
Aranguren and Wilkinson GigaScience (2015) 4:59

DOI 10.1186/s13742-015-0092-3

TECHNICAL NOTE Open Access

Enhanced reproducibility of SADI web
service workflows with Galaxy and Docker
Mikel Egaña Aranguren1,3* and Mark D. Wilkinson2

Abstract

Background: Semantic Web technologies have been widely applied in the life sciences, for example by data

providers such as OpenLifeData and through web services frameworks such as SADI. The recently reported

OpenLifeData2SADI project offers access to the vast OpenLifeData data store through SADI services.

Findings: This article describes how to merge data retrieved from OpenLifeData2SADI with other SADI services using

the Galaxy bioinformatics analysis platform, thus making this semantic data more amenable to complex analyses. This

is demonstrated using a working example, which is made distributable and reproducible through a Docker image that

includes SADI tools, along with the data and workflows that constitute the demonstration.

Conclusions: The combination of Galaxy and Docker offers a solution for faithfully reproducing and sharing complex

data retrieval and analysis workflows based on the SADI Semantic web service design patterns.

Keywords: Semantic Web, RDF, SADI, Web service, Workflow, Galaxy, Docker, Reproducibility

Background
The Semantic Web is a ‘third-generation’ web in which

information is published directly as data, in machine-

processable formats [1]. With the Semantic Web, the web

becomes a ‘universal database’, rather than the collection

of documents it has traditionally been. As a consequence,

on the Semantic Web information is retrieved by directly

querying the data, rather than parsing documents, leading

to more accurate results. Furthermore, automatic agents

can browse the data, finding information and generat-

ing new hypotheses that would be difficult to generate

for a human user alone. Though the Semantic Web is

not yet pervasive, it has been deployed extensively in the

life sciences, where Semantic Web technologies are used

to integrate data from different resources with disparate

schemas [2]. The Semantic Web is made possible through

a set of standards proposed by the WWW Consortium,

including the following:

*Correspondence: mikel.egana.aranguren@gmail.com
1Genomic Resources, Department of Genetics, Physical Anthropology and

Animal Physiology, Faculty of Science and Technology, University of Basque

Country (UPV/EHU), Sarriena auzoa z/g, 48940 Leioa – Bilbo, Spain
3Eurohelp Consulting, Maximo Aguirre 18, 48011 Bilbo, Spain

Full list of author information is available at the end of the article

• Resource Description Framework (RDF). RDF is a

machine-readable data representation language based

on the ‘triple’, that is, data is codified in a

subject–predicate–object structure (e.g. ‘Cyclin

participates in Cell cycle’, Fig. 1), in which the

predicate and object (‘participates in’ and ‘Cell cycle’,

respectively) describe a property of the subject

(‘Cyclin’) [3]. In RDF, it is common for entities to be

the object of one triple and the subject of another

triple. Thus triples can be connected to one another.

A collection of connected triples is called a graph,

and graphs are commonly stored in triple stores to

facilitate their query and exploration, where the

triples tore is akin to a database.
• SPARQL Protocol and RDF Query Language

(SPARQL). SPARQL is a query language to extract

data from RDF graphs [4].
• Web Ontology Language (OWL). OWL is a

knowledge representation language for making

assertions about the interpretation of data using

axioms that facilitate the application of automated

reasoning (e.g. ‘A protein participates in at least one

biological process’) [5]. Therefore, OWL is used to

create ontologies that codify the consensus of a

community about their knowledge domain. In an

© 2015 Aranguren and Wilkinson. Open Access This article is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13742-015-0092-3-x&domain=pdf
mailto: mikel.egana.aranguren@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Aranguren and Wilkinson GigaScience (2015) 4:59 Page 2 of 9

Fig. 1 RDF triple. The predicate (‘participates in’) goes from subject (‘Cyclin’) to object (‘Cell cycle’)

OWL ontology, there are several different types of

entities: individuals are the actual instances of data

(e.g. ‘Cyclin’, ‘Mark’, or ‘Madrid’); properties link

individuals to one another (e.g. ‘Mark lives in

Madrid’); and classes are combinations of logical

axioms and properties that make the distinction

between one kind of individual and another (e.g.

