of behavior rules of C code, is used. The basic building block is
not a method call on an interface of a component, but a C function call. The
simplified syntax and semantics of behavior protocols is as follows.

Definition 2 (Syntax). A behavior protocol over an alphabet Σ is an expres-
sion obtained by a finite number of applications of the following rule. Let a
and b be behavior protocols, and func ∈ Σ, then all expressions of the form:
NULL, func↑, func↓, (a), a∗, a; b, a+b, a | b, func, func{a} are also behavior
protocols.

The semantics of a behavior protocol is then a set of allowed traces of events
func↑ and func↓, where func↑ denotes a function call and func↓ denotes return
from the call. Distinguishing between the two events allows for precise specifica-
tion of function nesting.

Definition 3 (Semantics). The set of traces specified by a behavior protocol
p, and denoted as L(p), is inductively defined as follows:

Protocol Description Semantics
NULL Empty prot. L(NULL)) = {λ}
func↑ Func. call L(func↑) = {func↑}
func↓ Return L(func↓) = {func↓}
(a) Parentheses L((a)) = L(a)
a∗ Repetition L(a∗) = {un | u ∈ L(a) ∧ n ∈ N0}
a; b Sequence L(a; b) = {u.v | u ∈ L(a) ∧ v ∈ L(b)}
a + b Alternative L(a + b) = L(a) ∪ L(b)
a | b Parallelism L(a | b) = {u | u is interleaving of v ∈ L(a), w ∈ L(b)}
func Abbreviation L(f) = L(func↑; func↓)
func{a} Abbreviation L(f{a}) = L(func↑; a; func↓)

As an example of a behavior protocol, consider the following usage rule of the
SDL graphic library:

SDL_Init; (SDL_PushEvent + SDL_WaitEvent)* ; SDL_Quit

The rule states that a call to SDL Init should precede any manipulation with
event queues (finite number of calls to SDL PushEvent and SDL WaitEvent)
and that the SDL Quit cleanup function should be called afterwards.

Naturally, the set of traces specified by a behavior protocol can be repre-
sented by the means of a finite automaton. The transformation follows the stan-
dard algorithm of transformation of a regular expression into an automaton [16],
straightforwardly extended by the parallel operator |.

Definition 4. Let p be a behavior protocol over an alphabet Σ, then Ap =
(SAp , Σ↑↓, →Ap , initialAp, FAp), where Σ↑↓ = {func↑, func↓ | func ∈ Σ}, de-
notes the minimal deterministic finite automaton over the alphabet Σ↑↓ accepting
traces specified by p.

Enhanced Property Specification and Verification in BLAST 461

3.2 Behavior CPA

Decoupling the behavior specification from code into a separate CPA requires
one change to the concept of CPA. During state space traversal, different CPAs
can add different kinds of information to the states being traversed. In princi-
ple, this allows CPAs to affect the shape and the size of the state space to be
traversed. However, there is no mechanism that would allow CPA to identify
erroneous states. Only the states involving a program location, which is labeled
as erroneous (i.e., passed as an input to Blast) are considered erroneous. Infor-
mation tracked by individual CPAs is not used for error state detection.

This is because Blast was originally designed to decide reachability of pro-
gram locations (marked as erroneous). In theory, this is sufficient for deciding
any safety property, as the problem can be always transformed into decision of
program location reachability on an accordingly modified program. In practice,
however, the necessity to transform all properties into reachability of a program
location is prohibitive. It seems more natural to allow the individual CPAs to
identify error states based on the information a particular CPA tracks rather
than requiring modification of the original source code and thus affecting (ob-
fuscating) input shared by all the CPAs.

For example, to check absence of null pointer dereference errors in a program
using Blast, one can insert an if statement asserting that p != NULL before
dereferencing any pointer p. In case of a null pointer, the statement would lead
to an error program location. Blast is then executed to check that the error
location is unreachable and thus no null pointer dereference error can occur (this
technique was used and documented by others in [6]). In contrast, we argue that
such a change of the original program affects all CPAs (mainly the predicate
abstraction CPA) and that such an error could be detected by the shape or
pointer analysis CPA, which tracks the information concerning heap.

