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Abstract

This paper is concerned with the problem of enhanced results on robust finite-time

passivity for uncertain discrete-time Markovian jumping BAM delayed neural

networks with leakage delay. By implementing a proper Lyapunov-Krasovskii

functional candidate, the reciprocally convex combination method together with

linear matrix inequality technique, several sufficient conditions are derived for varying

the passivity of discrete-time BAM neural networks. An important feature presented

in our paper is that we utilize the reciprocally convex combination lemma in the main

section and the relevance of that lemma arises from the derivation of stability by

using Jensen’s inequality. Further, the zero inequalities help to propose the sufficient

conditions for finite-time boundedness and passivity for uncertainties. Finally, the

enhancement of the feasible region of the proposed criteria is shown via numerical

examples with simulation to illustrate the applicability and usefulness of the

proposed method.

Keywords: LMIs; Markovian jumping systems; leakage delay; bidirectional

associative memory; discrete-time neural networks; passivity and stability analysis

1 Introduction

Over the past decades, delayed neural networks have found successful applications in

many areas such as signal processing, pattern recognition, associative memories and op-

timization solvers. In such applications quantitative behavior of dynamical systems is an

important step for the practical design of neural networks []. Therefore, the dynamic

characteristics of discrete-time neural networks have been extensively investigated, for ex-

ample, see [–]. The study on neural networks is mostly in the continuous-time setting,

but they are often discretized for experimental or computational purposes. Also, neural

networks with leakage delay is one of the important types of neural networks. Hence, time

delay in the leakage termhas a great impact on the dynamics of neural networks. Although,

time delay in the stabilizing negative feedback term has a tendency to destabilize a neu-

ral network system [–], the delay in the leakage term can destroy the stability neural

networks. Gopalasamy [] initially investigated the dynamics of bidirectional associative

memory (BAM) network model with leakage delay. Based on this work, authors in []

considered the global stability for a class of nonlinear systems with leakage delay. Li and

Cao discussed the stability of memristive neural networks with both reaction-diffusion
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term and leakage delay, and some easily checked criteria have been established by em-

ploying differential inclusion theory and Jensen’s integral inequality [].

The (BAM) neural network model, proposed by Kosko [, ] is a two-layered non-

linear feedback network model, where the neurons in one layer always interconnect with

the neurons in the another layer, while there are no interconnections among neurons in

the same layer. In the current scenario, due to its application in many fields, the study of

bidirectional associative memory neural networks has attracted the attention of many re-

searchers, and they have studied the stability properties of neural networks and presented

various sufficient conditions for asymptotic or exponential stability of the BAM neural

networks [, , –].

On the one hand, time delay is one of the main sources of instability, which is encoun-

tered in many engineering systems such as chemical processes, long transmission lines

in pneumatic systems, networked control systems, etc. Over the past years, the study of

time delay systems has received considerable attention, and a great number of research

results on time delay systems exist in the literature. The stability of time delay systems is a

fundamental problem because it is important in the synthesis and analysis of such neural

network systems [, , , ]. The exponential stability of stochastic BAM networks with

mixed delays was discussed by Lyapunov theory [].

On the other hand, the theory of passivity was implemented first in circuit analysis and

generates increasing interest among the researchers. It is a useful tool in obtaining the

stability analysis of both linear and nonlinear systems, especially for high-order systems.

It is evidentally true that the passive properties can ideally keep the systems internally

stable. Due to its importance and applicability, the problem of passivity analysis for de-

layed dynamic systems has been investigated, and lots of results have been reported in the

literature [–]. For instance, in [] the authors Wu et al. derived the passivity con-

dition for discrete-time switched neural networks with various functions and mixed time

delays. Moreover, the passivity and synchronization of switched neural networks were in-

vestigated in [], and some delay-dependent as well as delay-independent criteria were

provided. In [, ], the authors delivered the concept of passivity which is stable or not.

However, using the conventional Lyapunov asymptotic stability theory, it should be

mentioned that all these existing studies about the passivity analysis are performed with

definition over the infinite-time interval. The concept of finite-time (or short-time) anal-

ysis problem was first initiated by Dorato in  []. Communication network system,

missile system and robot control system are the examples of systems which work in a

short-time interval. In the present years, many biologists have been focusing on the tran-

sient values of the actual network states. In [–], many interesting results for finite-

time stability of various types of systems can be found. Recently, an extended finite-time

H∞ control problem for uncertain switched linear neutral systems with time-varying de-

lays was investigated in [], and also the concept of time-varying delays was proposed

in [, ]. The results for finite-time stabilization of neural networks with discontinuous

activations was proposed in [].

Motivated by the aforementioned discussions, in this paper we focus on the finite-time

boundedness and passivity of uncertain discrete-time Markovian jumping BAM neural

networks with leakage time-delays. Here we use a new type of LKF to handle the given

range of time delay interval together with free weighting matrix approach to derive the

main results. Our main contributions are highlighted as follows:
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• The finite-time passivity result for discrete-time Markovian jumping uncertain BAM

neural networks with leakage delay is proposed for the first time.

• Reciprocally convex combination approach is used to handle the triple summation

terms and a new type of zero inequalities is introduced.

• Delay-dependent results for finite-time boundedness and finite-time passivity are

derived by using the finite-time stability method and the Lyapunov-Krasovskii

functional approach.

The rest of this paper is well organized as follows. Problem formulation and mathemat-

ical preliminaries are presented in Section . Section  gives the main result of this paper,

and it also contains the subsection on finite-time boundedness. Robust finite-time passiv-

ity is derived in Section . Numerical examples are demonstrated in Section  to illustrate

the effectiveness of the proposed method. Finally, we give the conclusion of this paper in

Section .

1.1 Notations

The notations in this paper are standard. Throughout this paper, Rn and R
n×m denote,

respectively, the n-dimensional Euclidean space and the set of all n × m real matrices.

I denotes the identity matrix with appropriate dimensions and diag(·) denotes the diago-

nal matrix. AT denotes the transpose of matrix A. k denotes the set of positive integers.

For real symmetric matrices X and Y , the notation X ≥ Y (resp., X > Y ) means that the

matrix X – Y is positive semi-definite (resp., positive definite). N = {, , . . . ,n} and ‖ · ‖

stands for the Euclidean norm in R
n. λmax(X) (resp., λmin(X)) stands for the maximum

(resp., minimum) eigenvalue of the matrix X. In and n represent the identity matrix and

zero matrix, respectively. l(,∞) denotes the space of square summable infinite vector

sequences. The symbol ∗ within a matrix represents the symmetric term of the matrix.

2 Problem formulation andmathematical preliminaries

Let (�,F, {F}t≥,P) be a complete probability space with filtration {F}t≥ satisfying the

usual condition (i.e., it is right continuous and F contains all p-null sets); E{·} stands for

the mathematical expectation operator with respect to given probability measure P. Let

r(k), k ≥  be a Markovian chain taking values in a finite space S = {, , , . . . ,N} with

probability transition matrix π = (πij)N×N given by

Pr
[

r(k + ) = j|r(x)=i
]

= πij, j, i ∈ S,

where π ≥  (i, j ∈ S) is a transition rate from i to j and
∑N

j= πij = , ∀i ∈ S.

Consider the following BAM uncertain discrete-time Markovian jumping neural net-

work with time-varying delays, and leakage delay is described by

x(k + ) = A
(

r(k)
)

x(k – γ) + B
(

r(k)
)

f
(

y(k)
)

+C
(

r(k)
)

f
(

y
(

k – τ (k)
))

+ u(k), ()

g∗(k) = Bg∗
(

r(k)
)

f
(

y(k)
)

+Cg∗ f
(

y
(

k – τ (k)
))

, ()

x(k) = φ(k), for every k ∈ [–τM, ],

y(k + ) =D
(

r(k)
)

y(k – γ) + E
(

r(k)
)

g
(

x(k)
)

+ F
(

r(k)
)

g
(

x
(

k – σ (k)
))

+ v(k), ()

h(k) = Eh

(

r(k)
)

g
(

x(k)
)

+ Fhg
(

x
(

k – σ (k)
))

, ()

y(k) = ψ(k) for every k ∈ [–σM, ],
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where x(k), y(k) ∈ R
n is the neural state vector, v(k), u(k) is the exogenous disturbance in-

put vector belonging toL[,∞) and g∗(k), h(k) is the output vector of the neural network,

f (y(k)), g(x(k)) is the neuron activation function, the positive integer τ (k), σ (k) denotes the

time-varying delay satisfying τm ≤ τ (k) ≤ τM and σm ≤ σ (k) ≤ σM for all k ∈ N , where τm

and τM , σm and σM are constant positive scalars representing theminimum andmaximum

delays, respectively.

