
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

  
Abstract—Remote sensing images acquired by the FY4 satellite are 

crucial for regional cloud monitoring and meteorological services. 

Inspired by the success of deep learning networks in image super-

resolution, we applied image super-resolution to FY4 visible 

spectrum (VIS) images. However, training a robust network 

directly for FY4 VIS image super-resolution remains challenging 

due to the limited provision of high resolution FY4 sample data. 

Here, we propose a super-resolution and transfer learning model, 

FY4-SR-Net. It is composed of pre-training and fine-tuning 

models. The pre-training model was developed using a deep 

residual network and a large number of FY4 A 4km and 1km 

resolution VIS images as the training data. The knowledge derived 

from 4 km to 1 km resolution images was incorporated into FY4 B 

1 km to 0.25 km resolution VIS images. The FY4-SR-Net is fine-

tuned by incorporating limited 1km and 0.25km resolution 

panchromatic (PAN) images, and then producing 1km super-

resolution VIS images of the FY4 satellite. Using the one-day FY4 

test dataset for qualitative and quantitative evaluations, the FY4-

SR-Net outperformed the classic bicubic interpolation approach 

with a 16.12% reduction in root mean square error (RMSE) and 

a 2.97% rise in peak signal-to-noise ratio (PSNR) averages. The 

structural similarity (SSIM) value average increased by 0.0026. 

This work provides a new precedent for improving the spatial 

resolution of FY4 series meteorological satellites, which has 

important scientific significance and application properties. 
 

Index Terms—Remote sensing images, super-resolution, 

transfer learning, pre-training, fine-tuning. 

 

I. INTRODUCTION 

s part of a new generation of China's geostationary orbit 

satellites, the FY4 meteorological satellite helps with 

weather forecast analysis, short-term climate prediction, 

environmental management, resource development, disaster 

prevention and mitigation, and scientific research. This satellite 
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is an essential component of China's comprehensive 

meteorological observation satellite network [1]. The spatial 

resolution of a remote sensing image is an important quality 

measure and a leading indicator of a country's aeronautical 

capabilities. Remote sensing images with metric and submetric 

spatial resolution is already widely used, but their temporal 

resolution is still rather poor. Some remote sensing images have 

a low spatial resolution but high temporal resolution, such as 

the FY4 satellite VIS images with a temporal resolution of 5 

minutes and a spatial resolution between 0.5 and 1 kilometer. 

Such a mismatch between spatial and temporal resolution 

scarcely satisfies the demand for FY4 images with increasing 

production applications; thus, the advancement of meteoro-

logical remote sensing technology is greatly impeded [2]. 

Significant progress has been made in the area of remote 

sensing image process with various advanced deep networks [3-

6]. Deep learning algorithms offer a cost-effective and efficient 

solution to this mismatching problem [7]. Super-resolution (SR) 

is a technique for enhancing image spatial resolution by 

reconstructing high-resolution (HR) images from single or 

multiple low-resolution (LR) images. It is classified into two 

categories: classical interpolation methods [8-10] and deep-

learning-based methods [11-13], with the latter subdivided 

further into single-frame SR methods [14, 15] and multi-frame 

SR methods [16, 17]. MFSR constructs HR images by acquiring 

multiple LR images of the identical scene with the same or 

distinct sensors[18]. Merino and Núñez [19] presented a 

technique called Super-Resolution Variable-Pixel Linear 

Reconstruction (SRVPLR) for reconstructing a high-resolution 

(HR) image from many low-resolution (LR) images recorded 

over an extended period of time. This technique was adapted 

from drizzle [20], which was meant to operate with dithered, 

under sampled astronomical images. Before image 

reconstruction, Shen et al. [21] developed an SR approach for 
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MODIS remote sensing images where image registration was 

conducted in the range and spatial domains. Using 

panchromatic Landsat7 images captured on several days, Li et 

al. [22] proposed a MAP-based SR approach with a general 

hidden Markov tree model and tested it. Fan et al. [23] 

developed a POCS-based SR algorithm with a slant knife-edge 

technique. The approach was evaluated using Airborne Digital 

Sensor 40 (ADS40) three-line images and overlapping Gaofen-

2 images. Because of the simplicity and excellent performance 

acquired through intense supervised training, the single-frame 

SR has become the workhorse. 