‘Protein’ or ‘Human’). Finally, individuals are assigned

to a class based on the logical match between their

properties, and on the class definition: for example,

‘Mark’ is a ‘Human’, because it lives in a city, and

‘Cyclin’ is a ‘Protein’, because it participates in at least

one biological process.

The backbone of the Semantic Web is the fact that Uni-

form Resource Identifiers (URIs) [6] are used to identify

all entities (OWL classes, instances, and properties, and

RDF subjects, predicates, and objects). This allows one to

refer to entities located in external resources on the web:

for example, in an RDF triple, the subject might be indi-

cated by a URI from one resource and the predicate and

object by a URI from a different resource.

The most widely used principles for publishing Seman-

tic Web data are those that have emerged from the Linked

Data community. The core Linked Data principles are

(adapted from [7, 8]):

1. Identify every data item (entity or relationship) with

a URI.

2. Make those URIs Hypertext Transfer Protocol

(HTTP) resolvable, that is, when the URI is requested

a document containing information about the entity

can be obtained.

3. Provide the information using an open formatting

standard when an entity is requested by HTTP. The

format provided should be determined by HTTP

content negotiation between the client and the server

(e.g. RDF for an automatic agent, or Hypertext

Markup Language (HTML) for a human user), so

that the entity and its representations are decoupled.

Importantly, the RDF format should always be

available.

4. Ensure, to the greatest extent possible, that the

information provided by URI resolution contains

typed relations to other entities, so that the agent can

traverse those relations to discover new information,

analogously to how humans browse the web.

Linked Data has demonstrated clear value as a means

of data publication in a machine-readable and web-

resolvable fashion, opening up new possibilities for data

discovery and integration [9]. As a result, significant life

sciences data providers have implemented Linked Data

solutions for their resources, including UniProt [10], EBI

RDF [11], and OpenLifeData [12], each of which con-

tributes to the growth of the Linked Open Data cloud

[13].

In addition to data representation, Semantic Web stan-

dards have also been applied to analytical tools, for exam-

ple through the creation of Semantic Web services. The

Semantic Automated Discovery and Integration (SADI)

design pattern [14] is unique among the Semantic Web

service initiatives in that SADI presumes that all data is

(or eventually will be) Linked Data, and therefore SADI

services process Linked Data natively. SADI makes it

possible to retrieve data in exactly the same way, from

every service, without the overhead that other web ser-

vice technologies demand: with SADI services, RDF data

is passed to a service, verbatim and without any mes-

sage scaffolding, by HTTP POST; the response is the

same data ‘decorated’ with new RDF triples, making inte-

gration and consumption of the data (even with other

tools) straightforward. Recently, the OpenLifeData2SADI

project has implemented the SADI principles to expose

the more than 6 billion linked data points in the Open-

LifeData warehouse, providing automatically discoverable

access to each data point via one of several thousand SADI

services [8].

This article shows how to combineOpenLifeData2SADI

data retrieval services with SADI analytical services,

using off-the-shelf tools from the popular Galaxy bioin-

formatics platform [15], provided as a Docker image.

Additionally, a worked example is provided as a ready-

to-use exemplar of data and an appropriate workflow,

making the procedure trivially reproducible computa-

tionally (with Docker) and functionally (with Galaxy).

This approach provides multiple advantages, not the

least of which is that this easy reproducibility allows the

potential for third parties to explore a wide variety of

modifications.

Aranguren and Wilkinson GigaScience (2015) 4:59 Page 3 of 9

Findings
Technical elements

SADI services

SADI is a set of design patterns based on Semantic Web

standards for providing web services. It does not define

any new technology or schema, nor even a message-

passing infrastructure. Instead, it uses off-the-shelf, well-

established technologies and formats (URI, RDF, and

OWL) to provide all of its discoverability and interoper-

ability features. In a SADI service, the data the service

consumes is defined by anOWL class: the client uses auto-

mated reasoning to infer whether the RDF it possesses is a

member of that OWL class, and if so, the client may sim-

ply HTTP POST the RDF to the service. Once the service

has processed the input, it creates an output Linked Data

graph by connecting the input RDF subject node to addi-

tional triples generated by the analytical algorithm of the

service. Effectively, SADI services produce new chains of

Linked Data [8].

