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Abstract: This paper develops an inner stator current controller based on an enhanced reaching-
law-based discrete-time terminal sliding mode. The problem of tracking stator currents with high
accuracy while ensuring the robustness of a six-phase induction motor in the presence of uncertain
electrical parameters and unmeasurable states is tackled. The unknown dynamics are approximated
by using a time delay estimation method. Then, an enhanced power-reaching law is used to make
each stage of the convergence faster. A stability analysis and the system controller’s finite-time
convergence are demonstrated in detail. Practical work was conducted on an asymmetrical six-phase
induction machine to illustrate the developed discrete approach’s robustness and effectiveness.

Keywords: current control; induction motor; multiphase machine; power-reaching law; sliding mode

1. Introduction

Multiphase motors with a number of phases greater than three have recently been
involved in high-power and high-reliability real-life implementations, such as in electric
vehicles, ship propulsion, and wind energy conversion systems [1,2]. Their innate fault-
tolerant abilities without needing extra hardware are still considered their most practical
benefit [3]. Moreover, their additional degrees of freedom have opened the window for
miscellaneous nontraditional objectives at the expense of the need for more advanced
control strategies [4]. For that reason, a myriad of papers are now available regarding
the implementation of control techniques for multiphase machines, and these range from
classic controllers (field-oriented control and direct torque control) to more sophisticated
ones (model predictive control (MPC) and sliding mode control (SMC)) [5,6].

Finite-control-set MPC (FCS-MPC) is one of the multiphase machines’ most popular
control techniques [7]. FCS-MPC is typically implemented as predictive torque control
or predictive current control in the inner control loop of field-oriented control [8,9]. Its
fast dynamic response and easy inclusion of constraints are the main advantages of FCS-
MPC [10]. Nevertheless, it suffers from an elevated computational load and highly depends
on the accuracy of the system’s model. Recently, it has been shown that the discrete-time
SMC (DSMC) is a good alternative due to its robustness, fast dynamic response, and lack
of a need for high computational requirements [11].

The application of DSMC to multiphase machines not only requires the regulation
of multiple planes, namely, α − β and x − y for the five- and six-phase cases, but its
main drawbacks, i.e., the chattering phenomenon, must be reduced. For that purpose,
in [12], DSMC was combined with the exponential reaching law (ERL), and a reasonable
reduction of chattering was obtained. Moreover, several reaching law approaches have
been proposed for discrete systems [13]. A novel reaching law based on the combination of
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the power reaching law (PRL) and the ERL was used in [14,15], and an application on a
piezoelectric actuator was proposed. This proposition aimed to ensure a smaller width of
the quasi-sliding mode compared with that of Gao’s classical reaching law [16].

However, the chattering phenomenon still needs to be eliminated when fast responses
are required. In addition, the convergence of the selected surface to zero is very slow
when the error value is high. To overcome this problem, an exponential-based bi-power
reaching law was proposed in [17] and applied experimentally on a voltage source inverter.
However, the convergence time was established only for continuous systems and could
not reflect the case of a discrete-time system. In [18,19], a super-twisting-like reaching law
was developed for a multiphase induction machine. The results obtained in practical work
showed good results under parameter mismatch. However, results with a low frequency
and high rotor speed showed high chattering activity. In addition, the super-twisting-like
algorithm had a low rate speed when the system’s states were far away from the designed
switching function.

In this paper, a combination of Gao’s reaching law and the exponential-based bi-power
reaching-law-based discrete-time terminal SMC (DTSMC) with time delay estimation (TDE)
is proposed and applied to a six-phase induction motor. The proposed reaching law aims
to enhance the reaching rate and reduce the chattering while ensuring a small quasi-sliding
mode band. Indeed, each power-reaching law has a different exponent. The first one
will take the lead when the system’s trajectories are far from the sliding surface and,
when added to Gao’s reaching law, will ensure a faster convergence rate. The second one
will take the lead when the system’s trajectories are near the sliding surface to enhance
the convergence compared to Gao’s reaching law and the classical power-reaching law.
Moreover, a terminal sliding surface [19–21] will be adopted instead of a conventional one
for faster convergence during the quasi-sliding mode. For robustness issues, the discrete-
time TDE [22] is used to estimate the external perturbations and the rotor currents that
are unavailable for measurements. A detailed stability study will be presented for the
closed-loop error dynamics. The developed discrete-time approach in this paper can be
easily extended to any electrical machine. Finally, the developed method was implemented
on a real six-phase induction motor.