Initial studies on single-frame SR for remote sensing images 

used simple structures like 3D Full Convolutional Neural 

Network (3D-FCNN) and Remote Sensing Image 

Convolutional Neural Network (RSCNN) with direct 

superposition of convolutional layers [24-26] as their basis. An 

unsupervised depth generating network was developed by Haut 

et al. [27]in order to overcome the lack of benchmark training 

data for super-resolution remote sensing images. With the 

advent of super-resolution networks in the realm of computer 

vision, modular designs, such as the Multi-Perception Attention 

Network (MPSR) [28] and Dense-Sampling Super-Resolution 

Network (DSSR) [29] were implemented for single-frame SR. 

For better segmentation accuracy after super-resolution, Lei et 

al.[30] proposed the S2Net network, which can simultaneously 

accomplish SR and image segmentation for remote sensing 

images. Coupling remote sensing images and the generated 

high-resolution images for a discriminative network, Lei et al. 

[31] developed a coupled discriminative generative adversarial 

network (CDGAN), which was able to perform well on an ultra-

resolution task in the low-frequency region. 

In regard to implementing deep learning-based super 

resolution networks, the quality and quantity of available high- 

and low-resolution samples, as well as training images, are all 

important considerations. FY4 remote sensing VIS images' 

inherent low-resolution qualities make obtaining sufficient 

high-resolution training data problematic. To address issue, we 

proposed a novel methodology with two steps. The first is to 

design a deep residual model for pre-training chunked 4-fold 

super-resolution feature knowledge. The second measure is to 

fine-tune the system with higher-resolution remote sensing 

image pairs. Based on this approach, the resolution of FY4 

visible spectrum (VIS) can be enhanced. Several image super-

resolution experiments use image data instead of raw grayscale 

values as model inputs to build training networks, resulting in a 

loss of pixel information and a reduction in model 

generalizability [32]. In addition, to our knowledge, there have 

been few super-resolution studies of the FY4 global-scale 

meteorological satellite. 

The FY4-SR-Net model, which we created in accordance 

with the pre-training and fine-tuning of image transfer learning 

theory, effectively addresses these issues. By using FY4 4 km-

1 km monitoring VIS image data (gray values) as pre-training 

data, we can avoid the scarcity of high-resolution remote 

sensing training datasets. Training with higher-resolution 

remote sensing image pairs is then used to fine-tune the system. 

Our proposed method for improving resolution is more accurate 

and works better than classical interpolation, both in terms of 

quality and clarity. A higher resolution FY4 satellite VIS image 

can visualize the finer structure and type of cloud masses. 

The rest of this paper is organized as follows: first, some 

details about the data and our network structure (Data and 

Methods). Then, we demonstrate the effectiveness of the 

proposed method using experimental results (Results). Finally, 

we conclude this paper with some comments on future work 

(Conclusions). 

II. DATA AND METHODS 

A. Data Collection and Preprocessing 

1) FY4 A: FY4 A belongs to the second generation of 

geostationary meteorological satellites in China. It is made to 

meet the country's wide range of environmental and space 

science needs [33], such as those in the oceans, agriculture, 

forestry, and hydropower. The FY4 A satellite was formally 

launched on November 11, 2016, and is equipped with an 

Advanced Geostationary Radiation Imager (AGRI), a 

Geostationary Interferometric Infrared Sounder (GIIRS), a 

Lightning Mapping Imager (LMI), and a Space Environment 

Package (SEP) instrument.  A scanning imaging radiometer 

(SIR) is responsible for collecting cloud data. Fig. 1 shows the 

FY4-A satellite band and resolution information. With its 

fourteen channels, the satellite can detect aerosols and snow, as 

well as the different stages of clouds and high and mid-level 

water vapor. When compared to the single visible channel of 

FY2, FY4 A for the first time produces color satellite cloud 

maps and generates regional observation photos in one minute.  

Users can access FY4 A  data from the official website of 

the National Meteorological Satellite Center [34]. The FY4 

star's main payload, the Advanced Geostationary Radiation 

Imager (AGRI), has a complex double-scanning mirror 

mechanism that enables precise and flexible two-dimensional 

pointing, allowing for quick scanning of areas at a minute rate. 

It includes a) Full disk data with 4km resolution; b) Full disk 

data with 1km resolution; c) China zone data with 4km 

resolution; d)  China zone data with 1km resolution. Full disk 

identified as DISK, China zone marker as REGC [35]. China 

zone REGC with a 5-minute temporal resolution was chosen as 

the training data for this work.  