Ai(k) = Ai +
Ai(k), Bi(k) = Bi +
Bi(k),

Ci(k) = Ci +
Ci(k), Di(k) =Di +
Di(k),

Ei(k) = Ei +
Ei(k), Fi(k) = Fi +
Fi(k)

in which A = diag{a,a, . . . ,an}, D = diag{d,d, . . . ,dn} represent the state feed back co-

efficient matrix with |ai| < , |di| < , B = [bij]n×n, E = [eij]n×n, C = [cij]n×n, F = [fij]n×n, re-

spectively, the connectionweights and the delayed connectionweights, the initial function

φ(k),ψ(k) is continuous and defined on [–τM, ], [–σM, ]. Further the uncertainty param-

eters are defined as follows:

[


A(k),
B(k),
C(k),
D(k),
E(k),
F(k)
]

=MN(k)[Ma,Mb,Mc,Md,Me,Mf ], ()

where Ma, Mb, Mc, Md , Mf , M are known constant matrices of appropriate dimen-

sions and N(k) is an unknown time-varying matrix with Lebesgue measurable elements

bounded by NT (k)N(k)≤ I .

The following assumptions help to complete the main result.

Assumption I For any i = , , , . . . ,n, there exist constraints F–
i , F

+
i , G

–
i , G

+
i such that

F–
i ≤

fi(x) – fi(x)

x – x
≤ F+

i for all x,x ∈R,x 	= x,

G–
i ≤

gi(y) – gi(y)

y – y
≤ G+

i for all y, y ∈R, y 	= y.

For presentation convenience, in the following we denote

F = diag
{

F–
 F

+
 , . . . ,F

–
mF

+
m

}

, F = diag

{

F–
 + F+




, . . . ,

F–
n + F+

n



}

,

G = diag
{

G–
G

+
 , . . . ,G

–
mG

+
m

}

, G = diag

{

G–
 +G+




, . . . ,

G–
n +G+

n



}

.

Remark . In biologically inspired neural networks, the activation function is usually

an abstraction representing the rate of action potential firing in the cell. Non-monotonic

functions can be more suitable than other activation functions. In many electronic cir-

cuits, the input-output functions of amplifiers may be neither monotonically increasing

nor continuously differentiable. The constants are positive, negative or zero in the above

assumption. So, the activation function may be non-monotonic and more widespread

than usual sigmoid functions and Lipschitz functions. Such conditions are discourteous

in qualifying the lower and upper bounds of the activation functions. Therefore, by using
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the LMI-based technique, the generalized activation function is considered to reduce the

possible conservatism.

Assumption II The disturbance input vector v(x) and u(x) is time-varying and, for given

v > , u >  satisfies vT (x)v(x)≤ v, uT (x)u(x)≤ u.

Before deriving our main results, the following definitions and lemmas will be stated.

Definition . ([]) DNN (), () is said to be robustly finite-time bounded with respect

to (η,η,η,χ ,L,Q,L,Q,u, v), where  < η < η < η < χ and L,L > , if

xT (k)Lx(k) + yT (k)Ly(k) ≤ η ⇒ xT (k)Lx(k) + yT (k)Ly(k) ≤ χ ,

∀ k ∈ {–τM, –τM + , . . . , }, k ∈ {–σM, –σM + , . . . , }, k = k ∈ {, , . . . ,N} holds for any

nonzero v(x), u(x) satisfying Assumption II.

Definition . ([]) DNN (), () with output (), () is said to be robustly finite-time

passive with respect to (η,η,η,χ ,L,Q,L,Q,γ , γ̃,u, v), where  < η < η < η < χ ,ω, ω̃

is a prescribed positive scalar and L >  and L > , iff DNN (), () with output (), ()

is robustly finite-time bounded with respect to (η,η,η,χ ,L,Q,L,Q,u, v) and under the

zero initial condition the output G(k), H(k) satisfies



[

N
∑

k=

g∗T (k)u(k) +

N
∑

k=

hT (k)v(k)

]

≥ γ

[

T
∑

k=

uT (k)u(k) +

T
∑

k=

vT (k)v(k)

]

for any nonzero v(x), u(x) satisfying Assumption II.

Remark . The concept of finite-time passivity is different from that of usual passivity.

If the states in the system exceed their recommended bounds, it is usual passivity. Here, in

this paper, Assumption II and Definition . should be in the given bounds, which helps

to prove the finite-time passivity in the main result.

Lemma. ([]) For any symmetric constantmatrix Z ∈R
n×n, Z ≥ , two scalars τm and

τM satisfying τm ≤ τM , and a vector-valued function ηk = x(k + ) – x(k) (k ∈ Z
+), we have

(i) –

k–τm–
∑

i=k–τM

ηT (i)Zη(i) ≤
–

(τM – τm)

k–τm–
∑

i=k–τM

ηT (i)Z

k–τm–
∑

i=k–τM

η(i);

(ii) –

–τm–
∑

j=–τM

k–
∑

i=k+j

ηT (i)Zη(i)

≤
–

(τM – τm)(τM + τm + )

–τm–
∑

j=–τM

k–
∑

i=k+j

ηT (i)Z

–τm–
∑

j=–τM

k–
∑

i=k+j

ηT (i)η(i).

Lemma . ([]) Let g, g, . . . , gN : Rm → R have positive values in an open subset D

of Rm. Then the reciprocally convex combination of gi over D satisfies

min
{αi|αi>,

∑

i αi=}

∑

i



αi

gi(t) =
∑

i

gi(t) + max
hij(t)

∑

i	=j

hij(t)
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subject to

{

hij :R
m →R,hij(t) = hji(t),

(

gi(t) hi,j(t)

hi,j(t) gj(t)

)}

.

Remark . There are two main methods to find lower bounds. The first one is based on

Moon’s inequality. The second method is the so-called reciprocally convex combination

lemma, and this approach also helps to reduce the number of decision variables. The con-

servatism induced by these two inequalities is independent. While, in some cases, such as

stability conditions resulting from the application of Jensen’s inequality, the reciprocally

convex combination lemma is in general more conservative than Moon’s inequality. Also,

note that the reciprocally convex combination approach is successfully applied on double

summation terms.

3 Robust finite-time boundedness

The main concern in this subsection is that the sufficient conditions for the finite bound-

edness of DNN (), () and the LMI-based robust conditions will be derived using the

Lyapunov technique.

Theorem . Under Assumptions I and II, for given scalars μ > , ρ > , τm, τM , σm, σM ,

DNN model (), () is robustly finite-time bounded with respect to (η,η,η,χ ,L,Q,L,Q,

u, v) if there exist symmetric positive definite matrices Pi, Pi, W , W, R, R, S, S, S, S,

Z, Z, Z, Z,matrices U, U, U, U, U, U, U, U, positive diagonal matrices H, H,

H,H and positive scalars λP , λP , λP , λP , λW , λW , λR , λR , λS , λS , λS , λS , λZ , λZ ,

λZ , λZ , ǫ, ǫ, Pi = P(rk), Pi = P(rk), P̄i =
∑N

j= �ijPj, P̄i =
∑N

j= �ijPj such that the

following LMIs hold for r = , , , :

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�̃r �̃T
 Pi σ̂ �̃T

 Z
σ̌

�̃T

 Z  ǫM̃T
ABC

∗ –Pi   M 

∗ ∗ –Z  M 

∗ ∗ ∗ –Z M 

∗ ∗ ∗ ∗ –ǫI 

∗ ∗ ∗ ∗ ∗ –ǫI

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

< , r = , , ()

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�̆r �̆T
 Pi τ̂ �̆T

 Z
τ̌

�̆T

 Z  ǫ∗M̆T
DEF

∗ –Pi   M 

∗ ∗ –Z  M 

∗ ∗ ∗ –Z M 

∗ ∗ ∗ ∗ –ǫ∗I 

∗ ∗ ∗ ∗ ∗ –ǫ∗I

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

< , r = ,, ()

(

Z U

∗ Z

)

≥ ,

(

Z U

∗ Z

)

≥ ,

(

Z U

∗ Z

)

≥ ,

(

Z U

∗ Z

)

≥ , ()

(

S U

∗ S

)

≥ ,

(

S U

∗ S

)

≥ ,

(

S U

∗ S

)

≥ ,

(

S U

∗ S

)

≥ , ()
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λP I ≤ P ≤ λP I, λP I ≤ P ≤ λP I,  <W ≤ λWI,

 <W ≤ λWI,  < R ≤ λRI,  < R ≤ λRI,

 < Sr ≤ λSr I,  < Zr ≤ λZr I,

()