OpenLifeData2SADI

The Bio2RDF project captures existing data from numer-

ous life sciences providers and republishes it with nor-

malized URIs and Linked Data support [16]. In turn,

the OpenLifeData project reformats Bio2RDF data and

enhances its content negotiation functionality. On top of

this, OpenLifeData2SADI offers access to OpenLifeData

through a set of automatically generated SADI services

[8]. This semantically rich OpenLifeData can be discov-

ered and retrieved in a consistent and predictable manner,

by a machine, simply by calling the appropriate SADI ser-

vice. Importantly, the retrieved RDF can then be easily

integrated with other Linked Data from any source.

Galaxy

Galaxy is a web server that offers an infrastructure within

which biologists can analyze data via a consistent web

interface (Fig. 2). A history of the tasks performed is

stored so that workflows with common steps can be

extracted from the history and rerun independently. The

most common bioinformatics tools are already included

in the Galaxy distribution, and new tools can be cre-

ated by simply wrapping command line executables in

Galaxy-compliant eXtensible Markup Language (XML)

files. There are many public Galaxy servers, and Galaxy

can also be installed privately.

Docker

Docker [17] is a virtualization engine and runtime system.

The key difference from a virtual machine is that a Docker

Fig. 2 The Galaxy main interface (reproduced with permission from [19]) Galaxy is a web server with several different interfaces: ‘Analyze data’,

‘Workflow’, ‘Shared data’, etc. The main interface, ‘Analyze data’ (shown here), is where data is analyzed with different tools (left column) and a

history is recorded (right column), so that workflows can be extracted (they will appear in the ‘Workflow’ interface). In ‘Shared data’, histories, data,

and workflows can be shared between users and/or published

Aranguren and Wilkinson GigaScience (2015) 4:59 Page 4 of 9

image shares resources with the host operating system

(OS), making images lighter (in the case where the host

is a GNU/Linux system). Containers can be run, with the

Docker engine, from predefined images. Docker Hub [18],

a repository of images, is also available, so a developer

can build an image with the desired computational envi-

ronment (OS, libraries, configuration), software, and data,

starting from a pre-existing image (e.g. Ubuntu 14.04),

which is then deployed back to the repository. Then any-

one can retrieve this customized image and run it as a con-

tainer, including the new software, without configuration

or installation.

Worked example

Merging OpenLifeData2SADI and SADI services in a single

workflow

An example workflow shows how OpenLifeData2SADI

and the archetypal SADI analytical services can bemerged

(Figs. 3 and 4). This workflow, while novel, builds upon

the workflows presented in [8, 19].

The workflow answers the following question: Given

a set of UniProt proteins, which ones are related to

PubMed abstracts containing the term ‘brain’, and what

are their Kyoto Encyclopedia of Genes and Genomes

(KEGG) [20] entries? The workflow starts from a sim-

ple list of UniProt identifiers, and retrieves different

datasets from a regular SADI service (to obtain KEGG

entries) and a chain of three OpenLifeData2SADI ser-

vices (to obtain PubMed abstracts). The results are then

merged and queried to obtain the KEGG entries of pro-

teins that are related to PubMed abstracts that contain

the term. The workflow involves five steps, explained as

follows.

1. Obtain a list of UniProt identifiers of interest. This

can be done, for example, by simply uploading the list

from a local computer or importing it directly to Galaxy

from Biomart [21]:

Q03164

Q9UKA4

Q8TDM6

Q9NQT8

Q12830

Q9HCM3

Q8TF72

Q5H8C1

Q9UGU0

B2RWN9

A4UGR9

...

2. Convert the input to RDF. For data to be consumed

by the SADI services, it needs to be converted to RDF.

Additionally, an rdf:type triple must be added to each

identifier that asserts the OWL input class of each SADI

service, producing two different inputs from the same list

of UniProt identifiers. The triple

<Uniprot identifier> rdf:type
http://purl.oclc.org/SADI/LSRN/UniProt_
Record is added for the service to retrieve KEGG entries

(getKEGGIDFromUniProt), resulting in the following

RDF:

<?xml version="1.0" encoding="utf-8"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/

02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://openlif

edata.org/uniprot:Q03164">

<rdf:type rdf:resource="http://purl.oclc.

org/SADI/LSRN/UniProt_Record"/>

</rdf:Description>

<rdf:Description rdf:about="http://openlife

data.org/uniprot:Q9UKA4">

<rdf:type rdf:resource="http://purl.oclc.

org/SADI/LSRN/UniProt_Record"/>

</rdf:Description>

<rdf:Description rdf:about="http://openlif

edata.org/uniprot:Q8TDM6">

<rdf:type rdf:resource="http://purl.oclc.

org/SADI/LSRN/UniProt_Record"/>

</rdf:Description>

...

