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Enhanced reaction kinetics in biological cells
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The cell cytoskeleton is a striking example of an ‘active’
medium driven out-of-equilibrium by ATP hydrolysis1. Such
activity has been shown to have a spectacular impact on the
mechanical and rheological properties of the cellular medium2–10,
as well as on its transport properties11–14: a generic tracer
particle freely diffuses as in a standard equilibrium medium,
but also intermittently binds with random interaction times
to motor proteins, which perform active ballistic excursions
along cytoskeletal filaments. Here, we propose an analytical
model of transport-limited reactions in active media, and show
quantitatively how active transport can enhance reactivity for
large enough tracers such as vesicles. We derive analytically the
average interaction time with motor proteins that optimizes
the reaction rate, and reveal remarkable universal features of
the optimal configuration. We discuss why active transport may
be beneficial in various biological examples: cell cytoskeleton,
membranes and lamellipodia, and tubular structures such
as axons1.

Various motor proteins such as kinesins or myosins are able
to convert the chemical fuel provided by ATP into mechanical
work by interacting with the semiflexible oriented filaments
(mainly F-actin and microtubules) of the cytoskeleton1. As many
molecules or larger cellular organelles such as vesicles, lysosomes
or mitochondria, hereafter referred to as tracer particles, can
randomly bind and unbind to motors, the overall transport of a
tracer in the cell can be described as alternating phases of standard
diffusive transport and phases of active directed transport powered
by motor proteins1,15,16. Active transport in cells has been extensively
studied both experimentally, for instance by single-particle tracking
methods11,12, and theoretically by evaluating the mean displacement
of a tracer13,17, or stationary concentration profiles14.

On the other hand, most cell functions are regulated by
coordinated chemical reactions that involve low concentrations of
reactants (such as ribosomes or vesicles carrying targeted proteins),
and are therefore limited by transport. However, up to now a
general quantitative analysis of the impact of active transport on
reaction kinetics in cells, and more generally in generic active
media, is still missing, even though a few specific examples have
been tackled18. Here, we propose an analytical model that enables
us to determine for the first time the kinetic constant of transport-
limited reactions in active media.

The model relies on the idea of intermittent dynamics
introduced in the context of search processes19–27. We consider
a tracer particle evolving in a d-dimensional space (in practice
d = 1,2,3) that exhibits thermal diffusion phases of diffusion
coefficient D (denoted phases 1), randomly interrupted by ballistic
excursions bound to motors (referred to as phases 2) of constant
velocity v and direction pointing in the solid angle ωv (Fig. 1a).
The distribution of the filaments’ orientation is denoted by

ρ(ωv), and will be taken as either disordered or polarized
(Fig. 1a), which schematically reproduces the different states of the
cytoskeleton1. The random duration of each phase i is assumed to
be exponentially distributed with mean τi. The tracer T can react
with reactants R (supposed immobile) only during free-diffusion
phases 1, as T is assumed to be inactive when bound to motors,
which is realized for instance when the reactants are membrane
proteins (Fig. 1b,c). Reaction occurs with a finite probability per
unit of time k when the tracer–reactant distance is smaller than a
given reaction radius a. In what follows, we explicitly determine
the kinetic constant K of the reaction T +R → R.

We now present the basic equations in the case of a reactant
centred in a spherical domain of radius b with a reflecting
boundary. This geometry both mimics the relevant situation of
a single target and provides a mean-field approximation of the
general case of randomly located reactants with concentration
c = ad/bd , where b is the typical distance between reactants.
We start from a mean-field approximation of the first-order
reaction constant28 and write K = 1/〈t〉, where the key quantity
of our approach is the reaction time 〈t〉, which is defined as the
mean first-passage time29,30 (MFPT) of the tracer at a reactant
position uniformly averaged over its initial position. For the active
intermittent dynamics defined above, the MFPT of the tracer at a
reactant position satisfies the following backward equation29:





D∆rt1 +
1

τ1

∫
(t2 − t1)ρ(ωv) dωv − kIa(r)t1 = −1

v ·∇rt2 −
1

τ2

(t2 − t1) = −1,

(1)

where t1 is the MFPT starting in phase 1 at position r, and t2 is
the MFPT starting in phase 2 at position r with velocity v. Ia is the
indicator function of the ball of radius a. As these equations (1) are
of integro-differential type, standard methods of resolution are not
available for a general distribution ρ.