ψη +ψκ + λQu +ψη +ψκ + λQv <M∗χμ–Nρ–N , ()

where

�̃r =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�̃,,i         

∗ �̃,,i    GH  �̃r �̃r 

∗ ∗ �̃,,i �̃,,i μσm+UT
     

∗ ∗ ∗ �̃,,i �̃,,i  GH   

∗ ∗ ∗ ∗ �̃,,i     

∗ ∗ ∗ ∗ ∗ �̃,,i    

∗ ∗ ∗ ∗ ∗ ∗ �̃,,i   

∗ ∗ ∗ ∗ ∗ ∗ ∗ �̃,,i �̃,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �̃,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

r = , ,

�̆r =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�̆,,i         

∗ �̆,,i    FH  �̆r �̆r 

∗ ∗ �̆,,i �̆,,i ρτm+UT
     

∗ ∗ ∗ �̆,,i �̆,,i  GH   

∗ ∗ ∗ ∗ �̆,,i     

∗ ∗ ∗ ∗ ∗ �̆,,i    

∗ ∗ ∗ ∗ ∗ ∗ �̆,,i   

∗ ∗ ∗ ∗ ∗ ∗ ∗ �̆,,i �̆,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �̆,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

r = ,,

�̃,,i = ( + σ̂ )W + σ̂
(

S +μσm+U

)

+
σ̂


S –μσm+σ̂ Z –μPi –GH,

�̃ = μσm+σ̂U, �̃ = μσm+σ̂Z, �̃,,i = μσm+(U – Z),

�̃,,i = μσm+
(

Z –UT


)

, �̃,,i = μσm+ sym(U – Z) –μσmW –GH,

�̃,,i = μσm+
(

Z –UT


)

, �̃,,i = –μσm+(Z +U), �̃,,i = ( + σ̂ )R –H,

�̃,,i = –μσM+R –H, �̃,,i = –μσm+

(

Z +


σ̂
U

)

,

�̃,,i = –μσm+

(

UT
 –



σ̂
U

)

, �̃,,i = –μσm+

(

Z +


σ̂
U

)

,

�̃ = μσm+σ̂Z, �̃ = μσm+σ̂UT
 ,

�̆,,i = ( + τ̂ )W + τ̂
(

S + ρτm+U

)

+
τ̂


S – ρτm+τ̂ Z – ρPi – FH,

�̆ = ρτm+τ̂U, �̆ = ρτm+τ̂Z, �̆,,i = ρτm+(U – Z),

�̆,,i = ρτm+
(

Z –UT


)

, �̆,,i = ρτm+ sym(U – Z) – ρτmW –GH,

�̆,,i = ρτm+
(

Z –UT


)

, �̆,,i = –ρτm+(Z +U), �̆,,i = ( + τ̂ )R –H,

�̆,,i = –ρτMR –H, �̆,,i = –ρτm+

(

Z +


τ̂
U

)

,
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�̆,,i = –ρτm+

(

UT
 –



τ̂
U

)

, �̆,,i = –ρτm+

(

Z +


τ̂
U

)

,

�̆ = ρτm+τ̂Z, �̆ = ρτm+τ̂UT
 ,

�̃ = [A     B C   I],

�̃ = [A – I      B C   I ]

�̆ = [D     E F   I],

�̆ = [D – I     E F   I ],

M̃ABC = [MA     MB MC   ],

M̆DEF = [MD     ME MF   ],

τ̂ = τM – τm, τ̌ = (τM – τm)(τM + τm + ),

σ̂ = σM – σm, σ̌ = (σM – σm)(σM + σm + ),

f̂ = max
≤i≤n

{
∣

∣F–
i

∣

∣,
∣

∣F+
i

∣

∣

}

, ĝ = max
≤i≤n

{
∣

∣G–
i

∣

∣,
∣

∣G+
i

∣

∣

}

,

ψ = λP +

(

μσM–σM +μσM
σ̂ (σM + σm – )



)

(

λW + f̂ λR

)

+ λSμ
σm– σ̌



+ λSμ
σM–

[(




σm(σm + )(σM + ) – σm(σm + )(σm + )

)

–
σ̌



]

,

ψ = λZμ
σM– σ̂ σ̌


+ λZ

+μσm–σ̌

[(




σm(σm + )(σM + ) – σm(σm + )(σm + )

)

–
σ̌



]

,

ψ = λP +

(

ρτM–τM + ρτM
τ̂ (τM + τm – )



)

(

λW + ĝλR

)

+ λSμ
τm– τ̌



+ λSρ
τM–

[(




τm(τm + )(τM + ) – τm(τm + )(τm + )

)

–
τ̌



]

,

ψ = λZρ
τM– τ̂ τ̌


+ λZ

+ ρτm–τ̌

[(




τm(τm + )(τM + ) – τm(τm + )(τm + )

)

–
τ̌



]

.

Proof Toprove the required results, the following LKF for finite-time passivity BAMDNN

model ()-() is considered:

V (k) =


∑

i=

Vi(k), ()

where

Vi(k) = V(k) +V(k)

= xT (k)Pix(k) + yT (k)Piy(k),
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Vi(k) = V(k) +V(k)

=

k–
∑

i=k–σ (k)

μk–i–xT (i)Wx(i) +

–σM
∑

j=–σM+

k–
∑

i=k+j

μk–i–xT (i)Wx(i)

+

k–
∑

i=k–τ (k)

ρk–i–yT (i)Wy(i) +

–τM
∑

j=–τM+

k–
∑

i=k+j

ρk–i–yT (i)Wy(i),

Vi(k) = V(k) +V(k)

=

k–
∑

i=k–σ (k)

μk–i–gT
(

x(i)
)

Rg
(

x(i)
)

+

–σM
∑

j=–σM+

k–
∑

i=k+j

μk–i–gT
(

x(i)
)

Rg
(

x(i)
)

+

k–
∑

i=k–τ (k)

ρk–i–f T
(

y(i)
)

Rf
(

y(i)
)

+

–τM
∑

j=–τM+

k–
∑

i=k+j

ρk–i–f T
(

y(i)
)

Rf
(

y(i)
)

,

Vi(k) = V(k) +V(k)

=

–σm–
∑

j=–σM

k–
∑

i=k+j

μk–i–xT (i)Sx(i) +

–σm–
∑

l=–σM

–
∑

j=l

k–
∑

i=k+j

μk–i–xT (i)Sx(i)

+

–τm–
∑

j=–τ(M)

k–
∑

i=k+j

ρk–i–yT (i)Sy(i) +

–τm–
∑

l=–τM

–
∑

j=l

k–
∑

i=k+j

ρk–i–yT (i)Sy(i),

Vi(k) = V(k) +V(k)

= σ̂

–σm–
∑

j=–σM

k–
∑

i=k+j

μk–i–ηT (i)Zη(i) +
σ̌



–σm–
∑

l=–σM

–
∑

j=l

k–
∑

i=k+j

μk–i–ηT (i)Zη(i)

+ τ̂

–τm–
∑

j=–τ(M)

k–
∑

i=k+j

ρk–i–ζT (i)Zζ (i) +
τ̌



–τm–
∑

l=–τM

k–
∑

i=k+j

ρk–i–ζT (i)Zζ (i),

where η(k) = x(k + ) – x(k) and ζ (k) = y(k + ) – y(k). Calculating the forward difference

of V(k) by defining 
V (k) = V (k + ) –V (k) along the solution of () and (), we obtain


Va(k) – (μ – )Va(k) +
Va(k) – (ρ – )Va(k)

=


∑

i=

[


Vai (k) – (μ – )Vai (k) +

(

Vai (k)
)

– (ρ – )Vai (k)
]

,

where a = , , . . . , , ()


Vi (k) – (μ – )Vi (k) +

(

Vi (k)
)

– (ρ – )Vi (k)

= xT (k + )Pix(k + ) –μxTPix(k) + yT (k + )Piy(k + )

– ρyTPiy(k)

=
[

Ai(k)x(k – γ) + Bi(k)f
(

y(k)
)

+Cif
(

y
(

k – τ (k)
))

+ u(k)
]T
P̄i

×
[

Ai(k)x(k – γ) + Bi(k)f
(

y(k)
)

+Cif
(

y
(

k – τ (k)
))

+ u(k)
]

–μxT (k)Pix(k)
[

Di(k)y(k – γ) + Ei(k)g
(

x(k)
)

+ Fi(k)
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× g
(

x
(

k – σ (k)
))

+ v(k)
]T
P̄i

[

Di(k)y(k – γ) + Ei(k)g
(

x(k)
)

+ Fi(k)g
(

x
(

k – σ (k)
))

+ v(k)
]

– ρyT (k)Piy(k), ()


Vi (k) – (μ – )Vi (k) +
Vi (k)(ρ – )Vi (k)

≤ xT (k)Wx(k) –μσMxT
(

k – σ (k)
)

Wx
(

k – σ (k)
)

+

k–σm
∑

i=k+–σM

μk–ixT (i)Wx(i) + σ̂xT (k)Wx(k) –

k–σm
∑

i=k+–σM

μk–ixT (i)Wx(i)

+ yT (k)wy(k) – ρτMyT
(

k – τ (k)
)

