
S. I . : DEVELOPING NATURE- INSPIRED INTELLIGENCE BY NEURAL SYSTEMS

Enhanced robustness of convolutional networks with a push–pull
inhibition layer

Nicola Strisciuglio1,2 • Manuel Lopez-Antequera1,3 • Nicolai Petkov1

Received: 25 April 2019 / Accepted: 23 January 2020 / Published online: 5 February 2020

� The Author(s) 2020

Abstract

Convolutional neural networks (CNNs) lack robustness to test image corruptions that are not seen during training. In this

paper, we propose a new layer for CNNs that increases their robustness to several types of corruptions of the input images.

We call it a ‘push–pull’ layer and compute its response as the combination of two half-wave rectified convolutions, with

kernels of different size and opposite polarity. Its implementation is based on a biologically motivated model of certain

neurons in the visual system that exhibit response suppression, known as push–pull inhibition. We validate our method by

replacing the first convolutional layer of the LeNet, ResNet and DenseNet architectures with our push–pull layer. We train

the networks on original training images from the MNIST and CIFAR data sets and test them on images with several

corruptions, of different types and severities, that are unseen by the training process. We experiment with various

configurations of the ResNet and DenseNet models on a benchmark test set with typical image corruptions constructed on

the CIFAR test images. We demonstrate that our push–pull layer contributes to a considerable improvement in robustness

of classification of corrupted images, while maintaining state-of-the-art performance on the original image classification

task. We released the code and trained models at the url http://github.com/nicstrisc/Push-Pull-CNN-layer.

Keywords Convolutional neural networks � Image corruption � Network robustness � Neuron response inhibition �

push–pull layer

1 Introduction

Convolutional neural networks (CNNs) are routinely used

in many problems of image processing and computer

vision, such as large-scale image classification [22],

semantic segmentation [6], optical flow [20], stereo

matching [36], among others. They became a de facto

standard in computer vision and are gaining increasing

research interest. The success of CNNs is attributable to

their ability of learning representations of input training

data in a hierarchical way, which yields state-of-the-art

results in a wide range of tasks. The availability of

appropriate hardware, namely GPUs and deep learning

dedicated architectures, to facilitate huge amounts of

required computations has favored their spread, use and

improvement.

A number of breakthroughs in image classification were

achieved by end-to-end training of deeper and deeper

architectures. AlexNet [22], VGGNet [35] and Google-

Net [41], which were composed of eight, 19 and 22 layers,

respectively, pushed forward the state-of-the-art results on

large-scale image classification. Subsequently, learning of

extremely deep networks was made possible with

ResNet [16], whose architecture based on stacked bottle-

neck layers and residual blocks helped alleviate the prob-

lem of vanishing gradients. Such very deep networks, with

hundreds or even a thousand layers, contributed to push the

classification accuracy even higher on many benchmark

data sets for image classification and object detection. With

& Nicola Strisciuglio

n.strisciuglio@utwente.nl

1 Bernoulli Institute for Mathematics, Computer Science and

Artificial Intelligence, University of Groningen, Groningen,

The Netherlands

2 Faculty of Electrical Engineering, Mathematics and

Computer Science, University of Twente, Enschede,

The Netherlands

3 MAPIR Group, Biomedical Research Institute of Málaga

(IBIMA), University of Málaga, Málaga, Spain

123

Neural Computing and Applications (2020) 32:17957–17971

https://doi.org/10.1007/s00521-020-04751-8 (0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7478-3509
http://github.com/nicstrisc/Push-Pull-CNN-layer
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-04751-8&domain=pdf
https://doi.org/10.1007/s00521-020-04751-8

WideResNet [48], it was shown that shallower but wider

networks can achieve better classification results without

increasing the number of learned parameters. In [18], a

densely connected convolutional network named DenseNet

was proposed that deploy forward connection of the

response maps at a given layer to all subsequent layers.

This mechanism allowed to reduce the total number of

parameters to be learned, while achieving state-of-the-art

results on ImageNet classification.

These networks suffer from reliability problems due to

instability [49], i.e., small changes of the input cause big

changes of the output. In [17], the authors demonstrated

that the enormous increase in accuracy achieved by

recently published networks on benchmark classification

tasks (e.g., ImageNet and CIFAR) does not couple with an

improvement of robustness to classification of corrupted

test samples. They showed that, by corrupting the test

images with noise, blur, fog and other common transfor-

mations, the performance of SOTA networks drops con-

siderably similar to early CNN methods, namely AlexNet.