 
2) FY4 B: FY4 B was launched on June 3, 2021, and is 

primarily used for operational meteorological satellite 

monitoring. The average life expectancy of a B star is seven 

years longer than that of A star. Its successful launch is crucial 

 
Fig. 1. FY4 A satellite band and resolution information. 
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for ensuring the upgradation of China's geostationary 

meteorological satellites and their continued reliability and 

stability. The addition of the Geostationary Orbit High-speed 

Imager (GHI) to FY4 B provides the capability for high-speed, 

high-resolution regional imaging. The Geo Interferometric 

Infrared Sounder (GIIRS) increases the spatial resolution in the 

visible spectrum to 1 km. 

 
FY4 B has the capability of rapid imaging, i.e., 1-minute 

interval with a spatial resolution up to 250 m in a region. It 

includes: : a) China zone data with 2 km resolution; b) China 

zone data with 500 m resolution; c) China zone data with 250 

m resolution. The 2 km resolution data were not utilized in this 

study. Datasets with a resolution of one kilometer were created 

by downsampling data with a resolution of 500 meters using an 

interpolation technique typical for image super-resolution. Fig. 

2 depicts a tiny portion of the FY4 B imaging data. With the 

inclusion of multichannel AGRI the FY4 B spatial resolution in 

the 2.1 μm and 3.5 μm bands has been enhanced to 2 km. The 

FY4 B and A twin-star networks provide China and other 

countries along the "Belt and Road" with weather monitoring 

and forecasting, emergency disaster prevention and mitigation 

services. 

3) Data Preprocessing: The FY4 data were projected and 

converted into a unified coordinate system in order to eliminate 

position bias. To minimize sensor errors, the relationship 

between digital quantization values and radiation brightness 

values was established after radiometric calibration [36]. The 

blue band (from 0.45 µm to 0.49 µm) of FY4 helps to obtain 

clear cloud boundary information when drawing cloud cover 

maps [37]. So we used the NOMChannel01 0.47µm VIS 

channel of FY4 A data, collected from Sept. 13 to 20, 2021 for 

model pre-training. Deep learning has been shown to be 

effective in improving the resolution of low-resolution multi-

spectral images with high spatial resolution PAN images 

[38].Transfer learning and model testing used the 

NOMChannel01 PAN channel of FY4 B data from Nov.25 to 

30, 2021. Gray values of the FY4 data were normalized from 0 

to 1 before being entered into the model in order to remove the 

influence of local perception characteristics. High-resolution 

(HR) FY4 1000 m images are split into 128x128 data points 

while low-resolution (LR) FY4 4000 m images are split into 

32x32 data points during the preprocessing phase. The HR FY4 

250 m images of the B star and the LR FY4 1000 m images 

performed the same processing to generate the fine-tuning 

dataset simultaneously. In addition to fragmentation, FY4 data 

with missing values were removed from the dataset. The final 

dataset consists of 316,199 groups, on which a random 80/20 

training/testing split was performed. Python GDAL was used 

for preprocessing. 

B. Methods 

1) The structure of the pre-training network: Due to a lack of 

high-resolution monitoring data, direct training of a robust 

network for FY4-SR remains a difficulty. A pre-training FY4 

model is built using a deep residual model and a large number 

of FY4 4 km resolution and 1km resolution images as input 

train data, taking inspiration from transfer learning. As shown 

in Fig. 3, the FY4 model knowledge gained from 4 km 

resolution and 1 km resolution data is incorporated into 1km 

resolution and 0.25 km resolution data, and the network is fine-

tuned by taking restricted 1km resolution and 0.25 km 

resolution data to build an FY4-SR-Net that meets the FY4 

satellite's 1km super-resolution. The final input is the low 

resolution FY4 1 km 𝐹𝑌𝐿 and the high resolution FY4 250 m 

𝐹𝑌𝐻 is obtained. 