Wy
(

k – τ (k)
)

+

k–τm
∑

i=k+–τM

ρk–iyT (i)Wy(i) + τ̂yT (k)Wy(k) –

k–τm
∑

i=k+–τM

ρk–iyT (i)Wy(i), ()


Vi (k) – (μ – )Vi (k) +
Vi (k) – (ρ – )Vi (k)

≤ ( + σ̂ )gT
(

x(k)
)

Rg
(

x(k)
)

–μσMgT
(

x
(

k – σ (k)
))

Rg
(

k – σ (k)
)

+

k–σm
∑

i=k+–σM

μk–igT
(

x(i)
)

Rg
(

x(i)
)

–

k–σm
∑

i=k+–σM

μk–igT
(

x(i)
)

Rg
(

x(i)
)

+ ( + τ̂ )f T
(

y(k)
)

Rf
(

y(k)
)

– ρτM f T
(

y
(

k – τ (k)
))

Rf
(

y
(

k – τ (k)
))

+

k–τm
∑

i=k+–τM

ρk–if T
(

y(i)
)

Rf
(

y(i)
)

–

k–τm
∑

i=k+–τM

ρk–if T
(

y(i)
)

Rf
(

y(i)
)

, ()


Vi (k) – (μ – )Vi (k) +
Vi (k) – (ρ – )Vi (k)

≤ ( + σ̂ )xT (k)Sx(k)

–μσm+gT
(

x
(

k – σ (k)
))

Rg
(

k – σ (k)
)

k–σm–
∑

i=k–σM

xT (i)Sx(i)

+
σ̂


xT (k)Sx(k) –μσm+

–σm–
∑

l=–σM

k–
∑

j=k+l

xT (j)Sx(j) + τ̂yT (k)Sy(k)

– ρτm+

k–τm–
∑

i=k–τM

yT (i)Sy(i)
τ̂


yT (k)Sy(k) – ρτm+

–σm–
∑

l=–σM

k–
∑

j=k+l

yT (j)Sy(j), ()


Vi (k) – (μ – )Vi (k) +
Vi (k) – (ρ – )Vi (k)

≤ σ̂ ηT (k)Zη(k) – σ̂μσm+

k–σm–
∑

i=k–σM

ηT (i)Zη(i)
σ̌ 


ηT (k)Zη(k)

–
σ̌


μσm+

–σm–
∑

l=–σM

k–
∑

j=k+l

ηT (j)Zη(j) + τ̂ ζT (k)Zζ (k)

– τ̂ ρτm+

k–σm–
∑

j=k–τM

ζ iZζ (i)
τ̌ 


ζT (k)Zζ (k) –

τ̌


ρτm+

–σm–
∑

l=–σM

k–
∑

j=k+l

ζT (j)Zζ (j)
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≤
[(

A(k) – I
)

x(k – γ) + B(k)f
(

y(k)
)

+ c(k)f
(

y
(

k – τ (k)
))

+ v(k)
]

–μσm+σ̂

k–σm–
∑

i=k–σM

ηT (i)Zη(i) –μσm+ σ̌



j=–σm–
∑

l=–σM

k–
∑

j=k+l

ηT (j)Zη(j)

+
[

E(k)g
(

x(k)
)

+ F(k)g
(

y
(

k – σ (k)
))

+ u(k)
]

– ρτm τ̂

k–σm–
∑

i=k–τM

ζT (i)Zζ (i)ρ
τm+ τ̌



j=–σm–
∑

l=–σM

k–
∑

j=k+l

ζT (j)Zζ (j). ()

Using Lemma .(i), the first summation term in 
Vi can be written as

–σ̂

k–σm–
∑

s=k–σM

ηT (s)Zη(s) = – σ̂

k–σ (k)–
∑

s=k–σM

ηT (s)Zη(s) – σ̂

k–σm–
∑

s=k–σ (k)

ηT (s)Zη(s)

≤
–σ̂

σ

k–σ (k)–
∑

s=k–σM

ηT (s)Z

k–σ (k)–
∑

s=k–σM

η(s)

–
σ̂

σ

k–σ (m)–
∑

s=k–d(k)

ηT (s)Z

k–σm–
∑

s=k–σ (k)

η(s)

≤
–σ̂

σ

[

x
(

k – σ (k)
)

– x(k – σM)
]T
Z

[

x
(

k – σ (k)
)

– x(k – σM)
]

–
σ̂

σ

[

x(k – σm) – x
(

k – σ (k)
)]T

Z

[

x(k – σm) – x
(

k – σ (k)
)]

.

Similarly,

–τ̂

k–τm–
∑

s=k–τM

ζT (s)Zζ (s)

≤
–τ̂

τ

[

y
(

k – τ (k)
)

– y(k – τM)
]T
Z

[

y
(

k – τ (k)
)

– y(k – τM)
]

–
τ̂

τ

[

y(k – τm) – y
(

k – τ (k)
)]T

Z

[

y(k – τm) – y
(

k – τ (k)
)]

. ()

Further, using Lemma .(ii), the second summation term in 
Vi(k) becomes

σ̌



–σm–
∑

l=–σM

k–
∑

j=k+l

ηT (j)Zη(j) =
σ̌



–σ (k)–
∑

l=–σM

k–
∑

j=k+l

ηT (j)Zη(j) +
σ̌



–σm–
∑

l=–σ (k)

k–
∑

j=k+l

ηT (j)Zη(j)

≥
σ̌

σ

[

–σ (k)–
∑

l=–σM

k–
∑

j=k+l

ηT (j)Z

–σm–
∑

l=–σ (k)

k–
∑

j=k+l

η(j)

]

+
σ̌

σ

[

–σm–
∑

l=–σ (k)

k–
∑

j=k+l

ηT (j)Z

–σm–
∑

l=–σ (k)

k–
∑

j=k+l

η(j)

]



Sowmiya et al. Advances in Difference Equations  ( 2017)  2017:318 Page 12 of 28

≥
σ̌

σ

[

σx(k) –

k–σ (k)–
∑

i=k–σM

x(i)

]T

Z

[

σx(k) –

k–σm–
∑

i=k–σM

x(i)

]

+
σ̌

σ

[

σx(k) –

k–σm–
∑

i=k–σ (k)

x(i)

]T

Z

[

σx(k) –

k–σm–
∑

i=k–σ (k)

x(i)

]

. ()

By reciprocally convex combination Lemma ., if LMIs in () hold, then the following

inequalities hold:

⎛

⎝

√

α
α
(xT (k – σ (k)) – xT (k – σM))

–
√

α
α
(xT (k – σM) – xT (k – σ (k)))

⎞

⎠

T
(

Z U

∗ Z

)

×

⎛

⎝

√

α
α
(xT (k – σ (k)) – xT (k – σM))

–
√

α
α
(xT (k – σM) – xT (k – σ (k)))

⎞

⎠ ≥ ,

⎛

⎝

√

β
β
(σx

T (k) –
∑k–σ (k)–

i=k–σM
xT (i))

–
√

β
β
(σx

T (k) –
∑k–σm–

i=k–σ (k) x
T (i))

⎞

⎠

T
(

Z U

∗ Z

)

×

⎛

⎝

√

β
β
(σx

T (k) –
∑k–σ (k)–

i=k–σM
xT (i))

–
√

β
β
(σx

T (k) –
∑k–σm–

i=k–σ (k) x
T (i))

⎞

⎠ ≥ ,

where α = σ
σ̂
, α = σ

σ̂
, β = σ

σ̌
, β = σ

σ̌
with σ = (σM – σ (k)), σ = (σ (k) – σm),

σ = (σM – σ (k))(σM + σ (k) + ), σ = (σ (k) – σm)(σ (k) + σm + ).

Similarly,

τ̌



–τm–
∑

l=–τM

k–
∑

j=k+l

ζT (j)Zζ (j) =
τ̌



–τ (k)–
∑

l=–τM

k–
∑

j=k+l

ζT (j)Zζ (j) +
τ̌



–τm–
∑

l=–τ (k)

k–
∑

j=k+l

ζT (j)Zζ (j)

≥
τ̌

τ

[

–τ (k)–
∑

l=–τM

k–
∑

j=k+l

ζT (j)Z

–τm–
∑

l=–τ (k)

k–
∑

j=k+l

ζ (j)

]

+
τ̌

τ

[

–τm–
∑

l=–τ (k)

k–
∑

j=k+l

ζT (j)Z

–τm–
∑

l=–τ (k)

k–
∑

j=k+l

ζ (j)

]

≥
τ̌

τ

[

τy(k) –

k–τ (k)–
∑

i=k–τM

y(i)

]T

Z

[

τy(k) –

k–τm–
∑

i=k–τM

y(i)

]

+
τ̌

τ

[

τy(k) –

k–τm–
∑

i=k–τ (k)

y(i)

]T

Z

[

τy(k) –

k–τm–
∑

i=k–τ (k)

y(i)

]

.