Fig. 3 Conceptual representation of example workflow. The workflow starts from a set of UniProt identifiers and obtains information from

OpenLifeData SADI services and regular SADI services. The output is merged into a single dataset and queried

Aranguren and Wilkinson GigaScience (2015) 4:59 Page 5 of 9

Fig. 4 Screenshot of the actual Galaxy workflow that implements the general idea described in Fig. 3. The workflow executes two groups of SADI

services, and therefore the input UniProt identifiers must be converted into two RDF datasets, but the first steps of the process are shared (from

‘Convert’ to ‘Cut’). Then the appropriate RDF triple is added to each UniProt identifier (after ‘cut’, from ‘Add column’ to ‘RDF Format’, twice) and SADI

services are called (‘SADI client’). The output of the SADI services and the input RDF are merged into a single graph (‘Merge RDF Graphs’), which is

then queried (‘Execute an SPARQL query against an RDF file’), producing the results in Tab Separated Values (TSV) format and HTML format

The triple

<Uniprot identifier> rdf:type

http://openlifedata.org/uniprot_vocabulary:

Resource

is added for OpenLifeData2SADI services, resulting in

the following RDF:

<?xml version="1.0" encoding="utf-8"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/

02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://openlif

edata.org/uniprot:Q03164">

<rdf:type rdf:resource="http://openlifeda

ta.org/uniprot_vocabulary:Resource"/>

</rdf:Description>

<rdf:Description rdf:about="http://openli

fedata.org/uniprot:Q9UKA4">

<rdf:type rdf:resource="http://openlifeda

ta.org/uniprot_vocabulary:Resource"/>

</rdf:Description>

...

3. Send the appropriate input to services. Each of the

RDF inputs is sent to the appropriate OpenLifeData2SADI

service (three services in a row) and to getKEGGIDFro-

mUniProt.

4. Merge the outputs and the inputs into a single RDF

graph. Because SADI services track their data inputs by

way of the incoming subject URIs (new predicates and

objects are added to the input URIs, while maintaining the

URIs for the output), the outputs of the services are imme-

diately merged with the inputs into a single graph, with no

additional action required.

5. Query the merged graph with SPARQL. In this case,

the UniProt entries from the input set that are mentioned

in a PubMed abstract containing the term ‘brain’ and their

respective KEGG entries are retrieved with the following

query (Fig. 5):

PREFIX rdf: <http://www.w3.org/1999/02/22-

rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/

rdf-schema#>

PREFIX sadi: <http://sadiframework.org/

ontologies/predicates.owl#>

PREFIX lsrn: <http://purl.oclc.org/SADI/

LSRN/>

SELECT ?protein ?label ?KEGG WHERE {

?protein rdf:type lsrn:UniProt_Record .

?protein sadi:isEncodedBy ?KEGG .

Aranguren and Wilkinson GigaScience (2015) 4:59 Page 6 of 9

Fig. 5 The result of the workflow is a list of PubMed abstracts containing the term ‘Brain’, with related proteins and KEGG entries (‘@en’ refers to the

fact that the abstract is in english language). The result can be displayed as HTML, for browsing the actual resources in their web pages, or TSV, for

downstream analysis in Galaxy

?protein ?prot2hgnc ?hgnc .

?hgnc ?hgnc2omim ?omim .

?omim ?omim2pubmed ?pubmed .

?pubmed rdfs:label ?label .

