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We consider the problem of quantum communication mediated by a passive optical refocusing system. The
model captures the basic features of all those situations in which a signal is either refocused by a repeater for
long-distance communication, or it is focused on a detector prior to the information decoding process. Introducing
a general method for linear passive optical systems, we determine the conditions under which optical refocusing
implies information transmission gain. Although the finite aperture of the repeater may cause loss of information,
we show that the presence of the refocusing system can substantially enhance the rate of reliable communication
with respect to the free-space propagation. We explicitly address the transferring of classical messages over the
quantum channel, but the results can be easily extended to include the case of transferring quantum messages as
well.
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Although quantum information is more commonly de-
scribed in terms of discrete variables (e.g., qubits), informa-
tion is most naturally encoded in the electromagnetic field
(EMF) via a continuous variable representation [1]. All the
fundamental quantum information tools and protocols, from
teleportation to quantum key distribution, have been demon-
strated for such encoding [2]. Here we consider the problem
of quantum communication [3–5] and compute the maximum
rate at which information can be reliably transmitted through
EMF signals that propagate along an optical communication
line under refocusing conditions. Even though we explicitly
consider classical information [6], our results are immediately
extensible to the case of quantum information [7].

In the classical domain, the ultimate limits for commu-
nication via continuous variable encodings were provided
by the seminal work of Shannon on Gaussian channels [8].
In the quantum domain such channels are replaced by the
so-called bosonic Gaussian channels (BGCs), which describe
the propagation of the EMF in linear media [9]. Their
structure is notably rich [10], and a full information-theoretical
characterization has been achieved only for certain special
subclasses [11,12]. These results have been applied to compute
the maximal rates of reliable communication via attenuating
media, such as optical fibers, wave guides, and via free-space
propagation [4,13,14].

Here we move further in this direction by characterizing the
propagation of the EMF through a linear optical system, which
induces refocusing of the transmitted signals to overcome
the attenuation associated with their diffusion. For the sake
of simplicity, we model this apparatus as a thin lens with
a finite pupil placed between the sender of the message
and the receiver under focusing conditions. Notwithstanding
its relatively simple structure, this model captures the basic
features of all those situations in which a signal is either
refocused by a suitable passive repeater to allow long-distance
communication (e.g., by means of a parabolic antenna for satel-
lite communication [15]) or it is focused on a detector prior

to the information decoding process (the latter includes, e.g.,
the settings in which the EMF is used for the readout process
and those in which an optical system is used to interface light
and matter [16]). Our analysis is complementary with those
schemes that employ active strategies to improve the quality
of the signaling along lossy communication lines (e.g., the
active repeaters protocols of Ref. [17] and references therein,
or quantum wave form conversion techniques discussed for
instance in Ref. [18]).

The quantum description of the scattering of the signal
by the optical system is derived by consistently applying
the canonical quantization rules (see Ref. [4] and references
therein). Within this framework we derive the conditions under
which the refocusing properties of the optical system allow
higher communication rates, hence putting on a formal and
quantitative ground the benefits of optical refocusing. It turns
out that, while the finiteness of the pupil limits the channel
bandwidth [19], the resulting improvement with respect to
the free-space scheme may be particularly advantageous
for faint-pulse communication—a configuration that is close
to the operative regimes of the long-distance free-space
communication protocols [15,20].

The optical system. Consider a linear optical system with
a set of transmitter modes, labeled by i, and receiver modes,
labeled by j . In the case of rf or microwave communication,
for example, the transmitter and receiver could be antennae.
For optical communication, the transmitter could be a laser
coupled to a telescope, and the receiver could be a telescope
coupled to a charge-coupled device (CCD) array. Transmitter
and receiver modes typically have both spatial characteristics
determined by the optical characteristics of the transmitter and
receiver and temporal characteristics determined by the fre-
quency and bandwidth of the transmitted radiation. The trans-
mittivity matrix Tji gives the fraction of light from the ith trans-
mitter mode that is received at the j th receiver mode. We would
like to determine the maximum amount of information that can
be sent from transmitter to receiver for fixed total input power.
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FIG. 1. (Color online) (a) Scheme for optical communication
through an optical refocusing apparatus, modeled as a thin lens of
radius R and focal length f . (b) Free-space propagation scenario.
(c) Alternative scenario in which the lens is replaced by a hole of
the same size in the absorbing screen. ro and ri denote Cartesian
coordinates on the object and image planes.