However, in the case of a disordered distribution of filaments
(ρ(ωv) = 1/Ωd , where Ωd is the solid angle of the d-dimensional
sphere), we can use a generalized version of the decoupling
approximation introduced in ref. 23 to obtain a very good
approximate solution of equations (1), as described in the Methods
section. Here, we present simplified expressions of the resulting
kinetic constant by taking alternatively the limit k → ∞, which
corresponds to the ideal case of perfect reaction, and the limit
D → 0, which enables us to isolate the k dependence.

First we discuss the d = 3 disordered case (Fig. 1a), which
provides a general description of the actin cytoskeleton of a cell in
nonpolarized conditions, or of a generic in vitro active solution.
An analytical form of the reaction rate K3d is given in the Methods
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Figure 1 Model of reaction kinetics in active media, and examples of low-dimensional structures in biological cells. a, The reactant alternates thermal diffusion

phases (regime 1 in red) of mean duration τ1 and diffusion coefficient D, and ballistic phases of velocity v powered by molecular motors (regime 2 in blue) of mean

duration τ2. Here, the cytoskeletal filaments (in black) are in a disordered state. The polarized nematic state would correspond to parallel filaments, and is equivalent in a first

approximation to a one-dimensional situation (see b) with the same concentration c1d = c3d = a33d/b
3
3d and an effective reaction radius a1d = a3dc

2/3

3d . Molecular motors are

not represented. b, Tubular structures in cells such as axons and dendrites (d= 1). c, Planar structures such as membranes and lamellipodia (d= 2).

section, and is plotted in Fig. 2a,b. Strikingly, K3d can be maximized
(Fig. 2a,b) as soon as the reaction radius exceeds a threshold
ac ≃ D/v for the following value of the mean interaction time
with motors:

τ
opt

2,3d =
√

3a

vx0

≃ 1.078
a

v
,

where x0 is the solution of 2tanh(x)−2x + x tanh(x)2 = 0. The τ1

dependence is very weak, but we can roughly estimate the optimal
value by τ

opt

1,3d ≃ 6D/v2. This in turn gives the maximal reaction rate

K m
3d ≃

cv

a

√
3(x0 − tanh(x0))

x2
0

,

so that the gain with respect to the reaction rate K
p

3d in a passive
medium is G3d = K m

3d/K
p

3d ≃ Cav/D with C ≃ 0.26.
Several comments are in order. (1) τ

opt

2,3d neither depends on
D, nor on the reactant concentration. A similar analysis for
k finite (in the D → 0 limit) shows that this optimal value
does not depend on k either, which proves that the optimal
mean interaction time with motors is widely independent of the
parameters characterizing the diffusion phase 1. (2) The value
ac should be discussed. In standard cellular conditions, D ranges
from ≃10−2

µm2 s−1 for vesicles to ≃10 µm2 s−1 for small proteins,
whereas the typical velocity of a motor protein is v ≃ 1 µm s−1,
a value that is widely independent of the size of the cargo1.
This gives a critical reaction radius ac ranging from ≃10 nm for
vesicles, which is smaller than any cellular organelle, to ≃10 µm for
single molecules, which is comparable to the whole cell dimension.
Hence, this shows that in such a three-dimensional disordered
case, active transport can optimize reactivity for sufficiently large
tracers such as vesicles, as motor-mediated motion permits a
fast relocation to unexplored regions, whereas it is inefficient
for standard molecular reaction kinetics, mainly because at the
cell scale molecular free diffusion is faster than motor-mediated
motion. This could help justify that many molecular species in
cells are transported in vesicles. Interestingly, in standard cellular
conditions τ