By reciprocally convex combination Lemma ., if LMIs in () hold, then the following

inequalities hold:

⎛

⎝

√

α
α
(yT (k – τ (k)) – yT (k – τM))

–
√

α
α
(yT (k – τM) – yT (k – τ (k)))

⎞

⎠

T
(

Z U

∗ Z

)

×

⎛

⎝

√

α
α
(yT (k – τ (k)) – yT (k – τM))

–
√

α
α
(yT (k – τM) – yT (k – τ (k)))

⎞

⎠ ≥ ,
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⎛

⎝

√

β
β
(τy

T (k) –
∑k–σ (k)–

i=k–σM
yT (i))

–
√

β
β
(τy

T (k) –
∑k–σm–

i=k–σ (k) y
T (i))

⎞

⎠

T
(

Z U

∗ Z

)

×

⎛

⎝

√

β
β
(τy

T (k) –
∑k–σ (k)–

i=k–σM
yT (i))

–
√

β
β
(τy

T (k) –
∑k–σm–

i=k–σ (k) y
T (i))

⎞

⎠ ≥ ,

where α = τ
τ̂
, α = τ

τ̂
, β = τ

τ̌
, β = τ

τ̌
with τ = (τM – τ (k)), τ = (τ (k) – τm),

τ = (τM – τ (k))(τM + τ (k) + ), τ = (τ (k) – τm)(τ (k) + τm + ).

Then inequalities () and () can be rewritten as

–σ̂

k–σm–
∑

s=k–σM

ηT (s)Zη(s)≤ –

(

xT (k – σ (k)) – xT (k – σM))

xT (k – σm) – xT (k – σ (k))

)T (

Z U

∗ Z

)

×

(

x(k – σ (k)) – x(k – σM)

x(k – σm) – x(k – σ (k))

)

, ()

–
σ̌



–σm–
∑

l=–σM

k–
∑

j=k+l

ηT (j)Zη(j) ≤ –

(

σx
T (k) –

∑k–σ (k)–
i=k–σM

xT (i)

σx
T (k) –

∑k–σm–
i=k–σ (k) x

T (i)

)T (

Z U

∗ Z

)

×

(

σx
T (k) –

∑k–σ (k)–
i=k–σM

xT (i)

σx
T (k) –

∑k–σm–
i=k–σ (k) x

T (i)

)

. ()

Similarly,

–τ̂

k–σm–
∑

s=k–σM

ζT (s)Zζ (s)≤ –

(

yT (k – τ (k)) – yT (k – τM)

yT (k – τm) – yT (k – τ (k))

)T (

Z U

∗ Z

)

×

(

y(k – τ (k)) – y(k – τM)

y(k – τm) – y(k – τ (k))

)

, ()

–
τ̌



–τm–
∑

l=–τM

ζT (j)Zζ (j) ≤

(

τy
T (k) –

∑k–τ (k)–
i=k–τM

yT (i)

τy
T (k) –

∑k–τm–
i=k–τ (k) y

T (i)

)T (

Z U

∗ Z

)

×

(

τy
T (k) –

∑k–τ (k)–
i=k–τM

yT (i)

τy
T (k) –

∑k–τm–
i=k–τ (k) y

T (i)

)

. ()

It is noted that when σ (k) = σm or σ (k) = σM and τ (k) = τm or τ (k) = τM , we have

x(k – σ (k)) – x(k – σM) =  or x(k – σm) – x(k – σ (k)) =  and y(k – τ (k)) – y(k – τM) =  or

y(k – τm) – y(k – τ (k)) = , respectively. So, inequalities () and () still hold.

For any matrices u, u, u, u, the following equalities hold:

μσm+

[

xT (k – σm)Ux(k – σm) – xT (k – σM)Ux(k – σM)

–

k–σm–
∑

s=k–σM

[

ηT (s)Uη(s) + xT (s)Uη(s)
]

]

= , ()
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μσm+

[

σ̂xT (k)Ux(k – σm) – xT (k – σM)Ux(k – σM)

–

k–σm–
∑

s=k–σM

[

ηT (j)Uη(j) + xT (j)Uη(j)
]

]

= , ()

ρσm+

[

yT (k – σm)Uy(k – τm) – yT (k – τM)Uy(k – τM)

–

k–σm–
∑

s=k–σM

[

ζT (s)Uζ (s) + yT (s)Uζ (s)
]

]

= , ()

ρσm+

[

τ̂yT (k)Uy(k) –

k–σm–
∑

s=k–σM

yT (s)Ux(s)

–

–σm–
∑

l=–τM

k–
∑

j=k+l

[

ζT (j)Uζ (j) + yT (j)Uζ (j)
]

]

= . ()

On the other hand, from Assumption I, we have

(

fi
(

xi(k)
)

– F–
i

(

xi(k)
))

–
(

fi
(

xi(k)
)

– F+
i

(

xi(k)
))

≤ ,

(

gi
(

yi(k)
)

–G–
i

(

yi(k)
))

–
(

gi
(

yi(k)
)

–G+
i

(

yi(k)
))

≤ ,

which is equivalent to

(

x(k)

g(x(k))

)T (

G–
i G

+
i eie

T
i –

–G–
i +G

+
i


eie

T

G–
i +G

+
i


eie

T eie
T

)(

x(k)

g(x(k))

)

i=,,...,k

≤ 

and

(

y(k)

f (y(k))

)T (

F–
i F

+
i eie

T
i –

–F–i +F
+
i


eie

T

F–i +F
+
i


eie

T eie
T

)(

y(k)

f (y(k))

)

i=,,...,n

≤ ,

where ei denotes the unit column vector having the element  on its rth row and zero

elsewhere. LetH = diag{h,h, . . . ,hn},H = diag{h,h, . . . ,hn},H = diag{h,h, . . . ,

hn}, H = diag{h,h, . . . ,hn}.

Then

n
∑

i=

hi

(

x(k)

g(x(k))

)T (

G–
i G

+
i eie

T
i –

–G–
i +G

+
i


eie

T

–
G–
i +G

+
i


eie

T eie
T

)(

x(k)

g(x(k))

)

≤ ,

(

x(k)

g(x(k))

)T (

GH –GH

GH H

)(

x(k)

g(x(k))

)

≤ .

()

Similarly,

(

y(k)

f (y(k))

)T (

FH –FH

GH H

)(

y(k)

f (y(k))

)

≤ . ()
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Similarly, one can get

(

x(k – σ (k))

g(x(k – σ (k)))

)T (

GH –GH

GH H

)(

x(k – σ (k))

g(x(k – σ (k)))

)

≤ 

and

(

y(k – τ (k))

f (y(k – τ (k)))

)T (

GH –GH

–GH H

)(

y(k – τ (k))

f (y(k – τ (k)))

)

≤ .

Then from () and adding ()-() gives


Va(k) – (μ – )Va(k) –VT (k)QV (k) +
Va(k) – (ρ – )Va(k) – uT (k)Qu(k)

≤ ̟T (k)

[

� +�T
 Pi� + σ̂ �T

 Z� +
σ̌ 


�T

 Z�

]

̟ (k)

–μσm+

[

k–σm–
∑

s=k–σM

̟T
 (s)�̟

T
 (s) –

–σm–
∑

l=–σM

k–
∑

j=k+l

̟T
 (j)�̟

T
 (j)

]

+�T (k)

[

� +�T
 Pi� + τ̂ �T

 Z� +
τ̌ 


�T

 Z�

]

�(k)

– ρτm+

[

k–τm–
∑

s=k–τM

�T
 (s)��

T
 (s) –

–σm–
∑

l=–σM

k–
∑

j=k+l

�T
 (j)��

T
 (j)

]

, ()

where

� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ψ�,,i         

∗ �,,i    GH  � � 

∗ ∗ �,,i �,,i μσm+UT
     

∗ ∗ ∗ �,,i �,,i  GH   

∗ ∗ ∗ ∗ �,,i     

∗ ∗ ∗ ∗ ∗ �,,i    

∗ ∗ ∗ ∗ ∗ ∗ �,,i   

∗ ∗ ∗ ∗ ∗ ∗ ∗ �,,i �,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

φ�,,i         

∗ �,,i    FH  � � 

∗ ∗ �,,i �,,i ρτm+UT
     

∗ ∗ ∗ �,,i �,,i  GH   

∗ ∗ ∗ ∗ �,,i     

∗ ∗ ∗ ∗ ∗ �,,i    

∗ ∗ ∗ ∗ ∗ ∗ �,,i   

∗ ∗ ∗ ∗ ∗ ∗ ∗ �,,i �,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

�,,i = ( + σ̂ )W + σ̂
(

S +μσm+U

)

+
σ̂


S

–μσm+
(

σ 
 Z – σ 

Z – σσ

(

U +U


))