Note that we discuss only “identification” of the possible error states. Once
there is a candidate error trace, all the CPAs can contribute to prove the trace
infeasible by their means and, if it is a spurious one, get refined to disallow the
trace in the future. The point here is that there is no need to bother all the CPAs
by the information necessary for identification of the possible errors related to
only some of them.

This becomes even more pronounced in the case of behavior specification,
whose purpose is only to observe an execution of a program (without altering
it in any sense) and to signal any violation. As mentioned above, this problem
can also be transformed into the program location reachability by encoding the
behavior specification into the program itself (as is done for the Blast specifi-
cation language). However, then all CPAs are affected by the additional code,
whose purpose lies only in identification of the error states. Namely, the pred-
icate abstraction CPA will be cluttered by artificial predicates. This is costly,
because finding and managing additional predicates means additional theorem
prover calls.

Therefore, we extended the concept of CPA to allow identification of error
states of two kinds. First, a standard error state εreach, is a state which should

462 O. Šerý

never be reached in a correct program; i.e. a program is considered incorrect,
if there is a prefix of a concrete path in the program reaching the error state.
Second, an error final state εfinal, is a state which represents an error only for
the final state of the model. In other words, a program is considered incorrect, if
there is a finite concrete path ending in an error final state. As an example, the
null pointer dereference error is a standard error (i.e., it should never happen),
while finishing without deallocating all resources is an error final state (i.e., it is
alright to have allocated memory during execution but not at its end).

Definition 5 (Configurable program analysis – revisited). A configurable
program analysis is a five-tuple D = (D, �, merge, stop, error), where D is an
abstract domain, � is a transfer function, merge is an operator for merging
states, stop is a termination check, and error is an error identifying relation.

Given that E is the set of abstract states of D, then error ⊆ E × {εreach, εfinal}
annotates the abstract states which are considered erroneous. An abstract state
e implies a whole system error state if error(e, εreach) holds. If error(e, εfinal)
holds, the whole system error state is implied only if the system state is final;
i.e., the system can terminate in its current state.

With the CPA definition extended by error state signalization, we can define
a CPA which tracks a single behavior protocol and signal its violation as an error
state to the model checker. In turn, the model checker can attempt to avoid the
error state by refining abstractions captured by all the CPAs.

Definition 6 (Behavior CPA). Let p be a behavior protocol over an alphabet
Σ, then the behavior CPA with respect to p is denoted as B(p) = (DB(p), �B(p)
, merge

B(p), stop
B(p), errorB(p)). DB(p) is based on the flat lattice over states of

the automaton Ap (i.e., SAp ∪ {�, ⊥}). The transfer relation �B(p) follows the
transition function of Ap, extended by a self-transition (s

g� s) for every state
s and a control-flow edge g which does not represent any event tracked by the
protocol p. More precisely: s

g� s′ iff any of the following holds:

(i) s
g→Ap s′

(ii) s = s′ and g /∈ Σ↑↓
(iii) s′ = ⊥ and g ∈ Σ↑↓ and ¬∃s′′ ∈ SAp : s

g→Ap s′′
(iv) s = s′ = ⊥
The operators merge

B(p) and stop
B(p) are chosen to be the simple model checking

variants merge
B(p) = mergesep and stop

B(p) = stopsep. Last, the error identifying
relation is chosen so that errorB(p)(s, εfinal) iff s /∈ FAp and errorB(p)(s, εreach)
iff s = ⊥.

Behavior CPA is straightforwardly derived from the deterministic automaton
Ap representing the given behavior protocol p. Those states that do not corre-
spond to a final state of the automaton Ap are identified as error final states.
In such states, the behavior protocol expects further activity and does not allow
termination of the program yet. Whenever there is an activity not allowed by
the protocol (see (iii) of Def. 6), the next state is chosen to be ⊥, for which
errorB(p)(⊥, εreach) holds and is therefore a standard error state.

Enhanced Property Specification and Verification in BLAST 463

Fig. 3. Architecture of the Blast extension

3.3 Tool Support

The concept of behavior CPA was implemented as a prototype extension of the
Blast 2.4 release1. The resulting architecture is depicted in Fig. 3.