The rest of this paper is divided as follows. Section 2 details the mathematical model
of the system. It comprises a six-phase IM and a power-electronic converter. The proposed
current controller is presented in Section 3. A stability analysis is shown in the same section.
Then, the real-time validation of the controller is demonstrated in Section 4. The last section
summarizes the main aspects of this article.

2. System Modelling

Consider an asymmetrical six-phase IM drive powered by two two-level voltage
source converters (2L-VSCs), as shown in Figure 1), with the model [18] given by:

İrα = −CLsRr

Lm
Irα −

CLsLr

Lm
Pωm Irβ + CRs Isα − CLsPωm Isβ − CUsα,

İrβ =
CLsLr

Lm
Pωm Iαr −

CLsRr

Lm
Iβr + CLsPωm Iαs + CRs Iβs − CUsβ,

İsα = CRr Irα + CLrPωm Irβ −
CRsLr

Lm
Isα + CLmPωm Isβ +

CLr

Lm
Usα+dα,

İsβ = −CLrPωm Irα + CRr Irβ − CLmPωm Isα −
CRsLr

Lm
Isβ +

CLr

Lm
Usβ+dβ,

İsx =
1

Lls
(−Rs Isx + Usx)+dx,

İsy =
1

Lls
(−Rs Isy + Usy)+dy,

(1)

where:
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• Ir{α,β} are the unmeasurable rotor currents,
• Is{α,β,x,y} are the stator currents,
• Us{α,β,x,y} are the stator input voltages,
• d{α,β,x,y} are the uncertain dynamics caused by uncertain parameters and the distur-

bances acting on the stator currents,

• C =
Lm

LrLs − L2
m

,

• Ls is the inductance of the stator,
• Lls is the leakage inductance of the stator,
• Lr is the inductance of the rotor,
• Rs and Rr are, respectively, the resistances of the stator and the rotor,
• P is the number of pole pairs,
• ωm is the mechanical speed,
• ωr is the rotor’s electrical speed,

Te = 3P
(
ψsα Isβ − ψsβ Isα

)
, (2)

Jω̇m + Bωm = (Te − TL), (3)

ωm =
ωr

P
, (4)

Te is the generated torque, TL is the load torque, B and J are the coefficients of the
friction and the inertia, and ψsα, ψsβ are the stator fluxes.

Figure 1. Schematic of the 2L-VSCs and the six-phase IM in an asymmetrical configuration.

With some abuse of notation such that •[n] = •[nTs ] with Ts is a sufficiently small
sampling period, the discrete-time model of (1) is obtained:

Z[n+1] = A[n] + F[n] + B U[n], (5)

where:
Z[n] =

[
Isα[n], Isβ[n], Isx[n], Isy[n]

]T
, (6)
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A[n] =



(
1− Ts

CLr

Lm
Rs

)
Isα[n] + TsCLmPωm[n] Isβ[n]

−TsCLmPωm[n] Isα[n] +

(
1− Ts

CLr

Lm
Rs

)
Isβ[n](

1− Ts
Rs

Lls

)
Isx[n](

1− Ts
Rs

Lls

)
Isy[n]


, (7)

F[n] = Ts


CRr Irα[n] + CLrPωm[n] Irβ[n]+dα

−CLrPωm[n] Irα[n] + CRr Irβ[n]+dβ

dx
dy

, (8)

B = Ts



CLr

Lm
0 0 0

0
CLr

Lm
0 0

0 0
1

Lls
0

0 0 0
1

Lls


, (9)

U[n] =
[
Usα[n], Usβ[n], Usx[n], Usy[n]

]T
. (10)

It is worth mentioning that Fi[n] = O(Ts) for i = 1, · · · , n is of the order of one with
respect to the sampling time, and this verifies |Fi[n]| ≤ Ts∆ fi < ∞. The above assumption
is valid for limited speeds and currents and represents the limitations of uncertainties that
can be tolerated by the controlled system. Moreover, it should be noted that the rejection of
unbounded uncertainties is impossible because it results in such a high control effort that
the control signal no longer has any physical meaning.

