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Abstract

Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA
and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve
longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary
variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features
becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce
alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-
mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data
structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches,
our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved
accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-
SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naı̈ve-Bayes
classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence
classification problem.
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Introduction

Predicting the function of regulatory elements from primary

DNA sequence still remains a major problem in computational

biology. These elements typically contain combinations of several

binding sites for regulatory factors whose activity together specifies

the developmental times, cell-types, or environmental signals in

which the element will be active. Genetic variation in regulatory

elements is increasingly thought to play a significant role in the

etiology and heritability of common diseases, and surveys of

Genome Wide Association Studies have highlighted the prepon-

derance of significant variants in regulatory DNA [1,2]. An

accurate computational model to predict regulatory elements can

1) help identify and link core sets of regulatory factors with specific

diseases, and 2) predict the functional consequences of variation or

mutations in specific sites within regulatory elements.

We have recently introduced a successful method for regulatory

DNA sequence prediction, kmer-SVM, which uses combinations

of short (6–8 bp) k-mer frequencies to predict the activity of larger

functional genomic sequence elements, typically ranging from 500

to 2000 bp in length [3]. An advantage of k-mer based approaches

relative to the alternative position weight matrix (PWM) approach

is that PWMs can require large amounts of data to optimize and

determine appropriate scoring thresholds [4,5], while k-mers are

simple features which are either present or absent. However, in

our previous implementation of the kmer-SVM [3], the choice to

use a single k, and which k, is somewhat arbitrary and based on

performance on a limited selection of datasets. A major

contribution of the present work is an extension of this single k
approach to include longer and much more general sequence

features. The function of these DNA regulatory elements is

generally thought to be specified at the molecular level by the

binding of combinations of Transcription Factors (TFs) or other

DNA binding regulatory factors, and many of these binding sites

are short and fall within the range of k (6–8) where our kmer-SVM

approach was successful. However, Transcription Factor Binding

Sites (TFBS) can vary from 6–20 bp, so some are much longer

(such as ABF1, CTCF, etc.), and thus cannot be completely

represented by the short k-mers. Alternatively, TFBS can be

defined by a set of sequences with some gaps (non-informative

positions) as each given DNA sequence has some binding affinity

for the TF. Although the kmer-SVM method can model TFBS

longer than k by tiling across TFBS with overlapping k-mers, this

loses some spatial information in the binding site, and overall

classification accuracy can be significantly impaired when long

TFBS are important predictive features [6].
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Naively one could address this issue by using longer k’s or

combinations of k-mers spanning the expected size range of TFBS,

but a major limitation of this approach is that longer k-mers

generate extremely sparse feature vectors (i.e. most k-mers simply

do not appear in a training sequence and thus receive zero counts,

or appear only once), which causes a severe overfitting problem

even at quite moderate k. Therefore, the original kmer-SVM was

limited in practice to k-mer lengths from 6 to 10, with performance

already degrading at k = 9 or 10, depending on the dataset. Thus

in practice, the parameter k was chosen by a tradeoff between

resolving longer features and robust estimation of their frequen-

cies.

We recently introduced gapped k-mers as a way to resolve this

fundamental limitation with k-mer features and showed that they

can be used to more robustly estimate k-mer frequencies in real

biological sequences [7]. In this paper, we present a simple and

efficient method for calculation of the robust k-mer count

estimates. We also expand our kmer-SVM method [3] to use

gapped k-mers or robust k-mer count estimates as feature sets and

present efficient methods to compute these new kernels. We show

that our new method, gkm-SVM, consistently and significantly

outperforms a kmer-SVM using both CTCF and EP300 genomic

bound regions over a wide range of varying feature lengths.

Furthermore, we show that, while kmer-SVM suffers significantly

from overfitting as k is increased, gkm-SVM performance is only

very modestly affected by changes in the chosen feature length

parameters. Next, we systematically compare the two approaches

on the complete human ENCODE ChIP-seq data sets, and show

that gkm-SVM either significantly outperforms or is comparable to

kmer-SVM in all cases. Of biological interest, on the ENCODE

ChIP-seq data sets, we also show that gkm-SVM outperforms the

best known single PWM by detecting necessary co-factors. We also

systematically compare gkm-SVM to similar earlier SVM

approaches [8–11], and show that they perform comparably for

optimal parameters in terms of accuracy, but that gkm-SVM is less

sensitive to parameter choice and is computationally more

efficient. To further demonstrate the more general utility of the

k-mer count estimates, we apply them in a simple Naı̈ve-Bayes

classifier, and show that using k-mer count estimates instead of k-

mer counts consistently improves classification accuracy. Since our

proposed method is general, we anticipate that many other

sequence classification problems will also benefit from using these

features. For example, word based methods can also be used to

detect functional motifs in protein sequences, where the length of

the functional domain is unknown [12].

Results

Calculation of sequence similarity score using gapped k-
mers

To overcome the limitations associated with using k-mers as

features described above, we introduce a new method called gkm-

SVM, which uses as features a full set of k-mers with gaps. At the

heart of most classification methods is a distance or similarity

score, often called a kernel function in the SVM context, which

calculates the similarity between any two elements in the chosen

feature space. Therefore, in this section, we first describe the

feature set and how to efficiently calculate the similarity score.

This new feature set, called gapped k-mers, is characterized by two

parameters; (1) l, the whole word length including gaps, and (2) k,

the number of informative, or non-gapped, positions in each word.

The number of gaps is thus l – k.

We first define a feature vector for a given sequence S to be

f S~½yS
1 ,yS

2 , � � � ,yS
M �
>

, where M is the number of all gapped k-

mers (i.e. for DNA sequences, M~
l

k

� �
4k), and yS

i ’s are the

counts of the corresponding gapped k-mers appeared in

the sequence S. We then define a similarity score, or a

kernel function, between two sequences, S1 and S2, as the

normalized inner product of the corresponding feature vectors as

follows:

K(S1,S2)~
Sf S1 ,f S2T
f S1
�� �� f S2

�� �� ð1Þ
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Therefore, the similarity score, K(S1, S2), is always between 0

and 1, and K(S, S) is equal to 1. We will refer to Equation (1) as the

gkm-kernel. It is similar to the wildcard kernel introduced in Ref.

[9], but our approach differs in that we do not sum over the

number of wild-cards, or gaps, as formulated in Ref. [9].

Since the number of all possible gapped k-mers grows extremely

rapidly as k increases, direct calculation of Equation (1) quickly

becomes intractable. To implement gapped k-mers as features, it is

necessary to overcome this serious issue, by deriving a new

equation for K(S1, S2) that does not involve the computation of all

possible gapped k-mer counts. The key idea is that only the full l-
mers present in the two sequences can contribute to the similarity

score via all gapped k-mers derived from them. Thus the inner

product in Equation (1), which involves a sum over all gapped k-

mers, can be computed by a much more compact sum, which

involves only a double sum over the sequential l-mers present in

each of the two sequences:

Sf S1 ,f S2T~
Xn1

i~1

Xn2

j~1

hlk(u
S1
i ,u

S2
j ) ð2Þ

Author Summary

Genomic regulatory elements (enhancers, promoters, and
insulators) control the expression of their target genes and
are widely believed to play a key role in human
development and disease by altering protein concentra-
tions. A fundamental step in understanding enhancers is
the development of DNA sequence-based models to
predict the tissue specific activity of regulatory elements.
Such models facilitate both the identification of the
molecular pathways which impinge on enhancer activity
through direct transcription factor binding, and the direct
evaluation of the impact of specific common or rare
genetic variants on enhancer function. We have previously
developed a successful sequence-based model for en-
hancer prediction using a k-mer support vector machine
(kmer-SVM). Here, we address a significant limitation of the
kmer-SVM approach and present an alternative method
using gapped k-mers (gkm-SVM) which exhibits dramati-
cally improved accuracy in all test cases. While we focus on
enhancers and transcription factor binding, our method
can be applied to improve a much broader class of
sequence analysis problems, including proteins and RNA.
In addition, we expect that most k-mer based methods can
be significantly improved by simply using the generalized
k-mer count method that we present in this paper. We
believe this improved model will enable significant
contributions to our understanding of the human regula-
tory system.