FILTER (regex (?label, ’brain’))

}

Reproducing the workflow through Galaxy and Docker

The Docker image contains the developed tools, depen-

dencies, and running environment [22]. The image is

based on the base image Ubuntu:14.04, and it installs,

through apt-get, all the necessary libraries. The image

also copies, from the path in which it is built, the SADI

client and related tools. All the Docker commands that

build the image can be found in the following Docker file:

FROM ubuntu:14.04

MAINTAINER Mikel Egaña Aranguren <megan

a@eurohelp.es>

Install the necessary stuff with apt-get

RUN apt-get update && apt-get install -y

wget python python-setuptools \

raptor2-utils libraptor2-0

apt-get install python-rdflib is not

working so use easy_install instead

RUN easy_install rdflib

SADI does not like OpenJDK so install

Java from http://www.duinsoft.nl

RUN wget http://www.duinsoft.nl/pkg/pool/

all/update-sun-jre.bin RUN sh update-sun

-jre.bin

Copy the SADI client and related tools to

/sadi/

RUN mkdir /sadi

COPY sadi_client.jar /sadi/

COPY RDFSyntaxConverter.jar /sadi/

COPY __init__.py /sadi/

COPY MergeRDFGraphs.py/sadi/

COPY tab2rdf.py /sadi/

COPY sparql.py /sadi/

RUN chmod a+x /sadi/*
ENV PATH $PATH:/sadi

The image can be built by pasting the above instruc-

tions in a Docker file and runing docker build, but
more importantly, the image can be obtained from the

Docker central registry by docker pull (assuming a

GNU/Linux system with the Docker engine installed):

$ docker pull mikeleganaaranguren/sadi:v6

The Galaxy tools needed to invoke the executables of

the Docker image are:

• SADI client: a SADI client for synchronous SADI

services (adapted from [19]).
• RDFSyntaxConverter: a tool to convert between

different RDF syntaxes, including from RDF to TSV

files (adapted from [19]).
• MergeRDFgraphs: a tool to merge different RDF

graphs into one (adapted from [19]).
• SPARQLGalaxy: a tool to perform SPARQL queries

against RDF files (adapted from [19]).
• Rapper: a tool to convert RDF files to different

syntaxes.
• Tab2rdf: a tool to produce RDF files from TSV files.

These tools are available in the Galaxy Toolshed as a sin-

gle repository [23]. The workflow is also available in the

Toolshed [24] and in the SADI-Docker GitHub repository

[25]. Figure 6 shows the SADI-Docker tools after installa-

tion, and Fig. 7 shows the result of successfully executing

the use case workflow.
To run the workflow, the following steps should be

followed (detailed instructions can be found at the SADI-

Docker repository in GitHub):

1. Install the Docker image in the local Docker

repository, by pulling it.
2. Install Galaxy.
3. Install the SADI-Docker Galaxy tools (from the

Toolshed or manually).

Aranguren and Wilkinson GigaScience (2015) 4:59 Page 7 of 9

Fig. 6 Galaxy server interface showing SADI-Docker tools. The tools are available on the left column of the Galaxy interface, under ‘Docker SADI

services’: clicking on any of them will show a menu that can be used to invoke the tool

4. Upload the test dataset provided in the SADI-Docker

GitHub repository, with the UniProt IDs, to Galaxy.

5. Import the workflow (from the Toolshed or

manually) and run it, providing the test dataset as the

input for the first step of the workflow.

Discussion

Data integration andmanipulation through RDF and SADI

Accessing Linked Data is typically accomplished by

retrieving the content of a URL or by composing

SPARQL CONSTRUCT queries over a static triples tore.

SADI therefore adds considerable power to the current

Semantic Web infrastructure by adding analytics and

dynamic content to this milieu. Because SADI has no API

(beyond standard HTTP GET and POST), it is easily inte-

grated into other Linked Data tools and environments.

Moreover, accessing and chaining SADI services simply

involves passing RDF data from one tool to the next. The

output from these chains of services is an unbroken chain

of RDF that can be queried using SPARQL, as with any

other Linked Data.

The RDF data model used by SADI is easily constructed

from other, often non-standardized, formats such as TSV

by a simple mapping process. Similarly, the output from

SADI services can be transformed into non-RDF formats

using custom mapping tools or, for example, standard

XML stylesheet transforms. Therefore creating Galaxy

tools that work with SADI data and services is relatively

straightforward, andmany tools are available ‘off the shelf ’.

Finally, because SADI services work natively with RDF

data, many (indeed most) of the URIs contained in the

output of the services are also URLs, i.e. they not only

identify but also locate entities on the web. As a conse-

quence, much of the final dataset is ‘clickable’, sending the

user directly into the source dataset’s website (e.g. Open-

LifeData or KEGG URLs; see Fig. 5) – a user-friendly way

of enabling further exploration of results.