Otherwise, the input vector is linked to the two-2L-VSC model as follows:

U[n] = Vdc



1
3

√
3

6 − 1
6 −

√
3

6 − 1
6 0

0 1
2

√
3

6
1
6 −

√
3

6 − 1
3

1
3 −

√
3

6 − 1
6

√
3

6 − 1
6 0

0 1
2 −

√
3

6
1
6

√
3

6 − 1
3

1
3 0 1

3 0 1
3 0

0 1
3 0 1

3 0 1
3


︸ ︷︷ ︸

T6



2
3 0 − 1

3 0 − 1
3 0

0 2
3 0 − 1

3 0 − 1
3

− 1
3 0 2

3 0 − 1
3 0

0 − 1
3 0 2

3 0 − 1
3

− 1
3 0 − 1

3 0 2
3 0

0 − 1
3 0 − 1

3 0 2
3





Sa

Sb

Sc

Sd

Se

S f


︸ ︷︷ ︸

M

, (11)

where Vdc is the DC-bus voltage, T6 is the transformation matrix used to obtain (1), and M
is the VSC model, with S{a,b,c,d,e, f } denoting the gating signals that switch between 0 and 1.

3. Proposed Discrete-Current Controller Conception
3.1. Outer Control Loop

The aim of this part is to regulate the mechanical speed. In other words, a PI controller
will be used:

Ir
sq[n] = KP

(
ωr

m[n] −ωm[n]

)
+ TsKI

n

∑
j=0

(
ωr

m[j] −ωm[j]

)
. (12)

The output of the discrete PI regulator controller used represents the dynamic current
reference Ir

sq[n] that is used with the imposed Ir
sd[n] to compute the α − β stator current

references (as shown in Figure 2) by using the inverse Park rotating transformation (13) and
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the indirect estimation of the standard field-oriented control (14) of the rotor flux vector
position θ. [

Ir
sα[n]

Ir
sβ[n]

]
=

[
cos θ − sin θ
sin θ cos θ

]
︸ ︷︷ ︸

T−1
dq

[
Ir
sd[n]

Ir
sq[n]

]
(13)

θ =
∫ (

ωr[n] +
Ir
sq[n]

τr Ir
sd[n]

)
dt (14)

where ωr[n] is the rotor speed and τr is the rotor time constant. Note that (14) depends on the
rotor time constant (τr = Lr/Rr), and this parameter varies with temperature. Therefore,
as τr can change with environmental conditions to calculate θ, it can lead to inefficient
control, which is one of the drawbacks of using this estimation technique [23].

Six-phase IM Modulator

Unknown
dynamics
estimation

PI

Figure 2. Proposed control scheme.

3.2. Inner Control Loop

In this subsection, a robust current controller based on an enhanced PRL-based DTSMC
that is able to reject the effects of unknown dynamics (i.e., the unmeasurable rotor currents
Ir{α,β}) will be developed to guarantee the accurate tracking of stator currents Is{α,β,x,y}.

First of all, the following discrete-time terminal switching function proposed in [19] is
designed:

S[n] = E[n] + Λ1E[n−1] + Λ2bE[n−1]eα. (15)

where

• E[n] = Zr
[n] − Z[n] is the vector of stator current tracking errors;

• Zr
[n] =

[
Ir
sα[n], Ir

sβ[n], Ir
sx[n], Ir

sy[n]

]T
is the vector of stator current references;

• Λ1 = diag(λ11, · · · , λ14) and Λ2 = diag(λ21, · · · , λ24) are diagonal matrices with
positive elements;

• bE[n−1]eα =
[
|E1[n−1]|α1sign

(
E1[n−1]

)
, · · · , |E4[n−1]|α4sign

(
E4[n−1]

)]T
where

αi ∈ (0, 1) for i = 1, · · · , 4, and:

sign(Ei[n]) =


0, if Ei[n] = 0
−1, if Ei[n] < 0

1, if Ei[n] > 0
(16)
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Secondly, the proposed enhanced PRL-based DTSMC reaching law is given by:

S[n+1] = (I4 − TsL)S[n] − TsQ1bS[n]eγ1 − TsQ2bS[n]eγ2 − TsQ3bS[n]e0, (17)