 
As illustrated in Figure 4, the pre-trained FY4 network 

consists of low-level feature extraction, element-wise 

summation, and upsampling layers. A collection of features are 

extracted by the first convolutional layer of the pre-trained FY4 

network. The model is trained with a residual network, where 

the input in each residual block is supposed to be x, the expected 

output is 𝑓(𝑥), and the residual map 𝑔(𝑥) = 𝑓(𝑥) − 𝑥 . The 

element-wise summation layer then accumulates the original 

inputs 𝑥  and 𝑔(𝑥)  to produce the desired output (𝑥) . The 

residual network structure can provide more precision by 

implementing deeper network layers [39]. 

 
The sub-pixel convolution method proposed by [40] is 

used for upsampling, as depicted in Fig. 5. First, the features of 

r2 channels are obtained by convolution, and then the high-

resolution image is obtained by cycle screening. 

  
(a)  (b) 

Fig. 2.  FY4 B (a)1 km and (b) 0.25 km data  

Fig. 3.  The working process of FY4-SR-Net 

Fig. 4. The pre-trained FY4 network 
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In comparison to the typical deconvolution layer, this sub-

pixel convolution can decompose low-resolution data into high-

resolution space without additional computation. Since ReLU 

has good nonlinear fitting performance [41], it is used as the 

model's activation function. 

2) Fine-tuning and loss function: Transfer learning is the 

process of adapting the knowledge or patterns acquired in one 

area or task to a different but similar domain or work. As shown 

in Fig.6, the knowledge gained by solving the super-resolution 

of FY 4A 4 km resolution and 1km resolution data is used to 

construct a higher resolution FY4-SR-Net model. Some layers 

of the pre-training network were frozen, and then the finite 

high-resolution FY4 B 1 km to 0.25 km resolution data pairs 

were used to fine-tune the network. 

 
In the field of single-image SR reconstruction, the pixel 

loss function and the perceptual loss function are the most 

commonly employed loss functions. This study uses the former 

function to minimize the pixel error between the output and 

input target for training the model. The FY4-SR-Net optimizes 

the network with the MSE (mean square error). In addition, we 

analyzed additional metrics, e.g., MAE (mean absolute error), 

SSIM and PSNR. The MSE, which is insensitive to outliers, 

safeguards the model's stability. This facilitates the 

reconstruction of FY4 data with a high resolution. 

3) Evaluating metrics: Quantitative evaluation and visual 

effects were used to assess the quality of super resolution image 

data. The RMSE is a widely used numerical accuracy metric for 

evaluating data accuracy. It does not indicate the number of 

individual point errors but describes the overall dispersion of 

the FY4 data.where 𝐻𝑖  is the value of the original image, ℎ𝑖 is 

the value of the super-resolution image, and 𝑛 is the number of 

sampling points. 

RMSE = √
1

𝑛
∑ (𝐻𝑖 − ℎ𝑖)

2𝑛
𝑖=𝑖                         (1) 

The PSNR measures the pixel difference between 

reconstructed high-resolution images and actual images, and is 

the most popular metric for assessing image quality. MSE is 

calculated before PSNR, and it is frequently used to construct 

loss functions. Given two m× n monochromatic images I and K, 

one of which is the noise approximation of the other, MSE and 

PSNR are calculated as: 

MSE =
1

𝑚𝑛
∑ ∑ [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0                         (2) 

PSNR = 10 ∙ log10(
∆𝑆2

𝑀𝑆𝐸
)                         (3) 

where ∆𝑆 represents the maximum color value of the image 

points. The ∆𝑆  value equals 255 if each sampling point is 

represented by 8 bits. However, the grayscale values of the FY4 

data were frequently far above 255. The original ∆𝑆 formula is 

modified to reflect the difference between the maximum and 

minimum gray values in the FY4 data. The higher the PSNR 

value is, the better the image quality. 

The SSIM (Eq. 4) is a measurement of the similarity of 

two images and has a wide range of applications in both image 

deblurring and image super-resolution. 

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
                          (4) 

where 𝑥  and 𝑦  are real images and super-resolution images, 

respectively, 𝑢𝑥and 𝑢𝑦  represent the standard deviations of 𝑥 

and 𝑦  respectively. 𝜎𝑥  and 𝜎𝑦 are the standard deviations and 

𝜎𝑥𝑦 is the covariance. SSIM is a number ranging from 0 to 1. 

The larger the value, the smaller the difference between the 

output image and the distortion-free image, and hence the better 

the image quality. When the two images are identical, SSIM 

equals 1. 