Reproducibility with Galaxy and Docker

Computational reproducibility is becoming an important

consideration in the life sciences [26, 27]. This use case

demonstrates a procedure by which Linked Data retrieval

and analysis workflows can be documented and published

in a completely reproducible fashion, by implementing

reproducibility at two levels:

1. Virtualization of the computational environment
(OS) through Docker. Docker allows encapsulation
of a complex environment with all the necessary data

and software [28]. In this case, an Ubuntu 14.04

image is shipped, with SADI and its dependencies

installed, which means that the user need only log

into the Galaxy instance that executes

Docker images.

Aranguren and Wilkinson GigaScience (2015) 4:59 Page 8 of 9

Fig. 7 Galaxy server interface showing history after workflow

execution. The history is available on the right column of the Galaxy

interface, and each line represents a step on the workflow (the green

color means that the step has successfully finished). Each step can be

re-run independently

2. Reproducibility of previously performed analyses
through Galaxy. Galaxy is a suitable environment for

executing SADI services in a reproducible manner,

because it provides an infrastructure in which the

workflow management, history, and provenance, and

data storage are pre-established [29]. This means that

any SADI-based analysis, if performed in a Galaxy

instance, is easily reproducible. For example, the

same workflow can be repeated every time

OpenLifeData is updated and the workflow can be

modified and/or fused with other workflows.

Conclusions
Using a SADI-Docker image invoked by Galaxy, data

manipulation and analysis processes can be described,

executed, published, shared, and reused with complete

transparency, and with little or no configuration required.

Because of the API-free, straightforward invocation

mechanism for SADI services, workflows can easily be

modified to accommodate new data or different contexts.

This then provides a tool for the distribution of case

implementations in multiplatform environments. The use

of the Galaxy interface additionally provides a single foun-

dation for integration of services, the construction of RDF

graphs, and their subsequent querying. The worked exam-

ple presented here provides a tangible illustration of the

use of Semantic Web constructs and standards for the

extraction of new information from disparate, indepen-

dent services, in a completely reproducible manner.

Availability and requirements
• Project name: SADI-Docker-Galaxy.
• Project home page: http://github.com/mikel-egana-

aranguren/SADI-Docker-Galaxy.
• Operating system: any OS, as long as Docker is

installed.
• Programming languages: Go, Java, and Python.
• Other requirements: Docker, Galaxy.
• License: General Public License (GPL).

Availability of supporting data
The data supporting the results of this article are available

as a workflow in the Galaxy Toolshed [24] and an input

dataset in the project repository [30]. Snapshots are also

stored in the GigaScience GigaDB repository [31].

Abbreviations

HTML: hypertext markup language; HTTP: hypertext transfer protocol; KEGG:

kyoto encyclopedia of genes and genomes; OS: operating system; OWL: web

ontology language; RDF: resource description framework; SADI: semantic

automated discovery and integration; SPARQL: SPARQL protocol and RDF

query language; TSV: tab separated values; URI: uniform resource identifier;

XML: eXtensible markup language.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MEA designed and implemented SADI-Docker-Galaxy. MDW developed the

OpenLifeData2SADI services and parts of the example workflow. Both authors

read and approved the final manuscript.

Acknowledgements

MEA is funded by the Genomic Resources Group (UPV/EHU). MDW is

supported by the Fundación BBVA, and the Isaac Peral and Marie Curie

COFUND Programmes of the Universidad Politécnica de Madrid, Centre for

Plant Biotechnology and Genomics UPM-INIA. Jorge Langa, from the Genomic

Resources Group (UPV/EHU), provided technical help with the Docker

installation and with management of images and containers. John M. Chilton,

from the Minnesota Supercomputing Institute at the University of Minnesota,

provided help with the setting up of Galaxy server to run the SADI-Docker

image.