• I4 is the (4× 4) identity matrix;
• L = diag(l1, · · · , l4), where li > 0 for i = 1, · · · , 4;
• Q1 = diag(q11, · · · , q14), Q2 = diag(q21, · · · , q24) and Q3 = diag(q31, · · · , q34) are

diagonal positive-definite matrices that will be fixed in the proof of stability;

• bS[n]eγk =
[
|S1[n]|γk1sign

(
S1[n]

)
, · · · , |S4[n]|γk4sign

(
S4[n]

)]T
for k = 1, 2 with γ1i ∈

(0, 1), γ2i > 1 for i = 1, · · · , 4, and, finally, bS[n]e0 =
[
sign

(
S1[n]

)
, · · · , sign

(
S4[n]

)]T
.

On one hand, notice that, in addition to the term Q3bS[n]e0, the term Q1bS[n]eγ1 takes
the lead when the trajectories of the system are near the switching surface ‖S[n] < 1‖ to
ensure faster convergence. On the other hand, when the trajectories of the system are far
away from the switching surface ‖S[n] ≥ 1‖, the term Q2bS[n]eγ2 takes the lead, making
the convergence faster when added to the term Q3bS[n]e0 in comparison with the known
power-reaching law.

To find the expression of the discrete-time control law, let us compute S[n+1] by using
the known parts of the dynamics and the estimation of the unknown parts:

S[n+1] =E[n+1] + Λ1E[n] + Λ2bE[n]eα

=Zr
[n+1] − Z[n+1] + Λ1E[n] + Λ2bE[n]eα

=Zr
[n+1] −A[n] − F̂[n] − B U[n] + Λ1E[n] + Λ2bE[n]eα.

(18)

where F̂[n] is the estimate of F[n] obtained by using the TDE [24] as follows:

F̂[n]
∼= F[n−1] = Z[n] −A[n−1] − B U[n−1]. (19)

The accuracy of the convergence of F̂[n] to F[n] depends on how short the sampling
time is. Notice that the TDE is well known for its ability to approximate slow-varying and
bounded uncertainties in a simple manner without exact knowledge of the controlled plant
dynamics. Indeed, this method uses the computed control signals and the available states
for measurements one step in the past.

Finally, combining (17) and (18) yields the following control law:

U[n] =−B−1
[
A[n] + F̂[n] − Zr

[n+1] −Λ1E[n] −Λ2bE[n]eα
]

︸ ︷︷ ︸
equivalent control

− B−1
[
(I4 − TsL)S[n] + Ts

(
Q1bS[n]eγ1 + Q2bS[n]eγ2 + Q3bS[n]e0

)]
︸ ︷︷ ︸

enhanced PRL

.
(20)

Theorem 1. Consider a discrete-time nonlinear system of the studied six-phase motor (5). The
method proposed in (20) guarantees the convergence of each stator current to its reference in a finite
time if the following condition is met for i = 1, · · · , 4:

q3i > fi, (21)

and each stator current tracking error will converge to zero within at most n∗ + 1 steps, defined as:

n∗ =

∣∣∣Si[0]

∣∣∣
Ts ρi − δi

. (22)
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Proof of Theorem 1. Substituting the control law obtained in (20) into the model dynam-
ics (5) yields:

S[n+1] = F̃[n] + (I4 − TsL)S[n] − TsQ1bS[n]eγ1 − TsQ2bS[n]eγ2 − TsQ3bS[n]e0, (23)

where F̃[n] = F[n] − F̂[n] = O(T2
s ) denotes the error of the estimation, which verifies for

i = 1, · · · , 4 that: ∣∣∣F̃i[n]

∣∣∣ ≤ Ts fi, (24)

where fi is a known positive constant.
The closed-loop error dynamics in (23) can be divided into four sub-systems:

Si[n+1] = F̃i[n] + (1− Tsli)Si[n] − Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + q3i

)
sign

(
Si[n]

)
. (25)

For this proof, the following rules [11,24] that ensure a quasi-SM should be demonstrated:
Si[n] > ε ⇒ −ε ≤ Si[n+1] < Si[n]
Si[n] < −ε ⇒ Si[n] < Si[n+1] ≤ ε

|Si[n]| ≤ ε ⇒
∣∣∣Si[n+1]

∣∣∣ ≤ ε

(26)

where ε is a positive-definite quasi-SM bandwidth that is chosen to be equal to Ts( fi + q3i).