Some approaches to increase the stability of deep neural

networks to noisy images make use of data augmentation,

i.e., new training images are created by adding noise to the

original ones. This approach, however, improves robust-

ness only to those classes of perturbation of the images

represented by the augmented training data and requires

that this robustness is learned: it is not intrinsic to the

network architecture. In [49], a structured solution to the

problem was proposed, where a loss function that controls

the optimization of robustness against noisy images was

introduced.

In this paper, instead, we use prior knowledge about the

visual system of the brain to guide the design of a new

component for CNN architectures: we propose a new layer

called push–pull layer. We were inspired by the push–pull

inhibition phenomenon that is exhibited by some neurons

in area V1 of the visual system of the brain [42]. Such

neurons are tuned to detect specific visual stimuli, but

respond to such stimuli also when they are heavily cor-

rupted by noise. The inclusion of this layer in the network

architecture contributes to an increase in robustness of the

model to various corruptions of the input images, while

maintaining state-of-the-art performance on the original

image classification task. This comes without an increase

in the number of parameters and with a negligible increase

in computation. Furthermore, the proposed push–pull layer

can be used in any CNN architecture, being a general

approach to enhance network robustness. Our contributions

are summarized as follows:

– We propose a new type of layer for CNN architectures.

– We validate our method by including the proposed

push–pull layer into state-of-the-art residual and dense

network architectures, namely ResNet and DenseNet,

and training them on the task of image classification.

We study the effect of using the proposed push–pull

layer in the first layer of CNN architectures. It

intrinsically embues the network with enhanced robust-

ness to image corruptions without increasing the model

size.

– We show the impact of the proposed method by

comparing the performance of state-of-the-art networks

with and without the push–pull layer on the classifica-

tion of corrupted images. We experimented on a

benchmark version of the CIFAR data set, which

contains different types and severities of corrup-

tions [17]. Our proposal improves classification accu-

racy of corrupted images while maintaining

performance on the original images.

– We provide an implementation of the proposed push–

pull layer as a new layer for CNNs in PyTorch,

available at the url http://github.com/nicstrisc/Push-

Pull-CNN-layer.

2 Related works

Data augmentation and robustness to image corruptions.

The success of CNNs and deep learning in general can be

attributed to the representation capacity of these models,

enabled by their size and hierarchical nature. However, this

large capacity can become problematic as it can be hard to

avoid overfitting to the training set. Early work achieving

success on large-scale image classification [22] noted this

and included data augmentation schemes, where training

samples were modified by means of transformations of the

input image that do not modify the label, such as rotations,

scaling, cropping, and so on [22]. Data augmentation can

also be used to allow the network to learn invariances to

other transformations not present on the training set but

that can be expected to appear when deploying the

network.

The main drawback of data augmentation is that the

networks acquire robustness only to the classes of pertur-

bations used for training [49]. Many studies have been

published that tackle the problem of making the networks

robust to various kinds of input distortions. In [45], blurred

images were used to fine-tune networks and it was

demonstrated that one type of blurring does not generalize

to others. Heavy data augmentation to increase network

robustness can thus cause underfitting, as confirmed

in [13, 49]. Furthermore, human performance was

demonstrated to be superior even to fine-tuned networks on

Gaussian noise and blur in [10].

17958 Neural Computing and Applications (2020) 32:17957–17971

123

http://github.com/nicstrisc/Push-Pull-CNN-layer
http://github.com/nicstrisc/Push-Pull-CNN-layer

Although data augmentation contributes, to some extent,

to increase the generalization capabilities of classification

models with respect to certain data transformations, real-

world networks need to incorporate mechanisms that

intrinsically increase their robustness to corruption of input

data.

Recently, several data sets that contain test images with

various corruptions and perturbations have been released,

with the aim of benchmarking network robustness to input

distortions. In [43, 44] data sets with corrupted traffic sign

images and objects were proposed. Recently, a large

benchmark data set constructed by adding 15 different

types of corruption, each with five levels of severity, and

10 perturbations to the test images of the ImageNet and

CIFAR data sets was released [17].