Gapped k-mer SVM for Regulatory Elements
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where u
S1
i is the i’th l-mer appearing in S1, u

S2
j is the j’th l-mer

appearing in S2, and n1 and n2 are the numbers of full l-mers in S1

and S2 respectively, i.e. n1 = length(S1)2l+1 and n2 = length(S2)2

l+1. Evaluation of Equation (2) is much more efficient than

Equation (1) because almost always, n1n2%M. As will be shown

below, hlk(u1, u2) only depends on the number of mismatches, m,

between the two full l-mers, u1 and u2, i.e. hlk(u1, u2) = hlk(m).

Therefore, we can rewrite Equation (2) by grouping all the l-mer

pairs of the same number of mismatches together as follows:

Sf S1 ,f S2T~
Xl

m~0

Nm(S1,S2)hlk(m) ð3Þ

where Nm(S1, S2) is the number of pairs of l-mers with m
mismatches, and hlk(m) is the corresponding coefficient. We refer

to Nm(S1, S2) as the mismatch profile of S1 and S2. Since each l-mer

pair with m mismatches contributes to
l{m

k

� �
common gapped

k-mers, the coefficient hlk(m), denoted in short by hm, is given by:

hm~

l{m

k

� �
l{m§k

0 otherwise

8<
: : ð4Þ

Determining a mismatch profile in Equation (3) is still

computationally challenging since the numbers of mismatches

between all possible l-mer pairs has yet to be determined. To

address this issue, we have developed two different algorithms. We

first considered direct evaluation of the mismatch profiles between

all pairs of training sequences. To minimize the cost of counting

mismatches between two words, we develop an efficient mismatch

counting algorithm that practically runs in constant time,

independent of k and l parameters (see Methods). We then use

Equation (3) to obtain the inner products for every pair of

sequences.

The direct and sequential evaluation of the kernel function

between all training sequences becomes less practical as the

number of training sequences gets larger, since it requires O(N2L2)

operations of mismatch counting between l-mer pairs, where N is

the number of training sequences and L is the average sequence

length. Because of this unfavorable scaling, we implemented an

alternative method using a k-mer tree data structure, similar to one

previously introduced in Ref. [8], but with some modifications (see

Methods). This method simultaneously calculates the mismatch

profile for all the sequence pairs, and, therefore, can significantly

reduce the computation time especially when the number of gaps

is relatively small, typically when l – k, = 4. We can further

improve the efficiency if we truncate the sum in Equation (3) to

only consider up to a maximum number of mismatches, mmax (see

Methods). This approximate method is especially favorable when

the number of gaps is large, but the efficiency comes at the cost of

exact evaluation of the kernel and classification accuracy, which

we will discuss in greater detail below. Therefore, we used one of

the two algorithms depending on the size of data sets and the

number of gaps we choose for analysis.

Gapped k-mer SVM classifier outperforms k-mer SVM
classifier

Because of the difficulty of reliably estimating long k-mer

counts, we hypothesized that gkm-SVM would perform better

than kmer-SVM, and that gapped k-mers would be most

advantageous as features, when long TFBSs are important

sequence elements in a given data set. To directly test this idea,

we compared the classification performance of gkm-SVM to kmer-

SVM in predicting the binding sites of CTCF [13] in the human

genome, a TF whose binding specificity has been well-character-

ized [14]. As shown in Figure S1, CTCF recognizes very long

DNA sequences (the full PWM is 19 bp), and the genomic CTCF

bound regions are almost perfectly predicted by matches to the

CTCF PWM (Figure S2): in the PWM analysis, we used as a

predictor the best matching log-odd score to the PWM model in

the region, and achieved area under the ROC curve (AUC) of

0.983. It is very rare for a single PWM to perform this well, and in

our experience CTCF is unique in this regard. The CTCF dataset

therefore provides an excellent opportunity to test our gapped k-
mer classifier. We used the top 2,500 CTCF ChIP-seq signal

enriched regions in the GM12878 cell line available at Gene

Expression Omnibus (GSE19622) [13] as a positive dataset, and

equal numbers of random genomic sequences (16) as a negative

dataset. We generated these negative sequences by matching

length, GC and repeat fraction of the positive set [6].

We compared the performance of gkm-SVM and kmer-SVM

on the CTCF data set for a range of oligomer lengths by varying

either k (for kmer-SVM) or l (for gkm-SVM) from 6 to 20. We

fixed the parameter k = 6 for gkm-SVM. We then quantified the

classification performance of each by calculating test-set AUC with

standard five-fold cross validation (CV) (see Methods). Figure 1A

shows a summary of the comparisons. As anticipated, gkm-SVM

performs consistently better than kmer-SVM for all lengths. More

significantly, while kmer-SVM suffers severely from overfitting

when k is greater than 10, gkm-SVM is virtually unaffected by l. In

fact, gkm-SVM achieves the best result (AUC = 0.967) when l = 14

and k = 6, which is significantly better than the kmer-SVM

(AUC = 0.912 when k = 10); the best ROC curve is shown in

Figure 1C. It should be noted, however, that the PWM

classification result (Figure S2) is still the best (AUC = 0.983)

among the three methods we tested in this analysis. A complicating

factor is that while both kmer-SVM and gkm-SVM use entire

sequences (average length is 316 bp) to calculate the prediction

scores, the PWM scores are from the best matching 19 bp sub-

sequence in the region. It may be that the extra ,300 bp

sequences contribute noise in the SVM prediction scores, which

slightly impairs the overall classification accuracy. In any event,

the gkm-SVM is a significant improvement in accuracy over the

kmer-SVM, and both gkm-SVM and the PWM are excellent

predictors on this dataset.

Interestingly, gkm-SVM shows consistently better performance

than kmer-SVM even if l is relatively small (l,10) (Figure 1A).

This suggests that gkm-SVM may also be better at modeling

diverse combinations of TFBSs than kmer-SVM. To test this

hypothesis, we analyzed a mouse enhancer dataset of more varied

sequence composition: genomic EP300 bound regions in embry-

onic mouse forebrain [15]. We have previously shown that our

original kmer-SVM classifiers can accurately predict EP300

binding when mediated by sets of active TFBSs [3]. This EP300

data set thus provides a direct test of the effectiveness of using

gapped k-mer features to detect more complex regulatory features.

For this analysis, we defined a new set of the 1,693 400 bp sites

that maximize the EP300 ChIP-seq signal within each of the peaks

determined by MACS [16] after removing any regions which were

more than 70% repeats. We repeated the k and l scaling with the

EP300 data set and a 16negative set, and again found that gkm-

SVM consistently outperforms kmer-SVM for all feature lengths

(Figure 1B). Analogous to the observations modeling CTCF

binding, gkm-SVM AUC is high and does not degrade with large

Gapped k-mer SVM for Regulatory Elements
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l. In contrast, the kmer-SVM accuracy drops rapidly as k
increases. Moreover, although the difference in performance is

smaller than found for the CTCF data set, the gkm-SVM achieves

the best AUC (0.947) with l = 9 and k = 6, while the kmer-SVM

achieves 0.932 with k = 7, suggesting that longer k-mers with some

flexibility do contain more complete information about TF

binding (Figure 1D). At the same time, the gapped k-mer features

are more robustly estimated (having more counts) and for this

reason make more reliable predictors. The consequences of these

improvements in AUC are significant when considering the

genome-scale precision of the improved gkm-SVM classifiers. The

rate of false positive predictions is dominated by the large neutral

fraction of the genome, so the precision of a genome-scale classifier

is best assessed by a Precision-Recall curve in combination with a

much larger negative set, as discussed in Ref. [3]. The Precision-

Recall curves for the gkm-SVM and kmer-SVM classifiers on a

1006negative set are shown in Figure S3. For CTCF, at a recall

of 50%, the precision increases from 36% to 59%. These ranges of

precision and recall are in the relevant range of experiments

aiming to discover and test novel enhancers, and we therefore

Figure 1. gkm-SVM outperforms kmer-SVM over a wide range of k-mer length. Both gkm-SVM and kmer-SVM were trained on (A) CTCF
bound and (B) EP300 bound genomic regions using different word lengths (k for kmer-SVM and l for gkm-SVM). The parameter k for gkm-SVM was
fixed at 6. While AUCs of the kmer-SVMs show significant overfitting in both cases as k gets larger (dotted), gkm-SVMs accuracy is higher for a broad
range of larger l (solid). Results using the truncated Gkm-SVM with mmax = 3 are shown as dashed lines and AUCs of these faster approximations are
comparable when the difference between mmax and l – k are relatively small. ROC for the optimal k or l for each case are shown in (C) and (D). Gkm-
SVMs (solid) consistently outperform kmer-SVMs (dashed) on both data sets. Error bars here and below represent 5-fold CV standard deviation.
doi:10.1371/journal.pcbi.1003711.g001

Gapped k-mer SVM for Regulatory Elements
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expect that predictions based on gkm-SVM will have up to a two-

fold higher successful validation rate.