Let us consider the purely lossy case, in which noise
from the environment is negligible. This is the case, for
example, for free-space optical communication in a thermal
background. The addition of noise will be considered below.
If the loss is η and there are ν parallel channels with
total average photon number N , then the associated classical
communication capacity, measured in nats, is [11]

C = νg(ηN/ν), (1)

where g(x) := (x + 1) ln(x + 1) − x ln x, and the capacity is
attained by sending coherent states down the channel.

In our case, we have a multimode lossy channel with
transfer matrix T , which mixes the input modes together.
Via singular value decomposition we write it as T = V�U ,
where V , U are unitary matrices, and � is a nonnegative
diagonal matrix whose (diagonal) entries

√
ηk are the singular

values of T . This shows that our multimode lossy channel can
be decomposed into a set of parallel (noninteracting) lossy
channels with input modes corresponding to the rows of U ,
output modes corresponding to the columns of V , and loss
factors corresponding to the singular values ηk . The new input
modes can now be quantized using annihilation and creation
operators ai,a

†
i : [ai,a

†
i ′ ] = δi,i ′ . Similarly, the output modes can

be quantized using operators bi,b
†
i : [bi,b

†
i ′ ] = δi,i ′ . To preserve

the canonical quantization relationships, each input-output
pair is also coupled to a loss mode with operators ξi,ξ

†
i ,

bi = √
ηiai + √

1 − ηiξi .
We consider the case of monochromatic light propagating

along an optical axis. Following [4,5] the input and output
signals are identified by the transverse field modes at two
planes orthogonal to the optical axis [the object plane and
image plane of Fig. 1(a)], and the field propagation is defined
by assigning the point-spread function (PSF) T (ri ,ro), which
connects the field amplitude at position ro on the first plane
with the field amplitude at position ri on the second one [21].
Due to diffraction, such inputs are scattered over the whole
image plane according to amplitude probability distributions
defined by the PSF. This setting formally defines a Gaussian
memory channel [23], in which output signals originated by
distinct input fields are not mutually independent.

We model the optical refocusing system as a converging
lens of focal length f , located at distance Do from the object
plane. Working in the thin-lens approximation, and neglecting
aberrations, light is focused at the image plane located at dis-
tance Di from the optical system, where 1/Do + 1/Di = 1/f .
Eventually the image is magnified by a factor M = Di/Do.
Diffraction of light is responsible for image blurring and
causes loss of information. It can be described by introducing
an effective entrance pupil characterizing the optical system.
Denoting P (r) the characteristic function of the pupil that
encircles the lens, the PSF for the monochromatic field at
wavelength λ is obtained, in the paraxial approximation, by
Fourier transforming P (r) [21]. For a circular pupil of radius
R, the PSF reads

T (ri ,ro) = ejϑ(ri ,ro)R2

λ2DoDi

J1(2πRρ)

Rρ
, (2)

where J1 is the Bessel function of first kind and order
one, ϑ(ri ,ro) = π

λDo
(|ro|2 + |ri |2/M) + 2πDo

λ
(1 + M), and

ρ = |ri − Mro|/(λDi). The PSF in Eq. (2) accounts for
two physical phenomena: (i) The focusing properties of
the converging lens; (ii) The loss of the field components
impinging outside the pupil of the optical system. In other
words, Eq. (2) assumes the presence of an absorbing screen
surrounding the lens. Eventually, one could derive a PSF
describing the propagation through a lens of a radius R that is
not surrounded by an absorbing screen, allowing the transfer
of the field components that are not refocused by the lens.
However, for the sake of conciseness, in the following we adopt
the expression in Eq. (2) and show that the presence of the
converging lens increases the communication capacity, with
respect to the free-space propagation, in the settings in which
the signal loss caused by the absorbing screen is negligible.