The gray emphasized boxes represent the parts of the tool chain newly added
to Blast as a part of this effort. BP preprocessor is a simple command line
tool for preprocessing the behavior specification. It parses the specification and
transforms it into the minimal deterministic automaton. This tool was based on
the core library of dchecker, the distributed model checker for behavior proto-
cols [19], and is written in Java. As well as the rest of Blast, the implementation
of behavior CPA is written in OCaml and uses the CPA interface as an exten-
sion point. The CPA interface itself was modified to allow identification of error
states by individual CPAs.

Unfortunately, libraries, which Blast uses for theorem proving and constraint
solving, are available only as Linux binaries. Even though the rest of the imple-
mentation is platform independent, the prototype implementation runs also only
under Linux, due to these dependencies.

4 Evaluation

Easier usage of behavior protocols for rule specification is, of course, a subjec-
tive matter. However, we show the performance improvements in the following
experiment. Blast was used to analyze two Linux 2.6.24 kernel driver files
drivers/char/esp.c and drivers/net/znet.c with and without our exten-
sion. There were two behavior rules (i) correct spinlock locking and unlocking,
and (ii) correct sequencing of DMA manipulating function calls used in these
files (namely the functions claim_dma_lock, release_dma_lock, enable_dma,
disable_dma, clear_dma_ff, set_dma_mode, set_dma_addr, set_dma_count,
and get_dma_residue). The rules (i) and (ii) specified using both Blast spec-
ification language and behavior protocols are available in the Appendix.

1 Source code of the prototype implementation along with test files from Sect. 4 are
available for download at http://dsrg.mff.cuni.cz/∼sery/blast/

http://dsrg.mff.cuni.cz/~sery/blast/

464 O. Šerý

Table 1. Verification of the spinlock rule

File drivers/char/esp.c drivers/net/znet.c
Test no hint hinted bp no hint hinted bp
Preparation 0.17s 0.17s 0.30s 0.17s 0.17s 0.25s
Verification 3.35s 0.77s 0.26s 1.42s 0.29s 0.14s
Sum 3.52s 0.94s 0.56s 1.59s 0.46s 0.39s

Table 2. Verification of the DMA rule

File drivers/char/esp.c drivers/net/znet.c
Test no hint hinted bp no hint hinted bp
Preparation 0.17s 0.17s 0.30s 0.17s 0.17s 0.30s
Verification 7.07s 1.07s 0.27s 2.55s 0.42s 0.14s
Sum 7.24s 1.24s 0.57s 2.72s 0.59s 0.44s

The verification times2 are then summarized in Table 1 and 2 for the rules
(i) and (ii), respectively. On each source file and for each rule, three different
configurations were executed (columns no hint, hinted, bp). Columns no hint and
hinted contain times for the rule specified in the Blast specification language.
In the hinted column, Blast got the list of predicates suitable for checking
the specified rule as a part of the input, while in the no hint column, it had
to discover the necessary predicates by itself. The bp column contains times
for the rule specified using behavior protocols and verified using the proposed
extension. The difference between no hint and hint is due to the need for discov-
ery of necessary predicates. However, the predicates can be generated from the
specification beforehand. The difference between hint and bp is due to the need
for tracking the additional predicates and coping with the inflated input. The
preparation row contains times necessary for running the C preprocessor and
either code instrumentation or behavior protocol preprocessing. Note also that
behavior protocol preprocessing has to be done only once for each rule, while
code instrumentation has to be performed after every code modification.

5 Related Work

There is quite a number of software model checkers based on the counter example
guided abstraction refinement [11] (CEGAR) and predicate abstraction [3]. Of
those, probably the most famous are Slam [2], Blast [14], and SatAbs [10].
All the three tools analyze programs written in the C programing language.

Slam is the oldest of the three tools. It features a straightforward implemen-
tation of the abstraction refinement loop. In every iteration, a uniform program
abstraction is constructed from scratch, which is costly. Blast enhances the
basic idea by constructing the abstraction in memory and refining only the nec-

2 All the test were run on a Linux 2.6.24, Pentium 4, 3.0GHz machine.

Enhanced Property Specification and Verification in BLAST 465

essary portions of it (this is referred to as lazy abstraction [14]). This feature
significantly improves performance. Like Slam, the SatAbs tool is a straightfor-
ward implementation of the abstraction refinement loop. Unlike Slam, SatAbs

uses a SAT solver instead of a theorem prover. This allows for precise reasoning
about integers as bit-vectors, including arithmetic overflows.