Author details
1Genomic Resources, Department of Genetics, Physical Anthropology and

Animal Physiology, Faculty of Science and Technology, University of Basque

Country (UPV/EHU), Sarriena auzoa z/g, 48940 Leioa – Bilbo, Spain. 2Biological

Informatics, Centre for Plant Biotechnology and Genomics (CBGP), Technical

University of Madrid (UPM), Campus of Montegancedo, 28223 Pozuelo de

Alarcón, Spain. 3Eurohelp Consulting, Maximo Aguirre 18, 48011 Bilbo, Spain.

http://github.com/mikel-egana-aranguren/SADI-Docker-Galaxy
http://github.com/mikel-egana-aranguren/SADI-Docker-Galaxy

Aranguren and Wilkinson GigaScience (2015) 4:59 Page 9 of 9

Received: 6 February 2015 Accepted: 27 October 2015

References

1. W3C. Semantic Web. http://www.w3.org/standards/semanticweb/.

Online; Accessed 5-February-2015.

2. Good BM, Wilkinson MD. The Life Sciences Semantic Web is Full of

Creeps!. Brief Bioinform. 2006;7(3):275–86.

3. W3C. RDF current status. http://www.w3.org/standards/techs/rdf. Online;

Accessed 5-February-2015.

4. W3C. SPARQL current status. http://www.w3.org/standards/techs/sparql.

Online; Accessed 5-February-2015.

5. W3C. OWL Web Ontology Language current status. http://www.w3.org/

standards/techs/owl. Online; Accessed 5-February-2015.

6. Internet Engineering Task Force (IETF). Uniform Resource Identifier (URI):

Generic Syntax. http://tools.ietf.org/html/rfc3986. Online; Accessed

5-February-2015.

7. Tim Berners-Lee. Linked Data. http://www.w3.org/DesignIssues/

LinkedData.html. Online; Accessed 5-February-2015.

8. González AR, Callahan A, Toledo JC, García A, Aranguren ME,

Dumontier M, et al. Automatically exposing OpenLifeData via SADI

semantic Web Services. J Biomed Semant. 2014;5(1):46.

9. Aranguren ME, Breis JTF, Dumontier M. Special issue on Linked Data for

Health Care and the Life Sciences. Semant Web J. 2014;5(2):99–100.

10. Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, Suzek B, et al.

Infrastructure for the life sciences: design and implementation of the

UniProt website. BMC Bioinformatics. 2009;10(1):136.

11. Jupp S, Malone J, Bolleman J, Brandizi M, Davies M, Garcia L, et al. The

EBI RDF platform: linked open data for the life sciences. Bioinformatics.

2014;30(9):1338–1339.

12. Open Life Data. Open Life Data. http://openlifedata.org/. Online;

Accessed 5-February-2015.

13. Cyganiak R, Jentzsch A. The Linking Open Data cloud diagram. http://

lod-cloud.net/. Online; Accessed 5-February-2015.

14. Wilkinson M, Vandervalk B, McCarthy L. The Semantic Automated

Discovery and Integration (SADI) web service Design-Pattern, API and

Reference Implementation. J Biomed Semant. 2011;2(1):8.

15. Goecks J, Nekrutenko A, Taylor J, Galaxy Team. Galaxy: a comprehensive

approach for supporting accessible, reproducible, and transparent

computational research in the life sciences. Genome Biol. 2010;11(8):86.

16. Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J. Bio2RDF:

Towards a mashup to build bioinformatics knowledge systems. J Biomed

Informatics. 2008;41(5):706–16.

17. Docker Inc. Docker - An open platform for distributed applications for

developers and sysadmins. http://www.docker.com/. Online; Accessed

5-February-2015.

18. Docker Inc. Docker Hub. http://hub.docker.com/. Online; Accessed

5-February-2015.

19. Aranguren ME, González AR, Wilkinson MD. Executing SADI services in

Galaxy. J Biomed Semant. 2014;5(1):42.

20. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes.

Nucleic Acids Res. 2000;28(1):27–30.

21. Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, et

al. BioMart - biological queries made easy. BMC Genomics. 2009;10(1):22.

22. Aranguren ME. SADI Docker image. http://hub.docker.com/r/

mikeleganaaranguren/sadi/. Online; Accessed 5-February-2015.

23. Aranguren ME. SADI-Docker Galaxy tools. https://toolshed.g2.bx.psu.edu/

view/mikel-egana-aranguren/sadi_docker/54c48f9ca32b. Online;

Accessed 5-February-2015.