–μPi –GH,

� = μσm+(σZ + σU), � = μσm+
(

σZ + σU
T


)

,
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�,,i = μσm+(U – Z), �,,i = μσm+
(

Z –UT


)

,

�,,i = μσm+ sym(U – Z) –μσmW –GH,

�,,i = μσm+
(

Z –UT


)

, �,,i = –μσm+(Z +U), �,,i = ( + σ̂ )R –H,

�,,i = –μσMR –H, �,,i = –μσm+

(

Z +


σ̂
U

)

,

�,,i = –μσm+

(

UT
 –



σ̂
U

)

, �,,i = –μσm+

(

Z +


σ̂
U

)

,

�,,i = ( + τ̂ )W + τ̂
(

S + ρτm+U

)

+
τ̂


S

– ρτm+
(

τ 
 Z – τ 

Z – ττ
)

– ρ
(

U +U


)

Pi – FH,

� = ρτm+(τZ + τU), � = ρτm+
(

τZ + τU
T


)

,

�,,i = ρτm+(U – Z), �,,i = ρτm+
(

Z –UT


)

,

�,,i = ρτm+ sym(U – Z) – ρτmW –GH,

�,,i = ρτm+
(

Z –UT


)

, �,,i = –ρτm+(Z +U), �,,i = ( + τ̂ )R –H,

�,,i = –ρτMR –H, �,,i = –ρτm+

(

Z +


τ̂
U

)

,

�,,i = –ρτm+

(

UT
 –



τ̂
U

)

, �,,i = –ρτm+

(

Z +


τ̂
U

)

,

� =
[

A(k)     B(k) C(k)   I
]

,

� =
[

A(k) – I     B(k) C(k)   I
]

,

� =
[

D(k)     E(k) F(k)   I
]

,

� =
[

D(k) – I     E(k) F(k)   I
]

,

̟ =

[

xT (k – γ) x
T (k) xT (k – σm) x

T
(

k – σ (k)
)

xT (k – σM) g
T
(

x(k)
)

gT
(

x
(

k – σ (k)
))

×

k–σ (k)–
∑

i=k–σM

xT (i)

k–σm–
∑

i=k–σ (k)

xT (i)vT (k)

]T

,

� =

[

yT (k – γ) y
T (k) yT (k – τm) y

T
(

k – τ (k)
)

yT (k – τM) f
T
(

y(k)
)

f T
(

y
(

k – τ (k)
))

×

k–τ (k)–
∑

i=k–τM

yT (i)

k–τm–
∑

i=k–τ (k)

yT (i)uT (k)

]T

,

� =

(

S U

∗ U

)

, � =

(

S U

∗ U

)

, � =

(

S U

∗ U

)

, � =

(

S U

∗ U

)

,

and

̟ =
[

xT (k)ηT (k)
]T
, � =

[

yT (k)ζT (k)
]T
.
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Next, in view of Schur complement [], the RHS of () can be written as

� +�T
 Pi� + σ̂ �T

 Z� +
σ̌ 


�T

 Z�
T
 Z�

≤

⎛

⎜

⎜

⎜

⎝

� �T
 Pi σ̂�T

 Z
σ̌

�T

 Z

∗ –Pi  

∗ ∗ –Z 

∗ ∗ ∗ –Z

⎞

⎟

⎟

⎟

⎠

Similarly, for

� +�T
 Pi� + τ̂ �T

 Z� +
τ̌ 


�T

 Z�

≤

⎛

⎜

⎜

⎜

⎝

� �T
 Pi τ̂�T

 Z
τ̌

�T

 Z

∗ –Pi  

∗ ∗ –Z 

∗ ∗ ∗ –Z

⎞

⎟

⎟

⎟

⎠

Then, by using uncertainty description (), () and procedure as in Lemma ., we have

� +�T
 P� + σ̂ �T

 Z� +
σ̌ 


�T

 Z�
T
 Z�

≤

⎛

⎜

⎜

⎜

⎝

� �̃T
 Pi σ̂ �̃T

 Z
σ̌

�̃T

 Z

∗ –Pi  

∗ ∗ –Z 

∗ ∗ ∗ –Z

⎞

⎟

⎟

⎟

⎠

+ sym
(

M̃N(k)M̃abc

)

≤

⎛

⎜

⎜

⎜

⎝

� �̃T
 Pi σ̂ �̃Z

T


σ̌

�̃T

 Z

∗ –Pi  

∗ ∗ –Z 

∗ ∗ ∗ –Z

⎞

⎟

⎟

⎟

⎠

+ ε–M̃M̃T + εM̃T
abcM̃abc, ()

where

M̃ =
[

,n MT MT MT
]

,

M̃abc = [MA ,n MB MC ,n],

� +�T
 P� + τ̂ �T

 Z� +
τ̌ 


�T

 Z�
T
 Z�

≤

⎛

⎜

⎜

⎜

⎝

� �̆T
 Pi τ̂ �̆T

 Z
τ̌

�̆T

 Z

∗ –Pi  

∗ ∗ –Z 

∗ ∗ ∗ –Z

⎞

⎟

⎟

⎟

⎠

+ sym
(

M̆N(k)M̆def

)

≤

⎛

⎜

⎜

⎜

⎝

� �̆T
 Pi τ̂ �̆Z

T


τ̌

�̆T

 Z

∗ –Pi  

∗ ∗ –Z 

∗ ∗ ∗ –Z

⎞

⎟

⎟

⎟

⎠

+ ε– M̆M̆T + εM̆
T
def M̆def , ()
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where

M̆ =
[

,n MT MT MT
]

,

M̆def = [MD ,n ME MF ,n].

Hence if LMIs ((), (), (), () hold, it is easy to get


V (k) = 
Vr(k) +
Vr(k)


Vr(k) – (μ – )
Vr – vT (k)Qv(k)

+
Vr(k) – (ρ – )
Vr – uT (k)Qu(k) ≤ 

V (k + ) –V (k) ≤
[

(μ – ) + (ρ – )
]

V (k) + uT (k)Qu(k)

+ vT (k)Qv(k)

≤
[

(μ – ) + (ρ – )
]

v(k) + λQu
T (k)u(k)

+ λQv
T (k)v(k), ()

where λQ = λmax(Q) and λQ = λmax(Q). Simple computation gives

V (k + ) ≤ μV (k) + ρV (k) + λQu
Tu(k) + λQv

Tv(k).

Noticing μ ≥  and ρ ≥ , it follows that

V (k) ≤ μkV () + ρkV () + λQ

k–
∑

n=

μk–n–uT (n)u(n) + λQ

k–
∑

n=

μk–n–vT (n)v(n)

≤ μkV () + ρkV () +μkλQu +μkλQv. ()

Further, from (), we can get

V () = xT ()Pix() + yTPiy() +

–
∑

i=–σ ()

μ–i–xT (i)Wx(i) +

–σM
∑

j=–σM+

–
∑

i=j

μ–i–xT (i)Wx(i)

+

–
∑

i=k–τ ()

ρ–i–yT (i)Wy(i) +

–τM
∑

j=–τM+

–
∑

i=j

ρ–i–yT (i)Wy(i)

+

–
∑

i=k–σ ()

μ–i–gT
(

x(i)
)

Rg
(

x(i)
)

+

–σM
∑

j=–σM+

–
∑

i=j

μ–i–gT
(

x(i)
)

Rg
(

x(i)
)

+

–
∑

i=k–τ ()

ρ–i–f T
(

y(i)
)

Rf
(

y(i)
)

+

–τM
∑

j=–τM+

–
∑

i=j

ρ–i–f T
(

y(i)
)

Rf
(

y(i)
)

+

–σm–
∑

j=–σM

–
∑

i=j

μ–i–xT (i)Sx(i) +

–σm–
∑

l=–σM

–
∑

j=l

–
∑

i=j

μ–i–xT (i)Sx(i)

+

–τm–
∑

j=–τ(M)

–
∑

i=j

ρ–i–yT (i)Sy(i)
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+

–τm–
∑

l=–τM

–
∑

j=l

–
∑

i=j

ρ–i–yT (i)Sy(i)σ̂

–σm–
∑

j=–σM

–
∑

i=j

μ–i–ηT (i)Zη(i)

+
σ̌



–σm–
∑

l=–σM

–
∑

j=l

–
∑

i=j

μ–i–ηT (i)Zη(i) + τ̂

–τm–
∑

j=–τ(M)

–
∑

i=j

ρ–i–ζT (i)Zζ (i)

+
τ̌



–τm–
∑

l=–τM

–
∑

i=j

ρ–i–ζT (i)Zζ (i).