III. RESULTS 

The network training and experiments were implemented 

with PyTorch [42]. The model consists of 89 layers of 

convolutional networks, with the convolutional kernel size in 

each layer set to 3 and the padding set to 1. The input data were 

passed through the convolutional layers, and the output is 

resized with the zero-padding method to achieve a constant 

output matrix size for the subsequent layer. We utilized the 

Adam optimizer with a learning rate of 0.0001 to train the 

model with the large dataset. The exponential decay formula is 

employed to adjust the learning rate. The size of the training 

batch is set at 128. The models under went 200 epochs of 

training, with each epoch consisting of 2400 training steps. In 

order to prevent overfitting, the early stopping approach is used 

to terminate training when the model's performance begins to 

drop in the validation set (petience is 7). For model training and 

evaluation, a workstation with four 2080ti 11G GPUs was 

employed. 

A. Pre-training and fine-tuning performance 

For our proposed FY4-SR-Net model, the pre-training 

network was trained with 1318 remote sensing image samples 

from Sept.13 to 20, 2021 of FY4 A. In other words, pre-training 

to acquire chunked 4-fold super-resolution feature information. 

FY4 B data from Nov. 25 to 29, 2021 were utilized to fine-tune 

the pre-trained network. The remaining FY4 B monitoring data 

with an interval of 2 hours on Nov. 30, 2021, were selected for 

model testing, as shown in Fig. 7. FY4 B is a geostationary 

satellite that orbits the equator, and UTC 12:00-20:00 

corresponds to the the nighttime of Eastern Hemisphere. It is 

therefore impossible for active remote sensing satellites to 

gather reflectance spectra, rendering the image maps nearly 

dark. 

 

 
Fig. 5. The sub-pixel convolution structure 

 

Fig. 6.  Fine-tuning the network with finite high-resolution FY4 B dataset 
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Fig.7.  Monitoring data with an interval of 2 hours on Nov. 30, 2021. 

TABLE Ⅰ 

THE RMSE INTERNAL TEST RESULTS WITH TRADITIONAL BICUBIC METHOD ON NOV. 30, 2021 

Times 
R1 

(Bicubic) 

R2 
(FY4 A Pre-

training) 

R3 
(FY4 B Pre-

training) 

R4 

FY4-SR-Net 

ΔR2 

=(R1-R2)/R1% 

ΔR3 

=(R1-R3)/R1% 

ΔR4 

=(R1-R4)/R1% 

00:00 24.25 20.50 20.50 20.07 15.46 15.46 17.24 

02:00 28.46 23.22 23.55 22.80 18.41 17.25 19.89 

04:00 37.47 30.58 30.37 29.50 18.39 18.95 21.27 
06:00 21.12 17.75 17.56 17.28 15.96 16.86 18.18 

08:00 19.63 16.69 16.72 16.27 14.98 14.82 17.12 

10:00 10.03 8.96 9.21 8.93 10.67 8.18 10.97 
*12:00 1.43 1.70 1.34 1.32 -18.88 6.29 7.69 

*14:00 1.41 1.69 1.28 1.29 -19.86 9.22 8.51 
*16:00 1.34 1.60 1.10 1.04 -19.40 17.91 22.39 

*18:00 1.28 1.57 1.07 1.06 -22.66 16.41 17.19 

*20:00 1.26 1.56 1.06 1.05 -23.81 15.87 16.67 
22:00 12.95 11.04 11.08 10.75 14.75 14.44 16.99 

24:00 14.22 12.07 12.27 12.03 15.12 13.71 15.40 

all Avg     1.47 14.26 16.12 

* marked :the near-dark period. 
TABLE Ⅱ 

THE PSNR INTERNAL TEST RESULTS WITH TRADITIONAL BICUBIC METHOD ON NOV. 30, 2021 

Times 
P1 

(Bicubic) 

P2 

(FY4 A Pre-
training) 

P3 

(FY4 B Pre-
training) 

P4 

FY4-SR-Net 

ΔP2 

=(P2-P1)/P1% 

ΔP3 

=(P3-P1)/P1% 

ΔP4 

=(P4-P1)/P1% 

00:00 44.55 46.00 46.00 46.19 3.25 3.25 3.68 

02:00 43.15 44.92 44.80 45.08 4.10 3.82 4.47 

04:00 40.77 42.53 42.59 42.84 4.32 4.46 5.08 

06:00 45.74 47.26 47.35 47.48 3.32 3.52 3.80 
08:00 46.38 47.79 47.77 48.01 3.04 3.00 3.51 