One further modification can substantially reduce the compu-

tational cost of using gapped k-mers with little degradation in

performance. The algorithm using the k-mer tree data structure

produces identical results to the direct evaluation of Equation (3),

but typically is much faster when the number of mismatches, l – k,

is smaller than four, and the number of training sequences is large.

The k-mer tree algorithm can be made even more computationally

efficient, if we prune the traversal of the tree, by ignoring any k-

mer pairs that have more mismatches than a predetermined

parameter, mmax. This provides an approximation to the exact

kernel calculation, but the approximation error is usually

negligible given that the coefficient hm for large numbers of

mismatches are generally much smaller compared to those with

small m. This approximation significantly reduces the total

number of calculations and allows the user to control the running

time of the algorithm by setting the parameter mmax, and makes

the use of longer word lengths l feasible for any given k. To

systematically investigate the classification performance of this

approximation, we applied the same analysis above using both

CTCF and EP300 data sets (Figure 1A, B), and found that AUCs

from the approximate method are virtually identical to the exact

method when the difference between mmax and l – k are small.

Interestingly, the approximation method achieved even higher

AUC with CTCF data set in some cases.

Encouraged by the analyses of CTCF and EP300 data sets

above, we systematically compared gkm-SVM to kmer-SVM using

a very broad range of human data sets generated by the ENCODE

project [17,18]. We used 467 sets of ChIP-seq peaks produced by

the ENCODE uniform processing pipeline containing at least 500

regions (see Methods). We truncated any data set with greater than

5,000 regions by random sampling. We then trained both kmer-

SVM and gkm-SVM on each set against an equal size (16)

negative set of random genomic regions and calculated AUCs with

five-fold cross validation. We used k = 6 for kmer-SVM, and l = 10

and k = 6 for gkm-SVM, but as shown in Figure 1 the

improvements are generally insensitive to these parameter choices.

Strikingly, we find that gkm-SVM almost always outperforms

kmer-SVM (Figure 2A). We also find that variances of AUCs from

test CV sets are generally reduced, suggesting that gkm-SVM is

more robust than kmer-SVM (Figure S4). More significantly, gkm-

SVM performs much better especially for TFs with long binding

sites. In this dataset, most of these long binding sites arise in ChIP-

seq data sets for CTCF and members of the cohesin complex

(RAD21, SMC3) known to be physically associated with CTCF

[19]. On these CTCF associated factors gkm-SVM exhibits much

higher AUC than kmer-SVM, as highlighted by the cluster of

purple circles in Figure 2A. We have also compared gkm-SVM to

the best single PWM AUC as shown in Ref. [6] (Figure 2B). As

expected, gkm-SVM outperforms all datasets except CTCF, for

which gkm-SVM performance is only marginally reduced. For a

consistent analysis of this dataset, we used l = 10 and k = 6,

although for CTCF the gkm-SVM performance is optimal at

larger l, as seen in Figure 1A.

Motif analysis of the ENCODE ChIP-seq data sets
The predictive sequence features that allow gkm-SVM to

outperform the single best PWM imply that cooperative binding is

the underlying molecular mechanisms that targets TFs to these

regulatory regions. Previously we have typically focused on a

handful of the highest SVM weight k-mers (say top ten positive

and top ten negative weight k-mers) to interpret the classification

results [3,6,20]. This simple method becomes unwieldy when

applied to the gkm-SVM results because of the large number of

very similar significant features (when l and/or k are large).

Although the k-mers at the extreme top and bottom tails of the k-

mer weight distribution are still important and biologically

meaningful, those k-mers usually cover only a fraction of the

significant feature set, and many more important features are

included in the larger tails of the k-mer weight distribution.

Therefore, more sophisticated algorithms are needed to extract the

biologically relevant features from the classification results.

To directly address this issue, we developed a new method to

combine multiple similar k-mers into more compact and

interpretable PWMs and analyzed the 467 ENCODE data sets

[18]. In this approach, we used a larger number of predictive k-

mers to build de novo PWMs (see Methods). We used the top 1%

of 10-mers from each of the gkm-SVMs trained on the ENCODE

data sets and identified up to three distinct PWMs (Figure S5) from

k-mers in this set. We then compared our results with the previous

PWMs found in the same data sets using a conventional tool

(MEME-ChIP) [18,21]. Similar to our approach, Wang et al.
analyzed 457 ENCODE ChIP-seq data sets (440 sets are in

common with those we analyzed above) and identified five PWMs

from each data set. Collectively, Wang et al. found 79 distinct

PWMs enriched, of which our method recovered 74. Comparing

each ChIP-seq data set individually, we recovered most of the

PWMs reported by Wang et al. using our method (Figure 2C).

Interestingly, while Wang et al. largely failed to identify

biologically meaningful PWMs from most of the POL2 ChIP-

seq data sets (47 out of 58 sets returned no meaningful PWMs), our

methods frequently identified cell-specific TFs as well as promoter

specific TFs (Figure S5). For example, the GATA1 TF identified

from POL2 ChIP-seq in the erythroleukemic cell line K562 is

known to play central roles in erythroid differentiation [22]. The

ETS1 TF from HUVEC is another extensively studied TF, known

to be important for angiogenesis [23]. A major difference between

the two methods is the number of training sequences. While the

previous study was limited to the top 500 of ChIP-seq peaks

(ranked by ChIP-seq signal), we were able to use 106 larger

numbers of ChIP-seq peaks (5,000 regions), and the large training

sizes enabled us to robustly identify diverse combinatorial

sequence features.

Comparison to previous kernels
Since the early development of k-mer based supervised machine

learning techniques [24], there have been a number of improve-

ments. Some of these extend the feature set to include imperfect

matches, similar in spirit to our gkm-SVM. The mismatch string

kernel [8] is one such method, originally motivated by the fact that

homologous protein sequences are not usually identical and have

many frequently mutated positions. The mismatch kernel also uses

k-mers as features, but allows some mismatches when counting k-

mers and building feature vectors. The wildcard kernel [9] is

another variant of the original string kernel, which introduces a

wildcard character that matches any single letter in the given

alphabet. More recently, an alternative di-mismatch kernel [10]

has been proposed to directly model TFBSs, and has been

successfully applied to protein binding microarray (PBM) data sets

[25] and several other ChIP-seq data sets [10,11]. The di-

mismatch method tries to overcome the limitation of the mismatch

kernel by favoring k-mers with consecutive mismatches. However,

in a recent comparison of methods for modeling transcription

factor sequence specificity, full k-mer methods outperformed the

di-nucleotide approaches when applied to PBM data [26].

To further evaluate our proposed method, we directly compared

the gkm-kernel with the aforementioned three alternative methods,

Gapped k-mer SVM for Regulatory Elements
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Mismatch kernel [8], Wildcard kernel [9], and Di-mismatch

kernel [10,11], using the mouse forebrain EP300 data set. As

shown in Figure 3, gkm-kernel outperforms the other three

existing methods both in terms of the classification accuracy and

running time. The best AUC we achieved for gkm-kernel is

0.947 as compared to 0.937, 0.935, and 0.944 for the wildcard

kernel, mismatch kernel, and di-mismatch kernel, respectively

(Figure 3A). Although the wildcard kernel and gkm-kernel are

quite similar, the systematic improvement in gkm-kernel AUCs

is primarily due to the incorporation of reverse complement

sequences. We directly tested this by adding reverse complement

sequences to the feature set for the previously published

methods, and indeed found that with this modification, these

methods were also able to achieve comparable AUCs (Figure

S6).

More significantly, when we compare running times at

parameters which maximize AUC for each method, our

gkm-SVM implementation (l = 9,l-k = 3) is roughly two orders of

magnitude faster than di-mismatch (10,3), and slightly more than

one order of magnitude faster than mismatch (l = 10,m = 2) and

wildcard (l = 8,m = 3) on the EP300 data set (Figure 3B and

Figure S7). Also, by fixing k = 6 and the parameter mmax in our

algorithm, the AUC becomes less sensitive to the feature length l,
compared to a scan at fixed m, varying k (Figure 3A). Direct

running time comparisons using our tree structure in the

mismatch and wildcard kernels (described below) are shown in

Figure S7B and S7C. We should note that we were only able to

test the di-mismatch kernel up to l = 10, because it required more

than 128 GB of memory and did not finish within 2000 minutes

when using l = 11.