1. Let us start with the case where Si[n] > Ts( fi + q3i) > 0. Then:

Si[n+1] = F̃i[n] + (1− Tsli)Si[n] − Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + q3i

)
Si[n+1] − Si[n] = F̃i[n] − TsliSi[n] − Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + q3i

)
.

(27)

Choosing q3i to satisfy (21) ensures that Si[n+1] − Si[n] < 0⇒ Si[n+1] < Si[n].
Otherwise, −Ts( fi + q3i) ≤ Si[n+1] can be expressed as follows:

F̃i[n] + (1− Tsli)Si[n] − Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + q3i

)
≥ −Ts( fi + q3i). (28)

Hence:

Si[n] ≥
−
[

F̃i[n] + Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + fi

)]
(1− Tsli)

. (29)

In this case, Si[n] is positive definite, and it is obvious that the right side of the
inequality is negative definite, which implies that −Ts( fi + q3i) ≤ Si[n+1] is always
true.

2. Now, let us consider the case where Si[n] < −Ts( fi + q3i) < 0. On one hand, let us
rewrite the inequality Si[n] < Si[n+1] as:

Si[n] < F̃i[n] + (1− Tsli)Si[n] − Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + q3i

)
Si[n] <

F̃i[n] − Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + q3i

)
Tsli

.
(30)

This is always true, since q3i > fi. On the other hand, Si[n+1] < Ts( fi + q3i) can be
expressed as follows:

F̃i[n] + (1− Tsli)Si[n] − Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + q3i

)
< Ts( fi + q3i). (31)

It is clear that the above inequality is always true because Si[n] < 0 and Tsq3i > F̃i[n].

3. Finally, let us consider the last case, where
∣∣∣Si[n]

∣∣∣ ≤ Ts( fi + q3i), then:
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a. If Si[n] is positive definite, then this third case becomes:

0 < Si[n] < Ts( fi + q3i), (32)

and

0 < (1− Tsli)Si[n] <(1− Tsli)Ts( fi + q3i)

F̃i[n] − Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + q3i

)
< Si[n+1] <(1− Tsli)Ts( fi + q3i) + ?.

(33)

where ? = F̃i[n]− Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + q3i

)
. Moreover, if (21) is verified,

then:
F̃i[n] − Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + q3i

)
> −Ts( fi + q3i), (34)

and

(1− Tsli)Ts( fi + q3i) + F̃i[n] − Ts

(
q1i|Si[n]|γ1i + q2i|Si[n]|γ2i + q3i

)
< Ts( fi + q3i). (35)

This implies that:

−Ts( fi + q3i) < Si[n+1] <Ts( fi + q3i)∣∣∣Si[n+1]

∣∣∣ <Ts( fi + q3i).
(36)

b. if Si[n] is negative definite, then this third case becomes:

−Ts( fi + q3i) < Si[n] < 0. (37)

Using the same methodology for Si[n] > 0, it can be easily demonstrated that:∣∣∣Si[n+1]

∣∣∣ < Ts( fi + q3i). (38)

A quasi-SM convergence is guaranteed, since the inequalities in (26) are demonstrated
under the condition (21). Hence, the designed enhanced PRL-based DTSMC (20) is stable.
The following demonstration by contradiction is used to show the finite-time convergence
of the proposed method:

1. Firstly, let us assume that Si[0] and Si[k] are both strictly positive definite and

sign
(

Si[0]

)
= sign

(
Si[k]

)
> 0 for all k ≤ (n∗ + 1). Then,

Si[1] = F̃i[0] + (1− Tsli)Si[0] − Ts

(
q1i|Si[0]|γ1i + q2i|Si[0]|γ2i + q3i

)
≤ F̃i[0] + Si[0] − Ts

(
q1i|Si[0]|γ1i + q2i|Si[0]|γ2i + q3i

)
Si[2] ≤ F̃i[1] + Si[1] − Ts

(
q1i|Si[1]|γ1i + q2i|Si[1]|γ2i + q3i

)
≤

1

∑
j=0

F̃i[j] + Si[0] − Ts

q1i

1

∑
j=0
|Si[j]|γ1i + q2i

1

∑
j=0
|Si[j]|γ2i + 2q3i


...