opt

2,3d is of the order of 0.1 s for a typical reaction
radius of the order of 0.1 µm. This value is compatible with
experimental observations1, and suggests that cellular transport is
close to optimum. (3) The typical gain for a vesicle of reaction

radius a ∼> 0.1 µm in standard cellular conditions is G3d ∼> 2.5
(Fig. 2a,b) and can reach G3d ∼> 10 for faster types of molecular
motor such as myosins (v ≃ 4 µm s−1, see refs 1,11), independently
of the reactant concentration c. As we shall show below, the gain
will be significantly higher in lower-dimensional structures such
as axons.

We now come to the d = 2 disordered case (Fig. 1c). Striking
examples in cells are given by the cytoplasmic membrane, which
is closely coupled to the network of cortical actin filaments, or the
lamellipodium of adhering cells1. In many cases, the orientation of
filaments can be assumed to be random. This problem then exactly
maps the search problem studied in ref. 23, where the reaction
time was calculated. This enables us to show that as for d = 3, the
reaction rate K2d can be optimized in the regime D/v ≪ a ≪ b.
Remarkably, the optimal interaction time τ

opt

2,2d takes the same value
in the two limits k → ∞ and D → 0:

τ
opt

2,2d ≃
a

v
(ln(1/c1/2)−1/2)1/2,

which indicates that again τ
opt

2,2d does not depend on the parameters
of the thermal diffusion phase, neither through D nor k. In the limit
k → ∞, we have τ

opt

1,2d = (D/2v2)(ln2
(1/c1/2)/(2ln(1/c1/2) − 1)),

and the maximal reaction rate can then be obtained:

K m
2d ≃

c1/2v

2a
√

ln(1/c1/2)
.

Comparing this expression to the case of passive transport yields
a gain G2d = K m

2d/K
p

2d ≃ av
√

ln(1/c1/2)/(4D). As in the d = 3
case, this proves that active transport enhances reactivity for large
enough tracers (with a critical reaction radius ac ≃ D/v of the
same order as in the d = 3 case) such as vesicles. However, here
the gain G2d depends on the reactant concentration c, and can
be more significant: with the same values of D, v and a as given
above for a vesicle in standard cellular conditions, and for low
concentrations of reactants (such as specific membrane receptors)
with a typical distance between reactants b ∼> 10 µm, the typical
gain is G2d ∼> 8, and reaches 10 for single reactants (such as some
signalling molecules).

The case of nematic order of the cytoskeletal filaments, which
depicts for instance the situation of a polarized cell1, can be shown
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Figure 2 Optimization of the reaction rate. a,b, Gain of reactivity due to active transport G3d for d= 3 as a function of τ2 for different values of the ratio b/a (logarithmic

scale). The analytical form obtained in the Methods section (lines) is plotted against numerical simulations (symbols) for the following values of the parameters (arbitrary

units): a= 1.5 (brown), a= 4.5 (red), a= 7.5 (blue), a= 10.5 (green), a= 15 (yellow), with τ1 = 6, v= 1 and D= 1. K3d presents a maximum only for a > ac ≃ 4.

Standard cellular conditions (as discussed in the text) correspond to green and yellow curves for b/a= 40. c,d, Gain of reactivity due to active transport G1d for d= 1 as a

function of τ2 (c) and τ1 (d) (logarithmic scale). The analytical form obtained in the Methods section (lines) is plotted against the exact solution (symbols), for the following

values of the parameters (arbitrary units): D= 1 and v= 1 for all curves and a= 10,b= 104 (red), a= 10,b= 103 (blue) and a= 2.5,b= 103 (green). Standard cellular

conditions (as discussed in the text) correspond to blue and red curves.