Interestingly, we also note that both Mismatch kernel and

Wildcard kernel are special cases of the more general class of

kernels, defined by Equation (3). This unification allows direct

application of the methods we developed for mismatch profile

Figure 2. gkm-SVM consistently outperforms kmer-SVM and the best known PWM on human ENCODE ChIP-seq data sets. (A) We
trained gkm-SVM and kmer-SVM on the complete set of 467 ENCODE ChIP-seq data sets (with k = 6 for kmer-SVM, and l = 10 and k = 6 for gkm-SVM).
gkm-SVM AUC is consistently higher than kmer-SVM with only a few very minor exceptions. The gkm-SVM method specially outperforms the kmer-
SVM for the data sets bound by members of the CTCF complex, highlighted as purple circles. (B) We also compared gkm-SVM and the best known
PWM on the same data sets, and gkm-SVM AUCs are significantly higher than the PWM AUC in almost all cases. (C) The ENCODE data sets were
divided into four groups: (1) no PWM, (2) only one PWM, (3) two PWMs, and (4) three or more PWMs identified by Wang et al. Then, for each group
except the first one, we calculated the number of PWMs recovered by our method. At least one PWM was recovered for more than ,90% of the data
sets.
doi:10.1371/journal.pcbi.1003711.g002
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computation and therefore gives more efficient methods for

computation of these existing methods (see Methods).

Calculation and performance of estimated l-mer
frequencies for gkm-SVM

As an alternative to the gapped k-mer feature set, we also

developed an alternative kernel by replacing the k-mer counts with

robust l-mer count estimates [7] in our original kmer-SVM

framework. We have developed efficient methods to compute this

new kernel (see Methods). In Ref. [7], we considered the mapping

from l-mers to gapped k-mers. Among all possible sets of l-mer

frequencies that could produce the same gapped k-mer frequency

distribution, we developed a method to estimate the ‘‘most likely’’

l-mer frequency set. Full details of this method are described in the

Ref. [7]. In brief, we first define a gapped k-mer count vector

flk~½y1,y2, � � � ,yM �> similar to the definition of the gapped k-mer

feature vector for gkm-SVM as shown above. Then, the count

estimate, x̂xu, for l-mer u is given by

x̂xu~
XM
i~1

wiyi ð5Þ

The weight wi in Equation (5) was shown to only depend on the

number of mismatches, m, between the gapped k-mer correspond-

ing to yi and u, and takes the following form:

w(m)~
({1)m

b‘
l

k{m

� � l{k

l{kzm

Xk{m

t~0

l

t

� �
(b{1)t ð6Þ

where b is the alphabet size and is equal to four in case of DNA

sequences (A,C,G and T). Since the above equation is applied to

every l-mer, it would provide a non-zero frequency even for an l-
mer that does not have any exact match appearing in any training

set sequence.

Direct calculation of Equation (5), however, requires actual

counting of all of the M gapped k-mers, which becomes

computationally intractable for large l and k in a way similar to

Equation (1). Besides, summing up a large set of floating point

numbers may result in poor numerical precision. To overcome

these issues, we developed a simple method, referred to as the gkm-
filter, to more efficiently calculate the robust l-mer count

estimates, x̂xu, without calculating the intermediate gapped k-mer

counts (see Methods). In summary, in the calculation of the robust

l-mer count estimates, we give a non-zero weight to l-mers with

few numbers of mismatches. The k-mer frequency estimation

method is not constrained to produce non-negative frequencies

and may occasionally generate negative count estimates. To obtain

strictly positive frequencies, we used a revised version of the gkm-

filter method, which we call the truncated gkm-filter. Finally, we

developed a method to directly calculate the kernels using these

feature sets (see Methods). An important result here is that the

evaluation of the gkm-kernel (the inner product of the l-mer count

estimates vectors) is still given by Equation (3), but with a new set

of weights clk(m) given by Equation (14), below, replacing hlk(m).

Therefore, efficient algorithms for pairwise mismatch profiles that

we developed for the gkm-kernel can be directly used for this new

feature set without any modification. Because of this symmetry, we

also refer to this method as gkm-kernel with (full or truncated)
filter. A numerical example using count estimates on two short

sequences is provided in Text S1.

To systematically compare the classification performance of

these new methods with the original gapped k-mers, we repeated

Figure 3. Comparison of gkm-SVM and existing methods on the mouse forebrain EP300 data set. (A) For each method, averages of 5-CV
AUCs are shown as a function of the word length with the optimal number of mismatches, m, held fixed. Also shown are gkm-SVM results using fixed
k = 6 and varying mmax. (B) Running time for each of the kernel computations shown in (A). Gkm-kernels show better classification performance and
significantly more efficient computation at peak AUC.
doi:10.1371/journal.pcbi.1003711.g003
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the previous analysis with the ENCODE ChIP-seq data sets. Using

the truncated gkm-filter yields results highly comparable to the

original gkm-SVM for most datasets with modestly but consis-

tently better relative performance when AUC is greater than 0.9

(shown as purple circles in Figure S8A). Any improvement in the

range of high AUC (.0.9) typically strongly reduces the classifier’s

False Prediction Rate [27], therefore, we generally recommend the

truncated filter method as the method of choice for most analyses.

Compared to the original gkm-SVM, using the gkm-SVM with

full filter yields lower AUCs (Figure S8B) although it is still

significantly higher compared to the kmer-SVM method.

Application of the robust l-mer count estimates for
Naı̈ve-Bayes classifier

So far, we have focused on using gapped k-mer based methods

for improving sequence kernel methods. We have shown that, by

direct use of gapped k-mers as features or by using the robust l-mer

count estimates, we can significantly overcome the long k-mers’

sparse count problem for these methods. We further demonstrate

the general utility of the robust l-mer count estimates in sequence

classification problems by applying it to a simple Naı̈ve-Bayes (NB)

classifier similar to the one previously introduced in Ref. [28] and

show that by using robust count estimates instead of conventional

k-mer counts we can significantly boost the performance of the

Naı̈ve-Bayes classifier for long k-mers.

Here, we used the log-likelihood ratio of the estimated l-mer

frequencies in the positive and negative sets as a predictor, using

the NB assumption of feature independence. The prediction score

of any given sequence of length n, denoted by S = s0s1…sn–1, is

then given by:

fNB(S)~
Xn{l

i~0

log
NP(sisiz1 � � � sizl{1)

NN (sisiz1 � � � sizl{1)
ð7Þ

where NP and NN are the robust count estimates of the

corresponding l-mers, sisi+1…si+l21, in the positive and negative

training set, and are given by Equation (11) below. We used the

truncated gkm-filter method adding pseudo-count (half of the

smallest positive coefficient of the truncated gkm-filter) to each of

the estimated frequencies to obtain strictly positive frequencies for

log-likelihood ratio. As a comparison, we also implemented the NB

classifier without the gkm-filter, using actual l-mer counts with a

pseudo-count (0.5) for NP and NN. We predicted the CTCF and

EP300 genomic bound regions with both NB classifiers (i.e. with

and without using robust count estimates). As shown earlier,

genomic CTCF bound regions are almost perfectly predicted by

the single CTCF PWM (Figure S2), and the local sequence

features around the CTCF binding motif do not seem to

significantly contribute to the prediction. Thus, to precisely detect

the CTCF binding motif and achieve the best classification

performance, we scored every substring of length n = 15+l21 for

each sequence and assigned the maximum as the final score for the

sequence. The window size of 15 was chosen to optimize the

detection of the CTCF site within a small window of flanking

sequence, which maximizes the performance of the NB classifier

without the gkm-filter. For the EP300 genomic bound regions, in

contrast, we used the full sequence in both classifiers. We compare

the performance of these NB classifiers on both data sets in

Figure 4 for a range of feature length (6–20 bp). Similar to the

previous analysis using gkm-SVM and kmer-SVM (Figure 1),

using robust count estimates (gkm-filter) significantly improves the

classification accuracy especially for longer k-mers (Figure 4). On

the CTCF data set, the NB classifier using the gkm-filter achieves

best performance with l = 20 (AUC = 0.99), which is even better

than that of the CTCF PWM (red dotted line, AUC = 0.983)

(Figure 4A). Also on the EP300 dataset, the gkm-filter significantly

improves the overall performance of NB classifier (Figure 4B). The

superior classification performance using gapped k-mer based

features is thus consistent for both SVM and NB classifiers, and

strongly suggests that the robust l-mer count estimates provide a

more complete and robust set of sequence features than simple k-

mers in most sequence classification problems, as hinted at in our

preliminary analysis of k-mer frequency spectra in Ref. [7].