24. Aranguren ME. SADI-Docker use case workflow. http://toolshed.g2.bx.

psu.edu/view/mikel-egana-aranguren/sadi_docker_workflow/

22be3a551998. Online; Accessed 5-February-2015.

25. Aranguren ME. SADI-Docker for Galaxy. http://github.com/mikel-egana-

aranguren/SADI-Docker-Galaxy. Online; Accessed 5-February-2015.

26. Garijo D, Kinnings S, Xie L, Xie L, Zhang Y, Bourne PE, et al. Quantifying

reproducibility in computational biology: The case of the tuberculosis

drugome. PLoS One. 2013;8(11):80278.

27. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for

reproducible computational research. PLoS Comput Biol. 2013;9(10):

1003285.

28. Boettiger C. An introduction to Docker for reproducible research, with

examples from the R environment. ACM SIGOPS Operating Systems

Review - Special Issue on Repeatability and Sharing of Experimental

Artifacts. 2015;49(1):71–79.

29. Giga Science journal. Galaxy Series: Data Intensive and Reproducible

Research. http://www.gigasciencejournal.com/series/Galaxy. Online;

Accessed 5-February-2015.

30. Aranguren ME. UniProt IDs for SADI-Docker use case workflow. http://

github.com/mikel-egana-aranguren/SADI-Docker-Galaxy/blob/master/

workflow/UniProt_IDs.txt. Online; Accessed 5-February-2015.

31. Aranguren ME, Wilkinson MD. Supporting data for "Enhanced

reproducibility of SADI Web service workflows with Galaxy and Docker".

GigaScience Database. 2015. http://dx.doi.org/10.5524/100176.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.w3.org/standards/semanticweb/
http://www.w3.org/standards/techs/rdf
http://www.w3.org/standards/techs/sparql
http://www.w3.org/standards/techs/owl
http://www.w3.org/standards/techs/owl
http://tools.ietf.org/html/rfc3986
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://openlifedata.org/
http://lod-cloud.net/
http://lod-cloud.net/
http://www.docker.com/
http://hub.docker.com/
http://hub.docker.com/r/mikeleganaaranguren/sadi/
http://hub.docker.com/r/mikeleganaaranguren/sadi/
https://toolshed.g2.bx.psu.edu/view/mikel-egana-aranguren/sadi_docker/54c48f9ca32b
https://toolshed.g2.bx.psu.edu/view/mikel-egana-aranguren/sadi_docker/54c48f9ca32b
http://toolshed.g2.bx.psu.edu/view/mikel-egana-aranguren/sadi_docker_workflow/22be3a551998
http://toolshed.g2.bx.psu.edu/view/mikel-egana-aranguren/sadi_docker_workflow/22be3a551998
http://toolshed.g2.bx.psu.edu/view/mikel-egana-aranguren/sadi_docker_workflow/22be3a551998
http://github.com/mikel-egana-aranguren/SADI-Docker-Galaxy
http://github.com/mikel-egana-aranguren/SADI-Docker-Galaxy
http://www.gigasciencejournal.com/series/Galaxy
http://github.com/mikel-egana-aranguren/SADI-Docker-Galaxy/blob/master/workflow/UniProt_IDs.txt
http://github.com/mikel-egana-aranguren/SADI-Docker-Galaxy/blob/master/workflow/UniProt_IDs.txt
http://github.com/mikel-egana-aranguren/SADI-Docker-Galaxy/blob/master/workflow/UniProt_IDs.txt
http://dx.doi.org/10.5524/100176

	Abstract
	Background
	Findings
	Conclusions
	Keywords

	Background
	Findings
	Technical elements
	SADI services
	OpenLifeData2SADI
	Galaxy
	Docker

	Worked example
	Merging OpenLifeData2SADI and SADI services in a single workflow
	1. Obtain a list of UniProt identifiers of interest.
	2. Convert the input to RDF.
	3. Send the appropriate input to services.
	4. Merge the outputs and the inputs into a single RDF graph.
	5. Query the merged graph with SPARQL.

	Reproducing the workflow through Galaxy and Docker

	Discussion
	Data integration and manipulation through RDF and SADI
	Reproducibility with Galaxy and Docker

	Conclusions
	Availability and requirements
	Availability of supporting data
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