Although the tools can only decide reachability of a program location, other
interesting properties can be transformed into this problem by instrumentation
of the input program’s source code. For this purpose, both Slam and Blast

use a special purpose specification language (SLIC [4] and the Blast specifica-
tion language [5], respectively). However, as already discussed in Sect. 3.2, the
instrumentation results in artificial predicates to be discovered and managed,
which implies unnecessary theorem proving overhead.

In contrast, our solution exploits the specific nature of the behavior specifi-
cation and tracks it explicitly in a separate CPA domain without necessity to
alter the input source code. This way, no additional theorem prover calls are
necessary. Moreover, we argue that using behavior protocols (which are close to
regular expressions known to a majority of software developers) for specifying
rules restraining method sequencing and nesting is more convenient than using
SLIC or Blast specification language, where such a rule has to be encoded
by hand. For more complex rules, this effectively means transformation into a
corresponding automaton and its representation using special state variable.

As both SLIC and Blast specification language permit using almost arbitrary
C code, the expressive power is stronger than the expressive power of behavior
protocols used in our work. Therefore, we intend to extend the formalism to
cover a bigger set of the real-life rules (see Sect. 6).

There are other works that combine explicit state and abstraction based tech-
niques. In [13], the authors propose an algorithm, Synergy, which uses con-
crete execution in cooperation with predicate abstraction. An abstract counter
example is used to guide the concrete execution, while the concrete execution
traces are used when refining the abstraction. Another technique is presented
in [17], where the explicit state space is traversed but abstraction is employed
when deciding whether a current state has been already visited. The resulting
under-approximation is then iteratively refined. In [8], a technique using explicit
representation of some program variables, while predicate abstraction for other,
with possibility of precision adjustment, is proposed and an implementation is
done in Blast.

6 Future Work

One of potential directions for future research is extending the power of the
formalism used for specification of behavior rules. Regular language is sufficient
for conveniently expressing rules concerning correct function call sequencing and
nesting. However, other real-life rules the developers are interested in are related
to dynamically created and destroyed program entities (e.g., files and locks). In

466 O. Šerý

other words, developers are often interested in correct sequencing and nesting of
function calls that refer to the same instances of these entities.

The idea is similar to tracematches [9], which are used to specify incorrect
behavior patterns that may relate to individual entities. In contrast, behavior
protocols are used for positive specification (e.g., specification of expected be-
havior) not negative (e.g., specification of forbidden behavior), as we believe
that the positive specification is less prone to omissions. Signaling a false error is
safer then missing a real one. In order to implement checking capability for such
entity protocols into the Blast model checker, the Behavior CPA would have
to track the explicit state of an entity protocol separately for every instance of
an entity.

7 Conclusion

We believe that combining abstraction and explicit state based model checking
is a promising direction for further work in software verification. We have made
another step in this direction by extending a predicate abstraction tool Blast by
an explicit state representation of behavior rules specified in a simplified version
of the behavior protocols formalism. Thanks to the extension, behavior rules can
be verified more efficiently as was shown on an experiment.

A less significant but noteworthy contribution of this paper is the
presentation of a novel use case for configurable program analysis, which was
originally unanticipated by its authors. We have also proposed changes to this
concept in order to allow individual CPAs to identify erroneous states during the
verification.