Discussion

In this paper, we presented a significantly improved method for

sequence prediction using gapped k-mers as features, gkm-SVM.

We introduced a new set of algorithms to efficiently calculate the

kernel matrix, and demonstrated that by using these new methods

we can significantly overcome the sparse k-mer count problem for

long k-mers and hence significantly improve the classification

accuracy especially for long TFBSs. Detailed comparisons of our

proposed method with some existing methods show that our gkm-

SVM outperforms existing methods in terms of classification

accuracy on benchmark data and is also typically orders of

magnitude faster. We also introduced the concept of gkm-filters for

efficient calculation of the robust k-mer count estimates and

derived optimal weights for penalizing different number of

mismatches. We showed that one could successfully replace k-

mers with robust k-mer count estimates to avoid long k-mer sparse

count problem, and demonstrated the effectiveness of this method

by showing examples in SVM and Naı̈ve-Bayes classifiers. We thus

expect that most k-mer based methods can be significantly

improved by simply using this generalized k-mer count.

The main biological relevance of the computational method we

present in this paper is that gkm-SVM is capable of accurately

predicting a wide range of specific classes of functional regulatory

elements based on DNA sequence features in those elements

alone. This in itself is interesting and implies that the epigenomic

state of a DNA regulatory element primarily is specified by its

sequence. In addition, our predictions facilitate direct investigation

of how these elements function, either by targeted mutation of the

predictive elements within the larger regulatory region, or by

modulating the activity of the TFs which bind the predictive

sequence elements. We are currently using changes in the gkm-

SVM score to systematically evaluate the predicted impact of

human regulatory variation (single nucleotide polymorphisms

(SNPs) or indels) to interpret significant SNPs identified in genome

wide association studies. We demonstrated that gkm-SVM is

better at predicting all ENCODE ChIP-seq data than the best

single PWM found from the ChIP-seq regions, or previously

known PWMs. The gkm-SVM is able to do so by integrating

cofactor sequences which may not be directly bound by the ChIP-

ed TF but facilitate its occupancy. To predict this ChIP-seq set

accurately required the improved accuracy of the gkm-SVM and

its ability to describe longer binding sites such as CTCF, which

were very difficult for our earlier kmer-SVM approach. We

recovered most of the cofactors found by traditional PWM

discovery methods, but we further show that these combinations of

cofactors are predictive in the sense that they are sufficient to

define the experimentally bound regions.

There are some further issues that need to be considered in the

application of these methods. First, one will typically be interested

in finding an optimal set of the parameters (l and k) to achieve the

best classification performance. A significant advantage of gapped

k-mer methods over k-mer methods is that they are more robust

Gapped k-mer SVM for Regulatory Elements
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and are less sensitive to the particular choices of l or k compared to

kmer-SVM or NB classifiers, as shown in Figure 1 and Figure 4.

Nevertheless, these parameters can still be optimized to maximize

cross validation AUC. As a general rule, we have found that when

choosing the parameter k, which determines how different

numbers of mismatches are weighted, given a whole word length

l, smaller values of k (typically less than 8) are usually better when

important sequence elements are believed to be more degenerate

or when only small amount of training data is available. Although

the choice of k directly affects the feature set, our analysis of

several datasets shows that the overall performance of the classifier

is not very sensitive to changes in k. The parameter l is directly

related to TFBS lengths and should be comparable to or slightly

larger than the longest important feature, as demonstrated by our

analysis of the CTCF and EP300 data sets in Figure 1 and

Figure 4.

Our approach also avoids an issue that would arise if one chose

instead to directly use Equation (5) for computing count estimates.

This would involve a large number of floating point operations,

and accumulated round-off error could become significant in the

large summations. There are some algorithms, such as Kahan

compensated summation [29], which can significantly reduce this

error, however, we explicitly avoided evaluating this sum by first

computing the mismatch profiles between sequences, which

involves only integer calculations. Then, we calculate the weighted

sum of the number of mismatches using Equation (11), which

involves a much smaller number of floating point operations.

Two issues which are left for future investigation are different

treatment of end vs. internal gaps, and allowing imperfect

mismatches. We currently do not make special consideration for

gaps which occur at the end of a k-mer instead of internal gaps.

Also, our implementation of a mismatch treats all nucleotides

equally, but often TF binding sites can prefer an A or T in a given

position, or a purine vs. pyrimidine pair. Our approach recovers

these preferences by assigning different weights to k-mers which do

not have gaps at these positions, but including a wider alphabet

including (W,S,Y,R) for (AT,GC,AG,CT) may have some

advantages.

Throughout this paper, we have focused on using DNA

sequences as features for classifying the molecular or biological

function of a genomic region. However, in principle, our method

can be applied to any classification or prediction problem

involving a large feature set. In general, when the number of

features used by a classifier increases, the number of samples in the

training set for each point in the feature space becomes smaller,

and small sample count issues occur (which we have resolved using

gapped k-mers). One approach to the large feature space is feature
selection, which selects a subset of features and builds a classifier

only using those features, ignoring all the other features. However,

usually a limited subset of features cannot explain all the variation

in the predicted quantity. While hypothetical at this point, our

analysis suggests that an alternative approach might be of general

value. Analogous to the way we have used gapped k-mers to more

robustly estimate k-mer feature frequencies, we speculate that

there may be a general approach which uses subsets of a larger

feature set to combine observed feature counts with weights

reflecting the similarity to some generalized feature. These

estimated feature frequencies will be less susceptible to statistical

noise by construction, and thus may provide consistently better

classification performance, as we have shown for gapped k-mers.

Methods

Support Vector Machine
The Support Vector Machine (SVM) [30,31] is one of the most

successful binary classifiers and has been widely used in many

classification problems. We have previously developed an SVM

based framework, or ‘‘kmer-SVM’’, for enhancer prediction and

Figure 4. Gapped k-mer features also improve performance of Naı̈ve-Bayes classifiers. Naı̈ve-Bayes classifiers were trained on (A) CTCF
bound and (B) EP300 bound genomic regions using different word lengths, k, using both actual k-mer counts (dashed), and estimated k-mer counts
from the gkm-filter (solid). As shown above for SVM, the Naı̈ve-Bayes accuracy as measured by AUC is systematically higher using gapped k-mer
estimated frequencies instead of actual k-mer counts, further supporting the utility of gapped k-mer based features. For CTCF the Naı̈ve-Bayes AUC is
comparable to the best SVM (dotted red lines), but for EP300 the SVM outperforms the Naı̈ve-Bayes classifier.
doi:10.1371/journal.pcbi.1003711.g004
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have successfully applied to embryonic mouse enhancers [3] and

many other regulatory datasets [6,20]. Briefly, our kmer-SVM

method finds a decision boundary that maximally discriminates a

set of regulatory sequences from random genomic non-regulatory

sequences in the k-mer frequency feature vector space. Here, we

developed new kernel functions using gapped k-mers and l-mer

count estimates as features, and software that calculates the kernel

matrix. For SVM training, we developed a custom Python script

that takes the kernel matrix as input and learns support vectors.

We used Shogun Machine Learning Toolbox [32] and SVM-light

[33] for the SVM training script. As an alternative method, we

also implemented an SVM classifier based on the iterative

algorithm described in Ref. [34].

Direct computation of Gkm-kernel
For direct computation of the gkm-SVM kernel matrix, we

represent each training sequence with a list of l-mers and

corresponding count for each l-mer. Then for each pair of

sequences, we compute the number of mismatches for all pairs of l-
mers and use the corresponding coefficient hm to obtain the inner

product of Equation (3). As the number of unique l-mers in each

sequence is L and the number of sequences is N, this algorithm

would require O(N2L2) comparisons. In addition, a naive

algorithm for counting the number of mismatches between two

l-mers (i.e. the hamming distance) would be O(l). Our implemen-

tation employs bitwise operators, providing a constant-factor

speedup. Briefly, using two bits to represent each base (A,C,G and

T), we used an integer variable to represent non-overlapping

substrings of t base pairs of the l-mer, therefore using total ql

t
r

integers to represent each l-mer, where q:r is the ceiling function.