Adversarial attacks. An adversarial attack consists of

sightly distorting an input sample for the purpose of con-

fusing a classifier [40]. Recently, algorithms have been

developed that produce the smallest possible distortions of

input samples that fool a classification model [1]. In the

case of images, adversarial attacks create additive signals

in the RGB space that make changes imperceptible to the

human eye which drift their representations through the

decision boundaries of another class. In this light, adver-

sarial attacks can be considered the worst case of input

corruption that networks can be subjected to.

On the one hand, in recent years various adversarial

attacks have been developed, such as Fast Gradient Sign

Method (FGSM) [14], iterative methods [23, 29] and

DeepFool [32], Carlini and Wagner (C&W) [8], Universal

Adversarial Perturbations [33], and black-box attacks

UPSET and ANGRI [1]. On the other hand, defensive

algorithms were also developed for specific adversarial

attacks [28, 31, 34].

Although adversarial attacks and defenses are important

topics to machine learning research, in this work we study

a different kind of model robustness. We focus on

robustness against image corruptions determined by noise,

blur, elastic transformations, fog and so on, which are

typical of many computer vision tasks, instead of adver-

sarial attacks that alter the test samples with unnoticeable

modifications [17].

Prior knowledge in deep architectures. Domain specific

knowledge can be used to guide the design of deep neural

network architectures. In this way, they better represent the

problem to be learned in order to increase efficiency or

performance. For example, convolutional neural networks

are a subset of general neural networks that encode trans-

lational invariance on the image plane.

Specific architectures or modules have been designed to

encode properties of other problems. For instance,

steerable CNNs include layers of steerable filters to com-

pute orientation-equivariant feature response maps [46].

They achieve rotational equivariance by computing the

responses of feature maps at a given set of orientations. In

Harmonic CNNs, rotation equivariance was achieved by

substituting convolutional filters with circular harmon-

ics [47]. In [9], a formulation of spherical cross-correlation

was proposed, enabling the design of Spherical CNNs,

suitable for application on spherical images.

Biologically inspired models. One of the first biologically

inspired models for Computer Vision was the neocognitron

network [12]. The architecture consisted of layers of

S-cells and C-cells, which were models of simple and

complex cells in the visual system of the brain. The net-

work was trained without a teacher, in a self-organizing

fashion. As a result of the training process, the neocogni-

tron network had a structure similar to the hierarchical

model of the visual system formalized by Hubel and

Wiesel [19].

The filters learned in the first layer of a CNN trained on

natural images resemble Gabor kernels and the receptive

fields of neurons in area V1 of the visual system of the

brain [30]. This strengthens the connection between CNN

models and the visual system. However, the convolutions

used in CNNs are linear operations and are not able to

correctly model some nonlinear properties of neurons in

the visual system, e.g., cross orientation suppression and

response saturation. These properties were achieved by a

nonlinear model of simple cells in area V1, named CORF

(Combination of Receptive Fields), used in image pro-

cessing for contour detection [3] or for delineation of

elongated structures [5, 37]. Neuro-physiological models

of inhibition phenomena in the human visual system have

also been included in image processing tools [4, 38].

A layer of nonlinear convolutions inside CNNs was

proposed in [50]. The authors were inspired by studies of

nonlinear processes in early stages of the visual system,

and modeled them by means of Volterra convolutions.

3 Method: CNN augmentation with a push–
pull layer

We propose a new type layer that can be used in existing

CNN architectures to improve their robustness to different t

of image corruptions. We call it push–pull layer as its

design is inspired by the functions of some neurons in area

V1 of the visual system of the brain that exhibit a phe-

nomenon known as push–pull inhibition [21]. Such neu-

rons have excitatory and inhibitory receptive fields that

respond to stimuli of opposite polarity. Their responses are

combined in such a way that these neurons strongly

Neural Computing and Applications (2020) 32:17957–17971 17959

123

respond to specific visual stimuli, also when they are cor-

rupted by noise. We provide a wider discussion about the

biological inspiration of the proposed push–pull layer in

‘‘Appendix 1’’. In the rest of the section, we explain the

details of the proposed layer.