Si[k] ≤
k−1

∑
j=0

F̃i[j] + Si[0] − Ts

q1i

k−1

∑
j=0
|Si[j]|γ1i + q2i

k−1

∑
j=0
|Si[j]|γ2i + kq3i


≤

k−1

∑
j=0

F̃i[j] + Si[0] − kTsq3i

≤
∣∣∣Si[0]

∣∣∣+ kTs( fi − q3i).

(39)
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Hence, one can notice that n∗ ensures that∣∣∣Si[0]

∣∣∣+ n∗Ts( fi − q3i) = 0. (40)

It follows that:
Si[n∗+1] ≤

∣∣∣Si[0]

∣∣∣+ (n∗ + 1)Ts( fi − q3i)

<
∣∣∣Si[0]

∣∣∣+ n∗Ts( fi − q3i) = 0.
(41)

which is contradictory to the fact that Si[k] > 0, ∀ k ≤ (n∗ + 1).
2. Secondly, let us assume that Si[0] and Si[k] are both strictly negative definite and

sign
(

Si[0]

)
= sign

(
Si[k]

)
< 0 for all k ≤ (n∗ + 1). Then,

Si[1] = F̃i[0] + (1− Tsli)Si[0] − Ts

(
q1i|Si[0]|γ1i + q2i|Si[0]|γ2i + q3i

)
≥ F̃i[0] + Si[0] − Ts

(
q1i|Si[0]|γ1i + q2i|Si[0]|γ2i + q3i

)
Si[2] ≥ F̃i[1] + Si[1] − Ts

(
q1i|Si[1]|γ1i + q2i|Si[1]|γ2i + q3i

)
≥

1

∑
j=0

F̃i[j] + Si[0] − Ts

(
q1i

1

∑
j=0
|Si[j]|γ1i + q2i

1

∑
j=0
|Si[j]|γ2i + 2q3i

)
...

Si[k] ≥ F̃i[k−1] + Si[k−1] − Ts

(
q1i|Si[k−1]|γ1i + q2i|Si[k−1]|γ2i + q3i

)
≥

k−1

∑
j=0

F̃i[j] + Si[0] − Ts

(
q1i

k−1

∑
j=0
|Si[j]|γ1i + q2i

k−1

∑
j=0
|Si[j]|γ2i + kq3i

)
≥ −

∣∣∣Si[0]

∣∣∣+ kTs(q3i − fi).

(42)

Once again, we can clearly notice that n∗ verifies that

−
∣∣∣Si[0]

∣∣∣+ kTs(q3i − fi) = 0. (43)

It follows that
Si[n∗+1] ≥ −

∣∣∣Si[0]

∣∣∣+ (n∗ + 1)Ts(q3i − fi)

> −
∣∣∣Si[0]

∣∣∣+ n∗Ts(q3i − fi) = 0
(44)

which is contradictory to the fact that Si[k] < 0, ∀ k ≤ (n∗ + 1).

This concludes the proof of Theorem 1.

4. Experimental Results

The designed enhanced PRL-based DTSMC method was implemented in real time to
validate its performance. Figure 3 shows a photograph of the experimental setup employed
to validate the proposed controller. On the other hand, Table 1 summarizes the components
of the mentioned platform. The DC power that supplied the system provided a constant
DC-bus voltage. The two 2L-VSCs were controlled by a dSPACE MABXII DS1401 real-time
rapid prototyping platform with Simulink. The identified parameters of the machine
are given in Table 2. The control parameters were chosen to satisfy the stability of the
closed-loop system, and their tuning was performed heuristically based on a trial-and-error
method, obtaining the following values:

Λ1 = Λ2 = 0.1 I4, α1 = α2 = α3 = α4 = 0.8,
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L = 400 I4, Q1 = Q2 = 0.5 I4, Q3 = 0.1 I4,

γ11 = γ12 = γ13 = γ14 = 0.8, γ21 = γ22 = γ23 = γ24 = 1.35.

2L-VSC 2L-VSC

PC Control

Load

dSPACE

Six-phase IM

Figure 3. Experimental platform of the six-phase IM control system.