10:00 52.21 53.19 52.95 53.22 1.88 1.42 1.93 

*12:00 69.12 67.59 69.78 69.83 -2.21 0.95 1.03 
*14:00 69.21 67.68 70.07 70.01 -2.21 1.24 1.16 

*16:00 69.67 68.13 71.39 71.90 -2.21 2.47 3.20 

*18:00 70.06 68.29 71.64 71.66 -2.53 2.26 2.28 
*20:00 70.17 68.36 71.71 71.76 -2.58 2.19 2.27 

22:00 49.99 51.38 51.34 51.61 2.78 2.70 3.24 

24:00 49.18 50.60 50.46 50.63 2.89 2.60 2.95 

all Avg     1.06 2.61 2.97 

* marked :the near-dark period. 

TABLE Ⅲ 
THE SSIM INTERNAL TEST RESULTS WITH TRADITIONAL BICUBIC METHOD ON NOV. 30, 2021 

Times 
S1 

(Bicubic) 

S2 

(FY4 A Pre-

training) 

S3 

(FY4 B Pre-

training) 

S4 
FY4-SR-Net 

ΔS2 
=S2-S1 

ΔS3 
=S3-S1 

ΔS4 
=S4-S1 

00:00 0.9800 0.9856 0.9856 0.9862 0.0056 0.0056 0.0062 
02:00 0.9805 0.9866 0.9863 0.9872 0.0061 0.0058 0.0067 

04:00 0.9790 0.9856 0.9856 0.9865 0.0066 0.0066 0.0075 

06:00 0.9887 0.9922 0.9921 0.9924 0.0035 0.0034 0.0037 
08:00 0.9862 0.9900 0.9899 0.9904 0.0038 0.0037 0.0042 

10:00 0.9953 0.9963 0.9961 0.9964 0.001 0.0008 0.0011 

*12:00 0.9998 0.9998 0.9998 0.9999 0 0 0.0001 
*14:00 0.9998 0.9998 0.9998 0.9999 0 0 0.0001 

*16:00 0.9998 0.9998 0.9998 0.9999 0 0 0.0001 

*18:00 0.9998 0.9998 0.9999 0.9999 0 0.0001 0.0001 
*20:00 0.9998 0.9998 0.9999 0.9999 0 0.0001 0.0001 

22:00 0.9926 0.9946 0.9945 0.9949 0.002 0.0019 0.0023 

24:00 0.9932 0.9951 0.9951 0.9952 0.0019 0.0019 0.0020 
all Avg     0.0023 0.0023 0.0026 

* marked :the near-dark period. 
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In addition, we trained two deep residual network based 

pre-training networks with FY4 A and FY4 B data  respectively, 

refered to as FY4 A pre-training and FY4 B pre-training. After 

training these networks under identical settings, the testing 

dataset Dtest was used to compare the performance of FY4 SR 

with a fourfold upscaling factor. We compared the performance 

of these training strategies with the bicubic interpolation 

method as a baseline [43]. Note that interpolation was 

performed on low-resolution images of each sample to create 

high-resolution images. We quantitatively evaluate the three 

training strategy methods by evaluating metrics, including the 

RMSE, PSNR and SSIM. 

As illustrated in Tables Ⅰ-Ⅲ, FY4-SR-Net outperformed 

bicubic and the other two training strategies for most of the test 

samples in terms of the RMSE, PSNR and SSIM.  The FY4-

SR-Net RMSE was lowered by an average of 16.12%, while the 

FY4 A pre-training and FY4 B pre-training were reduced by 

average of 1.47% and 14.26%, respectively. The PSNR 

averages increased by 2.97%, and the FY4 A pre-training  and 

FY4 B pre-training increased by an average of 1.06% and 

2.61%, respectively. The SSIM value average increased by 

0.0026, and the FY4 A pre-training and FY4 B pre-training 

average increased by the same average of 0.0023. 

 
Fig. 8 shows the percentage of the relative difference line 

chart of the RMSE between the SR results and bicubic method 

for one day of testing. The level of promotion varies with time, 

as test data change substantially between data acquisition 

moments, * marked in the Tables Ⅰ-Ⅲ. For remote sensing 

images acquired from 12:00 to 20:00 UTC during the near-dark 

period, the FY4 A pre-training model has difficulty enhancing 

enhance the resolution well, even worse than bicubic. In 

contrast, the FY4-SR-Net model with fine-tuning achieved 

better super-resolution results than the FY4 B pre-training 

strategy. 