Letting

P = L
–
 PiL

–
 , P = L



 PiL

–

 ; W = L

–
 WL

–
 , W = L

–

 WL

–

 ,

R = L
–
 RL

–
 , R = L

–

 RL

–
 , S = L

–
 SL

–
 , S = L

–

 SL

–
 ,

S = L
–

 SL

–

 , S = L

–

 SL

–
 ,

we obtain

V () = xT ()L

 PL


 x() + yT ()L



 PL



 y() +

–
∑

i=–σ ()

μ–i–xTL

 (i)WL


 x(i)

+

–σM
∑

j=–σM+

–
∑

i=j

μ–i–xT (i)L

WL


 x(i) +

–
∑

i=–τ ()

ρ–i–yT (i)L


 WL


 L



 y(i)

+

–τM
∑

j=–τM+

–
∑

i=j

ρ–i–yT (i)L


 WL



 y(i) +

–
∑

i=k–σ ()

μ–i–gT
(

x(i)
)

L

RL


 g

(

x(i)
)

+

–σM
∑

j=–σM+

–
∑

i=j

μ–i–gT
(

x(i)
)

L

RL


 g

(

x(i)
)

+

–
∑

i=k–τ ()

ρ–i–f T
(

y(i)
)

L


 RL



 f

(

y(i)
)

+

–τM
∑

j=–τM+

–
∑

i=j

ρ–i–f T
(

y(i)
)

L


 RL



 f

(

y(i)
)

+

–σm–
∑

j=–σM

–
∑

i=j

μ–i–xT (i)L

 SL


 x(i)

+

–σm–
∑

l=–σM

–
∑

j=l

–
∑

i=j

×μ–i–xT (i)L

 SL


 x(i) +

–τm–
∑

j=–τ(M)

–
∑

i=j

ρ–i–yT (i)L


 SL



 y(i)

+

–τm–
∑

l=–τM

–
∑

j=l

–
∑

i=j

ρ–i–yT (i)L


 SL



 y(i) + σ̂

–σm–
∑

j=–σM

–
∑

i=j

μ–i–ηT (i)Zη(i)

+
σ̌



–σm–
∑

l=–σM

–
∑

j=l

–
∑

i=j

μ–i–ηT (i)Zη(i) + τ̂

–τm–
∑

j=–τ(M)

–
∑

i=j

ρ–i–ζT (i)Zζ (i)

+
τ̌



–τm–
∑

l=–τM

–
∑

i=j

ρ–i–ζT (i)Zζ (i)

≤ λPx
T ()Lx() + λPy

T ()Ly() + λW

–
∑

i=–σ ()

μ–i–xTLx(i)
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+ λW

–σM
∑

j=–σM+

–
∑

i=j

μ–i–xT (i)Lx(i) + λW

–
∑

i=–τ ()

ρ–i–yT (i)Ly(i)

+ λW

–τM
∑

j=–τM+

–
∑

i=j

ρ–i–yT (i)Ly(i) + ĝλR

–
∑

i=k–σ ()

sμ–i–xT (i)Lx(i)

+ ĝλR

–σM
∑

j=–σM+

–
∑

i=j

μ–i–xT (i)Lx(i) + f̂ λR

–
∑

i=k–τ ()

ρ–i–yT (i)Ly(i)

+ f̂ λR

–τM
∑

j=–τM+

–
∑

i=j

ρ–i–yT (i)Ly(i) + λS σ̂

–σm–
∑

j=–σM

–
∑

i=j

μ–i–xT (i)x(i)

+ λS σ̂

–σm–
∑

l=–σM

–
∑

j=l

–
∑

i=j

μ–i–xT (i)x(i) + λS τ̂

–τm–
∑

j=–τ(M)

–
∑

i=j

ρ–i–yT (i)y(i)

+ λS τ̂

–τm–
∑

l=–τM

–
∑

j=l

–
∑

i=j

ρ–i–yT (i)y(i) + λZ σ̂

–σm–
∑

j=–σM

–
∑

i=j

μ–i–ηT (i)η(i)

+ λZ

σ̌



–σm–
∑

l=–σM

–
∑

j=l

–
∑

i=j

μ–i–ηT (i)η(i) + λZ τ̂

–τm–
∑

j=–τ(M)

–
∑

i=j

ρ–i–ζT (i)ζ (i)

+ λZ

τ̌



–τm–
∑

l=–τM

–
∑

i=j

ρ–i–ζT (i)ζ (i)

≤

[

λP +

(

μσM–σM +μσM
σ̂ + σm – 



)

(

λW + f̂ λR

)

+ λSμ
σM– σ̌



+ λSμ
σM–

[(




σM(σM + )(σM + ) – σm(σm + )(σm + )

)

–
σ̌



]]

η

+

[

λP +

(

ρτM–τM + ρτM
τ̂ + τm – 



)

(

τW + ĝλR

)

+ λSρ
τM– τ̌



+ λSρ
τM–

[(




τM(τM + )(τM + ) – τm(τm + )(τm + )

)

–
τ̌



]]

η

+

[

λZμ
σM– σ̂ σ̌



+ λZμ
σM–σ̌

[(




σM(σM + )(σM + ) – σm(σm + )(σm + )

)

–
σ̌



]]

κ

+

[

λZρ
τM– τ̂ τ̌



+ λZρ
τM–τ̌

[(




τM(τM + )(τM + ) – τm(τm + )(τm + )

)

–
τ̌



]]

κ,

where λP = λmax(P), λP = λmax(P), λ
P = λmin(P), λ

P = λmin(P), λW = λmax(W), λW =

λmax(W), λR = λmax(R), λR = λmax(R), λS = λmax(S), λS = λmax(S), λS = λmax(S),

λS = λmax(S), λZ = λmax(Z), λZ = λmax(Z), λZ = λmax(Z), λZ = λmax(Z).
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On the other hand, from (), we can obtain that

V (k) ≥ xT (k)Pix(k) + yT (k)Piy(k)

≥ xT (k)L

 PL


 x(k) + yT (k)L



 PL



 y(k)

≥ λPxT (k)Lx(k) + yT (k)L


 PL



 y(k)

≥ M∗
[

xT (k)Lx(k) + yT (k)Ly(k)
]

. ()

PutM∗ = min{λP ,λP}.

From () to (), we get

xT (k)Lx(k) + yT (k)Ly(k) <
(ψη +ψκ + λQu)μ

k + (ψη +ψκ + λQv)ρ
k

M∗

<
(ψη +ψκ + λQu)μ

k + (ψη +ψκ + λQv)ρ
k

M∗
.

Therefore, from (), we get that

xT (k)Lx(k) + yT (k)Ly(k) < χ , ∀k ∈ {, , , . . . ,N}.

Then, using Definition ., DNN (), () is robustly finite-time bounded. �

Remark . Leakage time delay in the stabilizing negative feedback term has a tendency

to destabilize a system. The term x(k – γ), y(k – γ) in system () and () corresponds to

a stabilizing negative feedback of the system which acts instantaneously with time delay.

The term is variously known as leakage (or forgetting) term which is considered as a time

delay.

4 Robust finite-time passivity

In this subsection, we focus on the robust finite-time passivity of DNN (), () with output

(), (). In order to deal this, we introduce I = gT (k)u(k)+uT (k)Qu(k) and J = hT (k)v(k)+

vT (k)Qv(k).

Theorem . Under Assumptions I and II, for given scalars μ > , ρ > , τm, τM , σm, σM ,

DNN model (), () is robustly finite-time passive with respect to (η,η,η,χ ,L,Q,L,Q,

u, v), if there exist symmetric positive definite matrices Pi, Pi,W ,W, R, R, S, S, S, S,

Z, Z, Z, Z,matrices U, U, U, U, U, U, U, U, positive diagonal matrices H, H,

H,H and positive scalars λP , λP , λP , λP , λW , λW , λR , λR , λS , λS , λS , λS , λZ , λZ ,

λZ , λZ , ǫ, ǫ
∗, Pi = P(rk), Pi = P(rk), P̄i =

∑N
j= �ijPj, P̄i =

∑N
j= �ijPj, ω, ω such that

the following LMIs (), () hold for r = , , , :

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�̃r �̃T
 Pi σ̂ �̃T

 Z
σ̌

�̃T

 Z  ǫM̃T
ABC

∗ –Pi   M 

∗ ∗ –Z  M 

∗ ∗ ∗ –Z M 

∗ ∗ ∗ ∗ –ǫI 

∗ ∗ ∗ ∗ ∗ –ǫI

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

< , r = , , ()
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⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�̆r �̆T
 Pi τ̂ �̆T

 Z
τ̌

�̆T

 Z  ǫ∗M̆T
DEF

∗ –Pi   M 

∗ ∗ –Z  M 

∗ ∗ ∗ –Z M 

∗ ∗ ∗ ∗ –ǫ∗I 

∗ ∗ ∗ ∗ ∗ –ǫ∗I

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

< , r = ,, ()

ψη +ψκ +μ–Tu +ψη +ψκ + ρ–Tv <M∗χμ–Tρ–T , ()

where

�̃r =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�̃,,i         

∗ �̃,,i    GH  �̃r �̃r 

∗ ∗ �̃,,i �̃,,i μσm+UT
     

∗ ∗ ∗ �̃,,i �̃,,i  GH   

∗ ∗ ∗ ∗ �̃,,i     

∗ ∗ ∗ ∗ ∗ �̃,,i    –BT
g∗

∗ ∗ ∗ ∗ ∗ ∗ �̃,,i   –CT
g∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ �̃,,i �̃,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �̃,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –ωI

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

r = , ,

�̆r =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�̆,,i         

∗ �̆,,i    FH  �̆r �̆r 

∗ ∗ �̆,,i �̆,,i ρτm+UT
     

∗ ∗ ∗ �̆,,i �̆,,i  GH   

∗ ∗ ∗ ∗ �̆,,i     

∗ ∗ ∗ ∗ ∗ �̆,,i    –ET
h

∗ ∗ ∗ ∗ ∗ ∗ �̆,,i   –FT
h

∗ ∗ ∗ ∗ ∗ ∗ ∗ �̆,,i �̆,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �̆,,i 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –ωI

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

r = ,

and the parameters are defined in the above theorem.