Table 1. Experimental platform’s components.

Description Characteristics

Current sensor LA 55-P, frequency bandwidth from 0 to 200 kHz
A/D converter 16-bit
Speed sensor 1024 ppr incremental encoder
Variable load 5 HP eddy current brake
Six-phase IM 2 kW

Table 2. Electrical and mechanical parameters of the six-phase IM.

Parameter Value Parameter Value

Rotor resistance Rs = 6.7 Ω Inertia coefficient J = 0.07 kg·m2

Leakage stator inductance Lls = 5.85 mH Friction coefficient B = 0.0004 kg·m2

Mutual inductance Lm = 708.5 mH DC-link voltage Vdc = 400 V
Rotor inductance Lr = 626.8 mH Pole pairs P = 1

4.1. Analysis Criteria

The proposed controller was evaluated through the mean squared error (MSE), which
was calculated between the reference and measured stator currents. The MSE was deter-
mined as follows:

MSE(Isγ) =

√√√√ 1
N

N

∑
n=1

(
Ir
sγ[n] − Isγ[n]

)2
(45)

where Ir
sγ[n] is the stator current reference and Isγ[n] represents the measured stator currents,

such as γ ∈ {d, q, α, β, x, y}, while N represents the total number of samples.

4.2. Steady-State Results

The following results were obtained at a sampling frequency of 16 kHz. The eddy
current brake was adjusted to generate a q-plane stator current of 1.5 A for the asymmetrical
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six-phase IM. Two rotor speeds were set: 1000 and 1 500 rpm. Table 3 shows these results,
which are presented as the MSEs of the stator currents in (α − β), (x − y), and (d − q).
The data show the good performance of the proposed controller when applied to the
six-phase IM. For comparative purposes, Table 4 presents the same results for a basic
DTSMC version proposed in [11]. It can be noticed that the proposed method improved its
performance regarding the α− β plane.

Table 3. Performance behavior of the stator currents (α− β), (x− y), (d− q), and MSE (A) for two
different speed conditions (rpm).

Sampling Frequency 16 kHz

ωr
m MSEα MSEβ MSEx MSEy MSEd MSEq

1000 rpm 0.1595 0.1639 0.2706 0.2808 0.1609 0.1625

1500 rpm 0.1796 0.1827 0.2789 0.2991 0.1741 0.1880

Table 4. Performance behavior of the stator currents (α− β), (x− y), (d− q), and MSE (A) for two
different speed conditions (rpm) for a basic DTSMC [11].

Sampling Frequency 16 kHz

ωr
m MSEα MSEβ MSEx MSEy MSEd MSEq

1000 rpm 0.1860 0.1808 0.2032 0.2026 0.1766 0.1860

1500 rpm 0.1655 0.1716 0.1969 0.1999 0.1708 0.1664

At the same time, Figure 4 presents a polar graph of the stator currents for two
mechanical speeds (1000 and 1500 rpm). The analysis was performed with a fixed q-plane
current reference, and the amplitudes of the (α− β) stator currents were the same with
different speeds. The graph also shows the(x− y) currents, where it can be noticed that they
presented similar behaviors under various speeds. Moreover, the tracking of the (α− β)
stator currents was excellent, with a low ripple. Finally, Figure 5 shows the same results for
the basic DTSMC proposed in [11].

Figure 4. Stator currents for the proposed enhanced PRL-based DTSMC in the (α− β) and (x− y)
planes for different speed conditions ωm. Stator currents for the proposed PRL-based DTSMC in the
(α− β) and (x− y) planes for a speed ωm of (left) 1000 or (right) 1500 rpm.
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Figure 5. Stator currents in the (α− β) and (x− y) planes for different speed conditions ωm. Stator
currents for a basic DTSMC in the (α − β) and (x − y) planes for a speed ωm of (left) 1000 or
(right) 1500 rpm.

4.3. Transient Condition Results

Then, a transient condition, which was defined by a step modification in the q-plane
stator current reference (Ir

sq) produced by the reversal condition (1000 to −500 rpm), was
executed. Figure 6 shows the test and compares it with that of the basic DTSMC version
proposed in [11], where a settling time of approximately 2 ms and an overshoot of 28%
were identified, confirming a speedy and smooth dynamic response in comparison to that
of the basic version, with a settling time of 2 ms and an overshoot of 68%.