The results of comparing the PSNR with the classic 

bicubic approach on Nov. 30, 2021 are depicted in Fig. 9. The 

PSNR performance of the three training strategies is 

comparable to the RMSE. The large performance discrepancy 

between FY4-SR-Net and FY4 B pre-training implies that 

transfer learning can significantly enhance the super-resolution 

impact.  

 

 
The SSIM metric might be used to quantify degradation in 

image quality due to processing, such as data interpolation or 

data compression. As illustrated in Fig. 10, the FY4-SR-Net 

model exhibits the greatest super-resolution effect, followed by 

FY4 B pre-training and FY4 A pre-training. These results 

demonstrate that transfer learning is effective, particularly 

when the number of high resolution training samples is limited. 

B. Quality of SR result for FY4 

We compare the qualitative results of our method to those 

of the original low-resolution images and bicubic interpolation. 

In general, bicubic may increase spatial resolution effectively, 

but the resulting image has a polished texture and limited 

recovery of cloud information. Figure 11 depicts the SR 

outcomes for FY4 B 1 km resolution PAN images at a scale of 

4. Several cloud-based details have been properly reconstructed 

in comparison to the initial FY4 B low-resolution data. As 

demonstrated in Figure 12, the benefit of our proposed 

approach is also apparent in shaping the cloud textures of FY4 

A 1 km resolution VIS images. Visually and quantitatively, the 

FY4-SR-Net model surpasses the conventional bicubic 

technique. The FY4-SR-Net method provides improved 

performance in detail restoration. With this technology, high-

resolution FY4 satellite VIS images can be utilized to determine 

the various types of clouds and their structures. 

 
 

Fig. 8. Difference comparison results of RMSE with traditional bicubic 
method on Nov. 30, 2021 

 
Fig. 9. Difference comparison results of PSNR with traditional bicubic 
method on Nov. 30, 2021 

 
Fig. 10. Different value comparison results of SSIM with traditional 

bicubic method on Nov. 30, 2021 
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In short, all three training methods, with the exception of 

the dark time period, produce superior super-resolution 

outcomes than bicubic interpolation. The addition of fine-

tuning to our model can effectively compensate for and enhance 

the pre-training outcomes. The pre-training and fine-tuning 

based FY4-SR-Net model achieved greater super-resolution 

outcomes than the direct training method. 

 

IV. CONCLUSIONS 

To meet the super-resolution requirements of the FY4 

satellites, a transfer learning method based on pre-training and 

fine-tuning is been presented in this paper. A deep residual 

network is pre-trained with a large number of FY4 4km 

resolution and 1 km resolution VIS images and then fine-tuned 

with the limited 1 km resolution and 0.25 km resolution 

data. Experiments show that our proposed FY4-SR-Net is better 

than the current baseline bicubic methods, with an improvement 

of 16.12% in RMSE, an increase of 2.97% in average PSNR, 

and an increase of 0.0026 in average SSIM values for 

monitoring data with a 2-hour interval on November 30, 2021. 

With its advantages of high super-resolution accuracy and 

low cost, FY4-SR-Net has the potential to be widely used for 

FY4 series satellite VIS image SR in various locations, 

particularly in mainland China. As a result of this super-

resolution technique, the FY4 series of satellites have improved 

the spatial and temporal resolution of images. This enhances 

their ability to monitor regional weather events and provide 

meteorological services. 

In conclusion, the development of FY4-SR-Net based on 

transfer learning can be more precise and effective than 

interpolation in terms of both qualitative and quantitative 

resolution enhancement. This is the first time, to our knowledge, 

that a pre-training and fine-tuning structured SR method has 

been proposed for the FY4 remote sensing VIS image data. We 

anticipate that our research will establish a precedent for super-

resolution image processing based on transfer learning. As a 

result, numerous meteorological satellites will be able to deliver 

more precise and clearer high-resolution images. In the future, 

we will perform comparisons with other single-frame SR 

methods. Our research will focus on enhancing satellite image 

SR performance at certain time intervals and examining data 

input and architecture design to further reduce the model 

prediction errors. 
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