For counting the number of mismatches, we take the bitwise XOR

(exclusive OR) of the integer representations of the two l-mers and

use a precomputed look-up table to obtain the total number of

mismatches using the XOR result. This method requires a look-up

table of size 22t. The optimal value of t depends on the processor

architecture and amount of cache memory. We used t = 6 for our

analysis.

Gkm-kernel with k-mer tree data structure
As depicted in Figure 5, we use a k-mer tree to hold all the l-

mers in the collection of all of the sequences. We construct the tree

by adding a path for every l-mer observed in a training sequence.

Each node ti at depth d represents a sub-sequence of length d,

denoted by s(ti), which is determined by the path from the root of

the tree to the node ti. Each terminal leaf node of the tree

represents an l-mer, and holds the list of training sequence labels in

which that l-mer appeared and the number of times that l-mer

appeared in each sequence. As an example, Figure 5 shows the

tree that stores all the substrings of length l = 3 in three sequences

S1 = AAACCC, S2 = ACC, and S3 = AAAAA. Then, to evaluate

the mismatch profile we traverse the tree in a depth-first search

(DFS) [35] order. In contrast to the mismatch tree used in Ref. [8],

here for each node ti, at depth d, we store the list of pointers to all

the nodes tj at depth d for which s(ti) and s(tj) have at most l – k
number of mismatches. We also store the number of mismatches

between s(ti) and s(tj). Similar to the mismatch tree [8], we do not

need to store these values for all the nodes in the tree, but we

compute them recursively as we traverse the tree. When reaching

a leaf node, we increment the corresponding mismatch profile

Nm(Si, Sj) for each pair of sequences Si in that leaf node’s sequence

list, and all the Sj’s in the list of sequences in the pointer list for that

leaf node. At the end of one DFS traversal of the tree, the

mismatch profiles for all pairs of sequences are completely

determined.

To increase the speed further, we also introduce an optional

parameter mmax, which limits the maximum number of

mismatches. By setting mmax smaller than l – k, we only consider

l-mer pairs that have at most mmax number of mismatches. This

can reduce calculation significantly by ignoring l-mer pairs which

potentially contribute less to the overall similarity scores. This

method provides fast and efficient approximations of the exact

solution. In addition, we only compute the lower triangle of the

matrix because of the symmetry in the kernel matrix. Hence, at

each node ti, we exclude the nodes tj in the list that have

maxID(ti),minID(tj), where minID(ti) and maxID(tj) are the

maximum and minimum sequence ID in the subtrees of ti and tj
respectively and are computed and stored for each node at the

time we build the tree.

Analysis of de novo PWMs from gkm-SVM
We developed a new method for building de novo PWMs by

systematically merging the most predictive k-mers from a trained

gkm-SVM. We first determined a set of predictive k-mers by

scoring all possible 10-mers and selecting the top 1% of the high-

scoring 10-mers. We then found a set of distinct PWM models

from these predictive 10-mers using a heuristic iterated greedy

algorithm. Specifically, we first built an initial PWM model from

the highest scoring 10-mer. Then, for each of the remaining

predictive 10-mers, we calculated the log-odd ratios of all possible

alignments of the 10-mer to the PWM model, and identified the

best alignment (i.e. the position and the orientation that give rise to

the highest log-odd ratio value). Since multiple distinct classes of

TFBSs are expected to be identified in most cases, we only

considered 10-mers with good alignments (i.e. we used threshold of

5.0 for log-odd ratio scores relative to a genomic GC = 0.42

background). After each of the 10-mers was aligned, we updated

the PWM model only with successfully aligned 10-mers. To

further refine the PWM, we repeated this by iterating through all

of the top 1% 10-mers until no changes were made. When

updating the PWM model, we assumed that the contribution of

each k-mer is exponentially weighted proportional to its SVM

score, using exp(a wi), with a= 3.0. The 10-mers used for creating

the 1st PWM were then removed from the list, and the process was

repeated on the remaining predictive k-mers, to find up to three

PWMs. Lastly, we matched our PWMs to the previously identified

PWMs [18] using TOMTOM [36] software. Each of the PWMs

identified by our method were associated with Ref. [18] PWMs if

the q-value (false discovery rate) ,0.05.

Implementation of mismatch and wildcard kernels using
gkm-kernel framework

In the gkm-kernel, we define the feature vector to consist of the

frequency of all the l-mers with exactly k known bases and l – k
gaps. In contrast, the wildcard kernel [9] also includes all the l-
mers with l – k wildcards, where l – k ranges from 0 to the

maximum number of wildcards allowed, M. Thus in the wildcard

kernel, the parameter M replaces k in our gkm-kernel. In the sum,

these are weighted by ll - k to penalize sequences with more

wildcards [9]. We derived an equation to directly compute the

inner products from the mismatch profiles without the need to

calculate the actual gapped k-mer counts. Here we show that a

similar approach can be used to calculate the wildcard kernel. We

derive a new set of coefficients hwc
lM (m) that can substitute hm, in

Equation (3). To evaluate hwc
lM (m) we only need to consider the

contribution of each pair of l-mers with m mismatches in the inner
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product of the corresponding feature vectors of the two sequences.

Equation (8) gives those weights:

hwc
lM (m)~

Xl

k0~l{M

ll{k0hlk0 (m)~
Xl

k0~l{M

ll{k0 l{m

k0

� �
ð8Þ

Using the above form allows us to directly use the fast

algorithms we have developed for calculation of the mismatch

profiles to calculate the wildcard kernels. Although there are

similarities between our tree algorithm and the tree algorithm

described in Ref. [9], there are some key differences. In the Ref.

[9], the algorithm literally transverses all the possible gapped l-
mers (with maximum M number of gaps) while our algorithm

takes advantage of the fact that the final inner product will only

depend on the number of pairwise mismatches and hence only

traverses all the l-mers that are present in the input data. Another

difference is that Ref. [9] uses a list of all partially matching l-mers

at each node of the tree, while we use a list of pointers to tree

nodes instead. So, for example, at the beginning of the algorithm

(at depth d = 0) they start with a large list consisting of all the

possible l-mers in the input data, while in our algorithm the list at

depth d = 0 consists of only one node (the root of the tree). Using

this representation of all the partially matching l-mers, we can

more efficiently perform the comparisons at each step of the

algorithm when the tree is dense.

In the mismatch string kernel described in Ref. [8] and [9], the

feature vectors consist of the counts for all the l-mers with

maximum distance M from the l-mers in the sequence. Here we

show that the approach above can be used to implement the

mismatch kernel. Again, the only difference is in the set of weights

used in Equation (3). To calculate the mismatch string kernel value

for two sequences we replace hlk(m) in Equation (3) by hmismatch
l,M (m):

hmismatch
lM (m)~

XM
m1~0

XM
m2~0

XM
t~0

l{m

t

 !
(b{1)t

m

r

 !
(b{2)r

m{r

m1{t{r

 !
ð9Þ

where b is the alphabet size (b = 4 for DNA sequences) and r = m1+
m22m22t. Given two l-mers x1 and x2 where x1 and x2 differ in

exactly m places, the term inside the summations counts the

Figure 5. Fast computation of mismatch profiles using k-mer tree structure. As an example, we use l = 3 and three sequences S1 = AAACCC,
S2 = AAAAA, and S3 = ACC to build the k-mer tree. The leaves (nodes at depth d = l = 3) correspond to 3-mers AAA, AAC, ACC, and CCC. The sequence
ID and the number of times each 3-mer appeared in each sequence are stored for each leaf. Each node ti at depth d represents a sequence of length
d, denoted by s(ti), which is determined by the path from the root of the tree to ti. For example, s(t2) = C and s(t4) = AC. DFS is started at the root node,
t0. When visiting each node ti, at depth d, we compute the list of all the nodes tj at depth d for which s(ti) and s(tj) have at most mmax mismatches. We
also compute the number of mismatches between s(ti) and s(tj). When reaching a leaf, we increment the corresponding mismatch profile Nm(Si, Sj) for
each pair of sequences Si in that leaf and Sj in the list.
doi:10.1371/journal.pcbi.1003711.g005
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number of all possible l-mers that exactly differ x1 in m1 places and

x2 in m2 places t of which fall in the common l-m bases of x1 and

x2. (See Figure S9). So the result of the summation is the number

of all l-mers that differ x1 and x2 in at most M places. This form for

the mismatch string kernel has the advantage that we can directly

use equation (3) to compute the kernels by only having the

mismatch profiles that can be computed more efficiently.