Figure 6. Transient condition of the q-plane current of a speed reversal action from 1000 to −500 rpm
from ωm at a sampling frequency of 16 kHz. Transient condition of the q-plane current of a speed
reversal action from 1000 to −500 rpm from ωm at a sampling frequency of 16 kHz for the proposed
controller (left) and a basic DTSMC version (right).

Two reversal tests were performed to analyze the dynamic behavior of the proposed
current controller. Figure 7 presents the results obtained when the speed was varied from
−500 to 1000 rpm and from 1000 to −500 rpm. We could verify the proper performance of
the current tracking.
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Figure 7. Transient behavior of stator currents of a speed reversal action from ωm. The first results
are from −500 to 1000 rpm, and then from 1000 to −500 rpm.

4.4. Parameter Mismatch Analysis

For the mismatch analysis, the controller performance was verified with a change in
Lm of 25% of the nominal value to quantify the robustness to uncertainties. The results show
that the performance was practically the same at both rotor speeds, offering outstanding
robustness. The MSE values for this particular test are presented in Table 5. Note that the
variation in Lm implies a variation in the whole system dynamic, since A[n] and B are in
terms of this inductance [25,26].

Table 5. Performance behavior of the stator currents (α− β), (x− y), (d− q), and MSE (A) for two
different speed conditions (rpm) with a variation in Lm.

Sampling Frequency 16 kHz

ωr
m MSEα MSEβ MSEx MSEy MSEd MSEq

1000 0.1703 0.1696 0.2937 0.3130 0.1669 0.1729

1500 0.1855 0.1894 0.2742 0.3005 0.1797 0.1950

Finally, a change in Rr was also made to check the side effects on the system. As Rr had
less of an impact on the model, the current control variation was insignificant. However,
the speed control response time tended to slightly increase due to the estimation of the τr
parameter, as shown in Figure 8.
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Figure 8. Transient behavior of a speed reversal action from ωm. The first results are from −500 to
1000 rpm, and then from 1000 to −500 rpm, with different values of τr.

5. Conclusions

This paper presented an inner robust enhanced reaching-law-based DTSMC for con-
trolling the stator currents in the (α − β) and (x − y) planes of a six-phase IM with an
outer PI rotor speed loop. The proposed method uses a discrete terminal sliding man-
ifold to enhance the convergence speed when the system’s trajectories are far from the
equilibrium point. Moreover, this technique is based on an enhanced reaching law that
combines Gao’s reaching law and the exponential-based bi-power reaching law to ensure
a faster reaching rate in a small quasi-sliding mode band while reducing the chattering
phenomenon. Otherwise, the developed discrete-time approach estimates the bounded
uncertainties and unmeasurable rotor currents via the TDE method for a better control
effort and improved tracking performance. Based on the results, the proposed technique
showed optimal behavior in current tracking with a low mean square error. Compared with
previous sliding-mode-based controllers, the proposed controller also ensures robustness,
as demonstrated by the error tracking in parameter mismatch tests. However, it delivers a
higher speed of convergence and smoother dynamics in settling time, overshoot, and faster
convergence in all operating conditions. Therefore, the enhanced PRL-based DTSMC can
be an excellent option for different rotor conditions in industrial applications. This paper
demonstrated that, with modifications, SMC can include more power terms to reduce
chattering. Moreover, the good performance of the proposed controller gave the motivation
to address an exhaustive comparison of the proposed methods against others, such as
field-oriented control, direct torque control, and/or FCS-MPC, as a near-future research
topic. Moreover, this paper opens the door for a niche of applications of other nonlinear
control techniques, such as higher-order SMC, fuzzy logic, and backstepping.
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Abbreviations
The following abbreviations are used in this manuscript:

2L-VSC Two-level voltage course converter
IM Induction motor
DSMC Discrete-time sliding mode control
DTSMC Discrete-time terminal sliding mode control
ERL Exponential reaching law
FCS-MPC Finite-control-set MPC
MPC Model predictive control
MSE Mean squared error
PI Proportional–integral
PC Personal computer
PRL Power-reaching law
TDE Time delay estimation
TSM Terminal sliding mode
SMC Sliding mode control
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