References

1. Adamek, J., Plasil, F.: Component composition errors and update atomicity: static
analysis. Journal of Software Maintenance and Evolution 17(5), 363–377 (2005)

2. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
SIGOPS Oper. Syst. Rev. 40(4), 73–85 (2006)

3. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of c programs. SIGPLAN Not. 36(5), 203–213 (2001)

4. Ball, T., Rajamani, S.K.: Slic: A specification language for interface checking. Tech-
nical Report MSR-TR-2001-21, Microsoft Research (January 2002)

5. Beyer, D., Chlipala, A., Henzinger, T., Jhala, R., Majumdar, R.: The Blast

query language for software verification. In: Giacobazzi, R. (ed.) SAS 2004. LNCS,
vol. 3148, pp. 2–18. Springer, Heidelberg (2004)

6. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Checking memory safety
with blast. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 2–18. Springer,
Heidelberg (2005)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

Enhanced Property Specification and Verification in BLAST 467

8. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: Proceedings of the 23rd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2008). IEEE Computer Society Press,
Los Alamitos (2008)

9. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative run-
time verification with tracematches. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007.
LNCS, vol. 4839, pp. 22–37. Springer, Heidelberg (2007)

10. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
1977: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pp. 238–252. ACM, New York (1977)

13. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
a new algorithm for property checking. In: SIGSOFT 2006/FSE-14: Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations of software
engineering, pp. 117–127. ACM, New York (2006)

14. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. SIGPLAN
Not. 37(1), 58–70 (2002)

15. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading (2003)

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation, 2nd edn. Addison-Wesley, Reading (2000)

17. Pasareanu, C.S., Pelánek, R., Visser, W.: Predicate abstraction with under-
approximation refinement. Logical Methods in Computer Science 3(1) (2007)

18. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans-
actions on Software Engineering 28(11), 1056–1076 (2002)

19. Poch, T.: Distributed behavior protocol checker. Master’s thesis, Charles University
in Prague, Czech Republic (2006)

20. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs.
Automated Software Engineering 10(2), 203–232 (2003)

Appendix

The spinlock locking rule prescribes proper alternation of calls to the functions
spin_lock_irqsave and spin_unlock_irqrestore. Listing of this rule speci-
fied as behavior protocol follows:

(spin_lock_irqsave; spin_unlock_irqrestore)*

Specified in the Blast specification language:

global int lockStatus = 0;
event {

468 O. Šerý

pattern { spin_lock_irqsave($?, $?); }
guard { lockStatus == 0 }
action { lockStatus = 1; }

}
event {
pattern { spin_unlock_irqrestore($?, $?); }
guard { lockStatus == 1 }
action { lockStatus = 0; }

}

The DMA rule prescribes specific ordering of calls to the DMA helper func-
tions. For example, other helper functions should be called after the function
claim_dma_lock and before release_dma_lock. According to the source code
comments, the set_dma_xxx and get_dma_xxx functions expect a preceding call
to clear_dma_ff. All these function are to be called with the specific DMA
channel disabled. Specification of the rule using behavior protocol follows:

(
claim_dma_lock;
(

(
disable_dma;

(
clear_dma_ff;
(

set_dma_mode +
set_dma_addr +
set_dma_count +
get_dma_residue

)*
) + NULL

)
)
+
enable_dma

)*;
release_dma_lock

)*

The DMA rule in the Blast specification language:

global int dmaStatus = 0;
event {
pattern { $? = claim_dma_lock(); }
guard { dmaStatus == 0 }
action { dmaStatus = 1; }

}
event {
pattern { disable_dma($?); }

Enhanced Property Specification and Verification in BLAST 469

guard { dmaStatus == 1 }
action { dmaStatus = 2; }

}
event {
pattern { enable_dma($?); }
guard { dmaStatus > 1}
action { dmaStatus = 1; }

}
event {
pattern { clear_dma_ff($?); }
guard { dmaStatus == 2 }
action { dmaStatus = 3; }

}
event {
pattern { set_dma_mode($?, $?); }
guard { dmaStatus == 3 }

}
event {
pattern { set_dma_addr($?, $?); }
guard { dmaStatus == 3 }

}
event {
pattern { set_dma_count($?, $?); }
guard { dmaStatus == 3 }

}
event {
pattern { $? = get_dma_residue($?); }
guard { dmaStatus == 3 }

}
event {
pattern { release_dma_lock($?); }
guard { dmaStatus > 0 }
action { dmaStatus = 0; }

}

	Enhanced Property Specification and Verification in BLAST
	Introduction
	Goals and Structure of the Paper

	Configurable Program Analysis
	Checking Behavior
	Behavior Specification
	Behavior CPA
	Tool Support

	Evaluation
	Related Work
	Future Work
	Conclusion
	References