Proof The proof is followed from the theorem above by choosing u = ωμ–T in I and v =

ωρ
–T in J . Using similar lines of (), it follows that


Vr(k) – (μ – )Vr(k) – gT (k)u(k) –ωμ–TuT (k)u(k)

+
Vr(k) – (ρ – )Vr(k) – hT (k)v(k) –ωρ
–TvT (k)v(k)≤ ,

V (k + ) –V (k) ≤ (μ – )Vr(k) + (ρ – )Vr(k) + gT (k)u(k) + hT (k)v(k)

+ωμ–TuT (k)u(k) +ωμ
–TvT (k)v(k).

By simple computation,

v(k)≤ μkvr() + ρkvr() + 

k–
∑

i=

μk–i–gT (i)u(i) + 

k–
∑

i=

ρk–i–hT (i)v(i)

+wμ–T

k–
∑

i=

μk–i–uT (i)u(i) +wμ
–T

k–
∑

i=

ρk–i–vT (i)v(i).
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Under the zero initial condition and noticing v(k)≥  for all k ∈ {, , , . . . ,N}, we have



k–
∑

i=

μk–i–gT (i)u(i) + 

k–
∑

i=

ρk–i–hT (i)v(i)≥ –ωμ–T

k–
∑

i=

μk–i–uT (i)u(i)

–ωμ
–T

k–
∑

i=

ρk–i–vT (i)v(i).

Noticing that μ,ρ ≥ , we have



[

T
∑

k=

μT–kgT (k)u(k) +

T
∑

k=

ρT–khT (k)v(k)

]

≥ –ωμ–T

T
∑

k=

μT–kuT (k)u(k)

–ωρ
–T

T
∑

k=

ρT–kvT (k)v(k). ()

Let γ ∗ = max{ω,ω}



[

T
∑

k=

μT–kg∗T (k)u(k) +

T
∑

k=

ρT–khT (k)v(k)

]

≥ γ ∗

[

–μ–T

T
∑

k=

μT–kg∗T (k)u(k) – ρ–T

]

.

Therefore, from (), it is easy to get the inequality in Definition .. Hence it can be con-

cluded that DNNmodel (), () is robustly finite-time passive. This completes the proof.�

Remark . If leakage terms γ and γ become zero, then the neural networks system

()-() is

x(k + ) = A
(

r(k)
)

x(k) + B
(

r(k)
)

f
(

y(k)
)

+C
(

r(k)
)

f
(

y
(

k – τ (k)
))

+ u(k),

g∗(k) = Bg∗
(

r(k)
)

f
(

y(k)
)

+Cg∗ f
(

y
(

k – τ (k)
))

,

x(k) = φ(k) for every k ∈ [–τM, ],

y(k + ) =D
(

r(k)
)

y(k) + E
(

r(k)
)

g
(

x(k)
)

+ F
(

r(k)
)

g
(

x
(

k – σ (k)
))

+ v(k),

h(k) = Eh

(

r(k)
)

g
(

x(k)
)

+ Fhg
(

x
(

k – σ (k)
))

,

y(k) = ψ(k) for every k ∈ [–σM, ].

5 Numerical simulation

In this section, we present one numerical example with its simulations to guarantee the

superiority and validity of our theoretical results.

Example . Consider two-dimensional robust finite-time passivity Markovian jump-

ing discrete-time BAM neural networks with ()-() with x(k) = (x(k),x(k))
T , y(k) =

(y(k), y(k))
T ; r(k) denotes right-continuousMarkovian chains taking values inM = {, }
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with generators

A =

(

. 

 .

)

, B =

(

–. .

. .

)

, C =

(

. .

–. .

)

,

D =

(

. 

 .

)

, E =

(

. –.

. .

)

, F =

(

 .

. –.

)

,

G =

(

– 

 

)

, G =

(

 

. –.

)

,

F =

(

 

 .

)

, F =

(

 .

 

)

,

G =

(

– .

 

)

, G =

(

 

 –

)

,

F =

(

 .

. .

)

, F =

(

. .

. .

)

,

MA =

(

. 

 .

)

, MB =

(

. 

 .

)

, MC =

(

. 

 .

)

,

MD =

(

. 

 .

)

, ME =

(

. 

 .

)

, MF =

(

. 

 .

)

.

Leakage delay is defined as γ = γ = , and the scalars are as follows: μ = ; ρ = ; η = ;

η = ; η = ; ξ = ; L = ; Q = ; L = ; Q = ; u = ; v = . Lower bounds and upper

bounds of finite-time passivity BAM neural networks system ()-() are τM = , τm = ,

σm = , and σM = .

Now, take the activation functions as follows:

f
(

y(k)
)

= g
(

y(k)
)

=

(

tanh(–.y)

tanh(–.y)

)

, f
(

x(k)
)

= g
(

x(k)
)

=

(

tanh(–.x)

tanh(–.x)

)

.

Now, the feasible solutions are as follows:

P =  ×

(

. –.

–. .

)

, P =

(

. –.

–. .

)

,

P =

(

. 

 .

)

, P =

(

. 

 .

)

,

P̄ =

(

. 

 .

)

, P̄ =

(

. 

 .

)

,

P̄ =

(

. 

 .

)

, P̄ =

(

. 

 .

)

,

W =

(

. –.

–. .

)

, W =  ×

(

. .

. .

)

,
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R =

(

. –.

–. .

)

, R = 

(

. –.

–. .

)

,

S =

(

. .

. .

)

, S =

(

. .

. .

)

,

S =

(

. .

. .

)

, S =

(

. .

. .

)

,

Z

(

. –.

–. .

)

, Z =  ×

(

. –.

–. .

)

,

Z =

(

. .

. .

)

, Z =

(

. –.

–. .

)

,

U =

(

. –.

–. .

)

, U =

(

. –.

–. .

)

,

U =

(

. –.

–. .

)

, U =

(

. –.

–. .

)

,

U =

(

. .

. .

)

, U =

(

. .

. .

)

,

U =

(

. .

. .

)

, U =

(

. .

. .

)

,

ǫ = ǫ =  × (.), H =

(

. 

 .

)

,

H =

(

. 

 .

)

, H =

(

. 

 .

)

,

H =

(

. 

 .

)

.

The trajectory of finite-time passivity BAM neural networks system ()-() is shown in

Figure .

According to Theorem ., we can obtain that system ()-() with the above given pa-

rameters is exponentially stable.With the help of Lyapunov functions and state trajectories

x(k), x(k), y(k), y(k), the above finite-time passivity BAM neural networks are depicted

in Figures ,  and .

The performance of Markovian jumping for system ()-() is given in Figure .

6 Conclusion

Passivity result for uncertain discrete-time Markovian jumping BAM neural networks

with leakage delay has been investigated. By using the Lyapunov theory together with

zero inequalities, convex combination and reciprocally convex combination approaches,

the finite-time boundedness and passivity are derived in terms of LMI which can be easily

verified via the LMI toolbox. Leakage delay has been considered as a time-varying delay.

Utilizing the reciprocal convex technique, conservatism of the proposed criteria has been
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Figure 1 The state response x(k), y(k) of (1)-(4) with leakage delay.

Figure 2 State trajectories of finite-time

passivity BAM neural networks (1)-(4).

Figure 3 r(k) denotes Markovian jump of (1)-(4).

Table 1 Optimal values of χ for different τM and σM

τM : 12 14 16 18 20 22

σM : 10 12 14 16 18 20

χ 5.3 8 10.6 12 13.89 15.04

reduced significantly. A numerical example has been provided to illustrate the effective-

ness of the results and their improvement over the existing results.
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