Gkm-filters for computation of the robust l-mer count
estimates

To compute the l-mer count estimates by using Equation (5),

one should first calculate the gapped k-mer counts, yi, and then use

Equation (5) to combine the yi with a weight corresponding to the

number of mismatches, given by Equation (6). This is shown

schematically in Figure S10. The mapping from observed l-mer

counts to gapped k-mer counts is performed by the matrix A,

whose elements are aij. If the gapped k-mer vi matches l-mer uj,

then aij = 1, otherwise aij = 0. There is a second matrix W, which

performs the mapping from gapped k-mer counts to estimated l-
mer counts, and whose elements are wij. In a previous work we

showed that matrix W is the Penrose-Moore pseudo-inverse of A
[7]. The element wij only depends on the number of mismatches

between the l-mer ui and the gapped k-mer vj, and is given by

Equation (6). Here we show that, for efficient computation, we can

combine the two mapping matrices, A and W, and directly

calculate the minimum norm l-mer count estimates from actual l-
mer counts in a sequence. We refer to this combined mapping as

the gkm-filter. The combined mapping matrix G = WA, has

elements gij, shown on the bottom of Figure S10. As shown

below, gij also only depends on the number of mismatches, m,

between the l-mers ui and uj. We denote these values by glk(m)

and refer to this as the gkm-filter since the domain and range of

this mapping is the same.

To obtain the element glk(m), that gives the weight for the

contribution of an observed l-mer ui in the training set to the

minimum norm l-mer count estimate uj that has exactly m
mismatches with ui, we sum over the contribution of all the

gapped k-mers vt that match ui. Note that aij = 0 for all other

gapped k-mers. There exist
l{m

k{t

� �
m

t

� �
different gapped k-

mers that match ui and have exactly m mismatches with uj. Figure

S11 shows how we enumerate all these gapped k-mers. The black

solid circles denote the m mismatch positions of ui and uj, the gray

circles denote the l – m match positions and the empty dotted

circles denote the l – k gap positions. For a gapped k-mer to have

exactly t mismatches with uj, there are
m

t

� �
ways to select the t

mismatch positions and
l{m

k{t

� �
ways to select the k – t match

positions. Now considering the weight w(t) for the gapped k-mers

with t mismatches, the gapped k-mer filter elements, glk(m) can be

obtained as follows:

glk(m)~
Xm

t~0

l{m

k{t

� �
m

t

� �
w(t) ð10Þ

In other words, there are
l{m

k{t

� �
m

t

� �
different ways we can

construct a gapped k-mer that matches ui, and has exactly t
mismatches with uj, by selecting t positions from the m mismatch

positions and k – t positions from the l – m match positions as

explained above (Figure S11). It can be easily shown that glk(m) is a

polynomial of degree k in m. Now using the weights given in

Equation (10), for any given l-mer, u we finally obtain the

minimum norm l-mer count estimate as follows:

x̂x~
Xl

m~0

Ntr(u,m)glk(m), ð11Þ

where Ntr(u, m) is the number of l-mers with exactly m mismatches

with u in the training set. For large values of l and k, the number of

all possible gapped k-mers gets exponentially large and since this

method avoids evaluating the gapped k-mer counts, it significantly

reduces the cost of calculating the l-mer count estimates compared

to the original method we developed in Ref. [7].

In summary, we defined a generalized k-mer count (referred to

as the robust l-mer count estimates) by giving a non-zero weight to

l-mers with few number of mismatches (In the conventional k-mer

count only perfectly matching k-mers are counted). These weights

are given by glk(m). Figure S12A shows the plots for glk(m) for

l = 20 and various values of k. Each plot is normalized so that

weight corresponding to zero mismatches is equal to one. The case

with l = k is equivalent to the conventional k-mer count. Also

Figure S12B shows glk(m) for k~6 and various values of l. With a

fixed length l, higher values of k result in smaller coefficients for

larger mismatches, and therefore less smoothing of the estimated

counts (Figure S12). Moreover, glk(m) can become slightly negative

for large numbers of mismatches. This is because in our estimation

of the frequencies we did not restrict the frequencies to be positive,

and doing so would yield a more complicated expression. The

assumed Gaussian distribution allows non-physical negative

frequencies to have non-zero probability. A beta-distribution

would not have this problem but would introduce offsetting

complications. In cases where the estimated counts are required to

be strictly positive, such as when we need to calculate the

logarithm or ratios of the estimated frequencies, we truncate the

gkm-filter glk(m) by setting glk(m) = 0 for every m$m0, where m0 is

the smallest number of mismatches for which glk(m0),0. This

will give an approximation to the value of x̂x in Equation (5), so it

will no longer strictly be the minimum norm estimate, but it will

guarantee that all the count estimates are non-negative.

Gkm-kernel with l-mer count estimates
Given a sequence S, we define an l-mer count estimate vector

f S~(x̂xS
1 ,x̂xS

2 , � � � ,x̂xS
N )> where N is the number of all l-mers (4l in

case of DNA sequences), and x̂xS
i is the estimated count of the ith l-

mer appearing in sequence S using Equation (11). Then, we can

calculate a standard linear kernel simply by using this vector in

Equation (1). Similar to the gkm-kernel method, we can further

simplify this equation using the same technique introduced in

Equation (2) which does not involve the computation of individual

l-mer estimates. We show that the inner product of the two l-mer

count estimate vectors can be obtained as follows:

Sf S1 ,f S2T~
Xn1

i~1

Xn2

j~1

c(u
S1
i ,u

S2
j ) ð12Þ

where n1 and n2 are the number of l-mers in S1 and S2, and u
S1
i is

the i’th l-mer in S1 and u
S2
j is the j’th l-mer in S2. If u1 and u2 have

exactly m mismatches then c(u1, u2) = cm. Grouping all the l-mer

pairs with m mismatches, we can rewrite Equation (12) as follows:

Gapped k-mer SVM for Regulatory Elements
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Sf S1 ,f S2T~
Xl

m~0

Nm(S1,S2)c‘k(m) ð13Þ

where Nm(S1, S2) is the mismatch profile of S1 and S2 as previously

defined in Equation (3). We show that the weight clk(m), denoted in

short by cm, can be obtained as:

cm~

X
m1

X
m2

X
t

l{m

t

 !
m

m1{t

 !
m1{t

r

 !
(b{1)t(b{2)rgm1

gm2

ð14Þ

where r = m1+m222t2m, b is the alphabet size. The summations

are taken over the range 0 to l. Figure S13 shows how we obtained

the equation for cm, similar to the previous development shown in

Figure S11. Given two l-mers u1 and u2, with m mismatches and l
– m matched positions, we want to enumerate the number of all

possible l-mers, u, that have m1 mismatches with u1 and m2

mismatches with u2. For this, we assume that t of the m1

mismatches are among the l – m match positions and m1 – t of

them are among the m mismatch positions. There are

l{m

t

� �
m

m1{t

� �
ways to choose these m1 positions and (b –

1)t choices for the values of the t mismatches. These t mismatches

plus the m2(m12t) unselected mismatch positions also do not

match u2. Then, for the remaining r = m22(t+m2(m12t))

mismatches for u2 there are
m1{t

r

� �
ways to select the positions

and (b – 2)r ways to select the values. Hence the total number of l-
mers, u with m1 mismatches with u1 and m2 mismatches with u2,

where t of the mismatches of u1 and u are among the l – m match

positions of u1 and u2 is given by
l{m

t

� �
m

m1{t

� �
m1{t

r

� �
(b{1)t(b{2)r.

Using matrix notation, we can further show that cm = gm if we

use the full filter glk(m). To see this, note that

Sf S1 ,f S2T~f S1>f S2~(Gx1)>Gx2~x1G>Gx2 where x1 and x2

are the l-mer count vectors for S1 and S2. Given G = WA, we have

G>G~(WA)>WA~WAWA~WA~G. Hence,

Sf S1 ,f S2T~x1Gx2. Here A is the binary incidence matrix that

maps l-mer counts to gapped k-mer counts as defined in Ref. [7]

and W is the Moore-Penrose pseudo-inverse of A. Note that this

result does not hold for the truncated filter gm. In that case, we

directly use Equation (14) to obtain cm coefficients.