3.1 Implementation

We design the push–pull layer PðIÞ using two convolu-

tional kernels, which we call push and pull kernels. They

model the excitatory and the inhibitory receptive fields of a

push–pull neuron, respectively. The pull kernel typically

has a larger support region than that of the push kernel and

its weights are computed by inverting and upsampling the

push kernel [42]. We implement push–pull inhibition by

subtracting a fraction a of the response of the pull com-

ponent from that of the push component. We model the

activation functions of the push and pull receptive fields by

using nonlinearities after the computation of the push and

pull response maps. In Fig. 1 we show an architectural

sketch of the proposed layer.

We define the response of a push–pull layer as:

PðIÞ ¼ H k � Ið Þ � aHð�k"h � IÞ

where Hð�Þ is a rectifier linear unit (ReLU) function, a is a

weighting factor for the response of the pull component

which we call inhibition strength. Finally, " h indicates

upsampling of the push kernel kð�Þ by a scale factor h[1.

Let s be the width (or height) of the push kernel, the width

(or height) ŝ of pull kernel is computed as

ŝ ¼ bs � hc þ 1� ðbs � hc mod 2Þ. h and a are hyper-pa-

rameters of the proposed push–pull layer and their value

has to be set by the user. We discuss their configuration in

Sect. 4. We use ReLU functions to implement the nonlin-

ear behavior of the push–pull neurons as they provide an

effective and simple way to model the activation function

of convolution filters. However, one may use other non-

linear functions, e.g., the hyperbolic tangent function.

During training, only the weights of the push kernel are

updated. The weights of the pull kernel are derived from

those of the actual push kernel as explained above, i.e., at

each forward step the pull kernel is generated online via

differentiable upsampling and inverting operations. The

implementation of the push–pull layer ensures that the

gradient flows back toward both the push and pull kernel

and that the weights of the push kernel are updated

accordingly. In this way, the effect of the pull component is

taken into account when the gradient is back-propagated

through the pull kernel.

In the first row of Fig. 2, we show an image from the

MNIST data set corrupted by Gaussian noise of increasing

severity. We also display the response map of a convolu-

tional kernel only (second row) in comparison with that of

a push–pull layer (third row). One can observe how the

push–pull layer is able to detect the feature of interest,

which was learned in the training phase, more reliably than

the convolution (push only) kernel, even when the input is

corrupted by noise of high severity. The enhanced robust-

ness to image corruption is due to the effect of the pull

component, which suppresses the responses of the push

kernel caused by noisy and spurious patterns.

3.2 Use of the push–pull layer

We implemented a push–pull layer for CNNs in PyTorch

and deploy it by substituting the first convolutional layer of

existing CNN architectures. In Fig. 3, we show sketches of

modified LeNet, ResNet and DenseNet architectures. We

replaced the first convolutional layer conv1 with our push–

pull layer. The resulting architecture is surrounded by the

dashed contour line. Hereinafter, we use the suffix ‘-PP’ to

indicate that the concerned network deploys a push–pull

layer as the first layer, instead of a convolutional layer.

In this work, we train the modified architectures from

scratch. One can also replace the first layer of convolutions

of an already trained model with our push–pull layer. In

such case, however, the model requires a fine-tuning pro-

cedure so that the layers succeeding the push–pull layer can

adapt to the new response maps, as the responses of the

push–pull layer are different from those of the convolu-

tional layers (see the second and third row in Fig. 2).

Fig. 1 Architectural scheme of the push–pull layer. The input array

I is convolved with two kernels, namely the push and pull kernels.

The resulting response maps are rectified and subsequently combined

by weighted sum. The pull kernel is an upsampled and inverted

version of the push kernel

17960 Neural Computing and Applications (2020) 32:17957–17971

123

In principle, a push–pull layer can be used at any depth

level in deep network architectures as a substitute of any

convolutional layer. However, its implementation is related

to the behavior and functions of some neurons in early

stages of the visual system of the brain, where low-level

processing of the visual stimuli is performed. In this work,

we thus focus on analyzing the effect of using the proposed

push–pull layer only as first layer of the networks and to

evaluate its contribution to enhance the robustness of the

networks to corruptions of the input test images.

4 Experiments and results

We carried out extensive experiments to validate the

effectiveness of our push–pull layer for improving the

robustness of existing networks to perturbations of the

input image. We include the push–pull layer in the LeNet,

ResNet and DenseNet architectures, by replacing the first

convolutional layer.