To characterize our optical refocusing system, we apply
the singular value decomposition to the PSF, which plays the
role of the transfer matrix. The system is hence characterized
by a set of loss factors. In the far-field and near-field limits,
they can be computed exactly in terms of the Fresnel number
associated to the optical system [22]. To fix the ideas, let us
assume that information is encoded in the object plane on a
square of length L, creating an image on the image plane which
(in the geometric optics approximation) is roughly contained
in a square of size ML. The Fresnel number associated to this
setup is

F = πR2L2

λ2D2
o

= π

(
L

xR

)2

, (3)

xR = λDo/R being the Rayleigh length of the system. In the
far-field limit, F � 1, only one mode is transmitted with loss
η = F2. In the near-field limit, F � 1, a number ν = F of
modes are transmitted without loss.

To evaluate the effects of the refocusing system on the
information transmission, we use the free-space propagation
of the EMF as a term of comparison [see Fig. 1(b)]. The
characterization of the free-space propagation of the field,
including the quantum regime, can be found in Ref. [4] and
references therein. For this scenario, the associated Fresnel
number is FFS = (A1A2)/(λd)2, where A1 and A2 are the
areas of the surface from which the signal is emitted and on
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which it is detected, and d is the distance between them. For a
fair comparison, we use for both the scenarios the same values
for areas of the input and output surfaces and their distance,
yielding the free-space Fresnel number

FFS = M2L4

λ2D2
= L4

λ2D2
o

(
M

1 + M

)2

, (4)

where D = Do + Di = Do(1 + M). Also in this case, it is
possible to derive exact expressions for the effective transmis-
sivities in the far-field and near-field limit: In the far-field limit,
FFS � 1, only one mode is transmitted, with loss ηFS = FFS;
In the near-field limit,FFS � 1, a number of modes νFS = FFS

are transmitted without losses.
Optical refocusing vs free-space propagation. First of all

we notice that, for given values of the physical parameters,
the two scenarios, in the following denoted by (a) and (b), can
independently operate in the far-field or near-field limit, or in
neither of the two.

Let us consider first the case in which both the scenarios
operate in the far-field regime. The ratio between the loss
factors of the transmitted modes equals

r1 = η

ηFS
=

(
πR2

λDo

)2 (
1 + M

M

)2

, (5)

which is larger than one only if the parameters M,R,Do,λ

do satisfy a certain condition. We now show that such a
condition is fulfilled when the loss of signal induced by
absorbing screen surrounding the pupil is negligible. (Notice
that for applications in quantum cryptography r1 coincides
with the gain in the secret-key rate [24].) To do so, we
consider a third scenario, denoted by (c) in Fig. 1, in which the
converging lens is replaced by a hole of the same size in the
absorbing screen. The field propagation in this configuration
can be analyzed by splitting it into two parts: the free-space
propagation from the object plane to the screen (o → s)
and the one from the screen to the image plane (s → i).
These two free-space propagations are associated to the
Fresnel numbers Fo→s

FS = πR2L2/λ2D2
o = F , and F s→i

FS =
πR2(ML)2/λ2D2

i = F . Hence the far-field condition on the
scenario (a) implies that both those propagations take place
in the far-field regime as well. It follows that there is, in the
scenario (c), at most one mode propagating o → s → i, which
is attenuated by a factor

ηo→s→i � Fo→s
FS F s→i

FS = F2 = η. (6)

Now, if the presence of the absorbing screen around the pupil
is negligible, we must have that the losses on the o → s → i

propagation (quantified by the factor ηo→s→i) are equal to
those gotten from direct free-space propagation (quantified
by ηFS). But since ηo→s→i is not greater than η, it follows
that the regime in which we can neglect the effect of the
absorbing screen is the one in which r1 � 1. In other words, the
detrimental effects that we see for r1 < 1 merely correspond to
the absorptions by the screen. As a final remark we also observe
that the condition r1 > 1, plus the far-field condition for the
scenario (a), enforces the far-field regime for the scenario (b).
Finally, we compare the performances of the two scenarios in
terms of capacity by computing the gain

G1 = C

CFS
= g(ηN )

g(ηFSN )
= g(r1ηFSN )

g(ηFSN )
. (7)

We notice that in the semiclassical limit, N � 1, the gain
satisfies G1 � 1, that is, the presence of the optical refocusing
system does not affect the information transmission capacity
[25]. On the other hand, the gain can be significantly greater
than 1 in the quantum regime: In particular, the gain is
maximum for faint signals, N � 1, in which G1 � r1.