to be equivalent in a first approximation to the one-dimensional
case, which is exactly solvable (Fig. 1a,b). The d = 1 case is also
important on its own in cell biology, as many one-dimensional
active structures such as axons, dendrites or stress fibres1 are
present in living cells. As an illustration, we take the example of
an axon, filled with parallel microtubules pointing their plus end
in a direction e. We consider a tracer particle interacting with
both kinesins (‘+’ end directed motors, of average velocity ve) and
dyneins (‘−’ end directed motors, of average velocity −ve) with the
same characteristic interaction time τ2 (see Fig. 1b). For this type
of tracer, the MFPT satisfies equations (1) with an effective nematic
distribution of filaments ρ(ωv) = (1/2)(δ(v−e)+ δ(v+e)). The
reaction rate K1d is obtained exactly in this case (see the Methods
section), and is maximized in the regime D/v ≪ a ≪ b for the

following values of the characteristic times (see Fig. 2c,d)

τ
opt

1,1d =
1

48

D

v2c
, τ

opt

2,1d =
1

√
3

a

vc1/2
, (2)

for k → ∞. The maximal reaction rate K m
1d is then given by

K m
1d ≃

√
3vc3/2

2a
,

and the gain is G1d = K m
1d/K

p

1d ≃ av/(2
√

3Dc1/2), which proves that
active transport can optimize reactivity as in higher dimensions.
Interestingly, the c dependence of the gain is much more important
than for d = 2,3, which shows that the efficiency of active transport
is strongly enhanced in one-dimensional or nematic structures
at low concentration. Indeed, with the same values of D, v and
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a as given above for a vesicle in standard cellular conditions,
and for a typical distance between reactants b ∼> 100 µm (such
as low concentrations of axonal receptors), we obtain a typical
gain G1d ∼> 100 (see Fig. 2c,d). In the limit of finite reactivity (k
finite and D → 0), we have τ

opt

1,1d =
√

a/vk(1/12c)1/4 and the same
optimal value equation (2) of τ

opt

2,1d . As in higher dimensions, τ
opt

2,1d

depends neither on the thermal diffusion coefficient D of phases 1,
nor on the association constant k, which shows that the optimal
interaction time with motors τ

opt
2 presents remarkable universal

features. Furthermore, our approach permits an estimate of τ
opt
2

compatible with observations in standard cellular conditions,
which suggests that cellular transport could be close to optimum.

METHODS

The approximation scheme to solve the integro-differential equations (1) relies

on the auxiliary function

s(r) =
1

Ωd

∫
t2 dωv,

and on the following decoupling hypothesis:

〈vi vj t2〉ωv ≃ 〈vi vj〉ωv 〈t2〉ωv =
v2

d
δij s(r).

Similar arguments as provided in ref. 23 then lead to the diffusion-like equation

D̃∆s(r)−
1

τ2

(s(r)− t1) = −1, (3)

where D̃ = v2τ2/d. After rewriting (1) as

D∆t1 +
1

τ1

(s(r)− t1)− kIa(r)t1 = −1, (4)

equations (3) and (4) provide a closed system of linear differential equations for

the variables s and t1, whose resolution is tedious but standard. For d = 3, we

obtain in the limit of perfect reaction k → ∞ and low density a ≪ b:

K3d ≃
3α1D̃(Dτ1T(1+α1a)+ D̃(τ1 + τ2)(α2a−T))

b3(T +α1α2D̃(τ1 + τ2))
,

where α1 = 1/
√

Dτ1,α2 = 3/(vτ2) and T = tanh(α2a). This decoupling

assumption has been controlled numerically for a wide range of parameters for

d = 2 (ref. 23), and is shown here to also be satisfactory for d = 3 (Fig. 2a,b). For

d = 1, the decoupling approximation is exact and yields after straightforward

calculations an explicit though hardly handleable form of the reaction time. In

the regime D/v ≪ a ≪ b, we obtain in the limit k → ∞ the simple form

K1d =
a

b

6vs
(
a+

√
Dτ1

)
(

6svτ1 +
√

3ab
)(

a(1+4s2)+4s2
√

Dτ1

) , (5)

where s = (
√

ab/vτ2

√
3). Optimization is then carried out using standard

methods of functional analysis.
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