ROC curves
To compare the performance of different classification methods,

we calculated the area under the receiver operating characteristic

(ROC) curve for each classifier. To plot the ROC curves and

calculate area under the curves (AUCs) we used the ROCR

package [37] in R.

Cross validation
Following standard five-fold cross validation procedures, we

divided the positive and negative sets into five segments, left one

segment out as the test set and used the other four segments for

training. We repeated for all of the five segments and calculated

the mean and standard error of the prediction accuracy on the test

set elements.

ENCODE ChIP-seq datasets
The ENCODE ChIP-seq datasets were downloaded from ftp://

ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_

jan2011/byDataType/peaks/jan2011/spp/optimal/hub/.

Implementation and source code
We have implemented these algorithms in C++, and the source

code and executable files are available on our website at http://

www.beerlab.org/gkmsvm/.

Supporting Information

Figure S1 PWM model for CTCF binding sites. CTCF

specifically binds to a set of very long sequences via its eleven zinc

finger domains, which can be effectively modeled by a PWM. This

CTCF logo was directly obtained from the JASPAR database [38]

(available at http://http://jaspar.cgb.ki.se/).

(PDF)

Figure S2 Classification results for CTCF binding using
the CTCF PWM. The CTCF bound regions and the

corresponding negative regions were scored by the CTCF PWM

and the best log-odd score for each sequence was then used to

calculate the ROC curve. Extremely high AUC was achieved,

indicating that CTCF binding is well-modeled by the PWM.

(PDF)

Figure S3 Precision of gkm-SVM is significantly higher
than kmer-SVM. To extrapolate to larger negative sets, we re-

trained both gkm-SVM and kmer-SVM on each of the positive

data sets (CTCF and EP300) against a 106 larger negative set. We

independently selected the parameter l and k which exhibited the

best performance when trained on the 16negative set as shown in

Figure 2C and D. We additionally applied mmax = 3 for efficient

computation of the gkm-kernel matrix. In contrast to standard 5-

fold cross validation, we scored a much larger negative set (1006) to

obtain more realistic precision recall curve (similar to genome-wide

prediction), and plotted ROC curves (A and B), and Precision-

Recall (PR) curves (C and D). In all cases, gkm-SVM significantly

outperforms kmer-SVM, although the difference is much smaller

for EP300. At recall = 50%, gkm-SVM for CTCF achieves 59% of

precision while kmer-SVM achieved only 36%, suggesting that

gkm-SVM has an almost two-fold lower false discovery rate. Even

for EP300, the precision of gkm-SVM at recall = 50% is significantly

higher than kmer-SVM (35% vs. 28%).

(PDF)

Figure S4 gkm-SVM is generally more robust than
kmer-SVM. We calculated standard deviation (SD) of the AUCs

from the test CV sets for both gkm-SVM and kmer-SVM. In most

cases, gkm-SVM AUC SD is significantly smaller than kmer-SVM

AUC SD.

(PDF)

Figure S5 de novo PWMs from gkm-SVMs trained on
the 467 ENCODE ChIP-seq data sets. The name of the best

matching known PWM (from Wang et al.) was assigned to each of

the PWMs.

(PDF)

Figure S6 Classification results on the mouse forebrain
EP300 data set with various methods. For each of the

methods, we examined combinations of the parameters and

measured AUCs with 5-CVs. Red dash-dotted line in each plot

denotes the best AUC achieved by gkm-kernel with l = 9 and k = 6.

(A) Mismatch kernel for k = 6,12 and m = 1,2 using original

implementation. Note that we obtained the kernel of (k, m) = (6, 2)
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using our implementation due to the prohibitive computing time

of the original method. (B) The previous experiments were

repeated using our new implementation with the ‘‘adding reverse

complement sequences option’’ enabled. (C) Wildcard kernel for

k = 6,12 and m = 1,3 with l = 1. Note that we obtained the

kernels with k = 6, m = 2,3 using our implementation. (D) The

previous experiments were repeated using our new implementa-

tion with the reverse complement sequence option enabled. (E) di-

mismatch kernels for k = 6,10 and m = 1,3. (F) The previous

experiments using only the top 1000 most discriminative features

as recommended in the original study.

(PDF)

Figure S7 Comparisons of running times between
different methods. (A) gkm-kernel, (B) mismatch-kernel, (C)

wildcard-kernel, and (D) di-mismatch kernel. For mismatch and

wildcard we also show results using our tree structure (dashed). For

consistency, we used a single machine equipped with Intel Core i5-

2410M (2.30 GHz) processor and 6 GB RAM, except di-

mismatch kernels. Due to the prohibitive memory requirement

of the di-mismatch kernels for large k, we separately measured the

running times on different machines.

(PDF)

Figure S8 Comparison of different filters in gkm-SVM
on human ENCODE ChIP-seq data sets. We compared the

performance of the gkm-SVM using the gapped kmers as features

(gkm-SVM) to gkm-SVM using l-mer count estimates (A) with

truncated gkm-filter and (B) with full gkm-filter. We used l = 10

and k = 6 for all the methods. Those data sets where using the

truncated-filter gives higher AUCs are marked as purple circles.

The truncated filter method is marginally but systematically better

when AUC is greater than 0.9.

(PDF)

Figure S9 Deriving the weights for calculation of the
mismatch kernel using Equation (3). x1 and x2 differ in m

places. u differs x1 in m1 places and x2 in m2 places. t of the u

mismatch places are among the l – m ,x1, x2 common places.

There are
l{m

t

� �
(b{1)t m

r

� �
(b{2)r m{r

m1{(rzt)

� �
such l-

mers as u. We sum over all 0#m1, m2, t#M.

(PNG)

Figure S10 Block diagrams of the proposed method for
the gkm-filter. (Top) Gapped k-mer counts are obtained from l-
mer counts in the training set. Then minimum norm l-mer count

estimates are obtained from the gapped k-mer counts. The aij’s are the

elements of the incidence matrix, A, that maps the l-mer counts in the

training set to the gapped k-mer counts. aij = 1 if gapped k-mer vi

matches l-mer uj and is zero otherwise. wij’s are the elements of the

matrix W (the pseudo-inverse of A) mapping gapped k-mer

frequencies to estimated l-mer frequencies. (Bottom) We combine

the two mapping matrices A and W to directly calculate the minimum

norm l-mer count estimates from the l-mer counts in the training set.

gij’s are the elements of matrix G mapping the l-mer counts in the

training set to the minimum norm l-mer count estimates.

(PNG)

Figure S11 Enumeration of gapped k-mers with exactly
t mismatches. Given the l-mers ui and uj, the number of

different ways we can construct a gapped k-mer that matches ui,

and has exactly t mismatches with uj is
l{m

k{t

� �
m

t

� �
, since

there are
m

t

� �
ways to select the t mismatch positions and

l{m

k{t

� �
ways to select the k – t match positions. The black solid

circles denote the m mismatch positions of ui and uj, the gray

circles denote the l – m match positions, and the empty dotted

circles denote the l – k unselected (gap) positions.

(PNG)

Figure S12 Plot of glk(m). Plot of the normalized filter

function glk(m) for (A) l = 20 and various values of k and (B) k = 6

and various values of l.
(PNG)

Figure S13 Enumeration of l-mers with m1 and m2

mismatches. Given two l-mers u1 and u2, with m mismatches

and l – m matched positions, we want to enumerate the number of

all possible l-mers, u9, that have m1 mismatches with u1 and m2

mismatches with u2. For this, we assume that t of the m1

mismatches are among the l – m match positions and m1 – t of

them are among the m mismatch positions. There are

l{m

t

� �
m

m1{t

� �
ways to choose these m1 positions and

(b{1)t choices for the values of the t mismatches. These t
mismatches plus the (m2(m12t)) unselected mismatch positions

are also mismatches for u2. For the remaining r = m22(t+m2(m12

t)) mismatches for u2 there are
m1{t

r

� �
ways to select the

positions and (b{2)r ways to select the values. Hence the total

number of l-mers, u9, with m1 mismatches with u1 and m2

mismatches with u2, where t of the mismatches of u1 and u9 are

among

the (l – m) match positions of u1 and u2 is given by

l{m

t

� �
m

m1{t

� �
m1{t

r

� �
(b{1)t(b{2)r.

(PNG)

Text S1 Numerical example.

(PDF)
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