Let us now move to the case in which both scenarios operate
in the near-field regime. The ratio between the numbers of
modes perfectly transmitted is

r2 = ν

νFS
= π

(
R

L

)2 (
1 + M

M

)2

, (8)

which can be larger or smaller than one, depending on the
geometric parameters M , R, L. However, as in the previous
case, we show that if the losses induced by the absorbing screen
are negligible, then r2 � 1. Again, to show that let us consider
what happens in the scenario (c). We first notice that the
near-field condition for the scenario (a) implies that both o →
s and s → i propagations are in the near-field regime. The
numbers of transmitted modes are νo→s

FS = πL2R2/λ2D2
o = ν

and νs→i
FS = π (ML)2R2/λ2D2

i = ν. Hence the number of
modes that propagate from the object to the image plane in
the scenario (c) satisfies the inequality

νo→s→i � min
{
νo→s

FS ,νs→i
FS

} = ν. (9)

It is clear that the presence of the pupil is negligible only if
the number of modes transmitted in the propagation o → s →
i equals the number of those transmitted in the free-space
propagation, that is, if νo→s→i � νFS. Equation (9) implies
that this is the setting for which r2 � 1. The ratio between the
classical capacities of the corresponding quantum channels
reads

G2 = C

CFS
= ν g(N/ν)

νFS g(N/νFS)
= r2

g(N/ν)

g(r2N/ν)
. (10)

Notice that the ratio N/ν represents the number of photons
per transmitted mode. In the limit N/ν � 1 we are in the
semiclassical regime, for which the gain is G2 � r2. In the
quantum regime N/ν � 1 we have G2 > 1. Finally, for faint
signals, N/ν � 1, the gain tends to G2 � 1.

One may notice that the condition r2 � 1, together with the
near-field condition for the scenario (a), is not sufficient to infer
the near-field condition for the scenario (b). Hence we shall
compare the near-field case for the scenario (a) with the far-
field case for the scenario (b), a setting which is characterized
by the condition

L2

Do

M

M + 1
� λ � LR

Do

.

In this case the gain becomes

G3 = C

CFS
= νg(N/ν)

g(ηFSN )
, (11)

which, in the semiclassical limit, N � 1, is G3 � ν � 1, and
for faint signals, N � 1, is G3 � 1/ηFS � 1.

The enhancement in the transmission rate provided by
the optical refocusing system persists in the presence of
background thermal noise. In such a case, by encoding
classical information into coherent states, Eq. (1) has to
be replaced by C = g(ηN/ν + NTH) − g(NTH) [9,26], where
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NTH is the number of thermal photons per transmitted mode,
which yields G1 � r1, G3 � 1/ηFS for NTH � max{1,ηN/ν},
and G2 � r2, G3 � ν for 1 � NTH � ηN/ν.

Conclusions. We have computed the capacity of quantum
optical communication through an optical refocusing system,
modeled as a thin lens with finite pupil. Despite its simplicity,
the model is general enough to find application in different
contexts, from refocusing antennas for long-distance commu-
nication to imaging systems on the small and medium scale,
and accounts for the focusing process, light diffraction, and
power loss. We have shown that, under certain conditions,
the converging optical apparatus can be used to achieve,
in comparison with the free-space field propagation, higher
transmission rates. The tradeoff between loss and diffraction
determines the conditions under which the intuitive benefits

of optical refocusing can be formalized rigorously. Our results
furnish the ultimate limits of quantum optical communication
and may be useful for determining general bounds on the
efficiency of any protocol requiring the transmission of
quantum degrees of freedom of light (e.g., quantum imaging
[27] and quantum discrimination [28]).
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