We train the LeNet, ResNet and DenseNet networks on

non-corrupted training images from the MNIST and

CIFAR data sets, and test on images with several corrup-

tions, of different types and severities, that are unseen by

the training process. We compare the results obtained by

CNNs that employ a push–pull layer as substitute of the

first convolutional layer with those from a standard CNN.

The results that we report were obtained by replacing the

first convolutional layer with a push–pull layer with

upsampling factor h ¼ 2 and inhibition strength a ¼ 1. In

Sect. 4.3, we study the sensitivity of the classification

performance with respect to different configurations of the

push–pull layer. h and a are hyper-parameters of the push–

pull layer and their value trades off the accuracy of the

model on clean data and its robustness to corrupted data.

For these experiments, we chose the configuration

Comparison of convolution and push-pull layer response maps on noisy input

Input images with different levels of noise

conv layer Response maps of the convolutional kernel

−α

push-pull layer Response maps of the push-pull layer

Fig. 2 Images of a digit from the MNIST data set perturbed by added

Gaussian noise of increasing severity (first row). The response maps

of a convolutional kernel in the second row show instability with

respect to perturbed inputs. Our push–pull layer is more robust to

noise as shown in the response maps in the third row

(a) (b) (c)

Fig. 3 Modified a LeNet,

b ResNet and c DenseNet

architectures. We substitute the

first layer of convolutions

(conv1) with our push–pull

layer. The suffix ‘PP’ in the

network names stands for push–

pull. The new modified

networks are highlighted by

dashed lines

Neural Computing and Applications (2020) 32:17957–17971 17961

123

according to experimental results and previous work in

including the push–pull inhibition model into an operator

for line detection in noisy images, called

RUSTICO [38, 39].

4.1 LeNet on MNIST

The MNIST data set is composed of 60 k images of

handwritten digits (of size 28� 28 pixels), divided into

50 k training and 10 k test images. The data set has been

widely used in computer vision to benchmark algorithms

for object classification. LeNet is one of the first convo-

lutional networks [24], and achieved remarkable results on

the MNIST data set. It is considered one of the milestones

of the development of CNNs. We use it in the experiments

for the simplicity of its architecture, which allows to better

understand the effect of the push–pull layer on the

robustness of the network to input image corruptions.

4.1.1 Training

The original LeNet model is composed of two convolu-

tional layers, the first with six filters and the second with

16, after each a max-pooling layer is placed. Three fully

connected layers are added on top of the convolutional

layers to perform classification. The last layer is composed

as many neurons as the number of classes (10 in our case).

We configured different LeNet models by changing the

number of convolutional filters in the first and second layer

(note that the size of the fully connected layers changes

accordingly to the number of filters in the second convo-

lutional layer). We implemented push–pull versions of

LeNet by substituting the first convolutional layer with our

push–pull layer. In Table 1, we report details on the con-

figuration of the LeNet models modified with the push–pull

layers. The letter ‘P’ in the model names indicate the use of

the proposed push–pull layer.

We trained all LeNet models using stochastic gradient

descent (SGD) on the original training set of the MNIST

data set for 90 epochs. We set an initial learning rate of 0.1

and decrease it by a factor of 10 at epochs 30 and 60. We

configure the SGD algorithm with Nesterov momentum

equal to 0.9 and weight decay of 5 � 10�4.

4.1.2 Results

We report the results achieved on the MNIST test set per-

turbed with Gaussian noise of increasing variance in Fig. 4.

When the variance of the noise increases above r2 ¼ 0:1, the

improvement of performance determined by the use of the

push–pull layer is noticeable (A ¼ 86:5%, PA¼ 87:1%—

B ¼ 73:91%, PB¼ 87:2%—C ¼ 86:2%, PC¼ 85:14%—

D ¼ 78:62%, PD¼ 82%, for Gaussian noise with r2 ¼ 0:2),

revealing an increase in the generalization capabilities of the

networks and of their robustness to noise.

Generally the use of the push–pull layer contributes to

increase the representation capacity of the network and its

generalization capabilities with respect to unknown cor-

ruptions of the input data. However, in the case of the

model C, the use of the push–pull layer worsens the clas-

sification results on data corrupted with Gaussian noise.

Our interpretation is that the small number of features

computed at the first layer do not provide the following

layers (which remain unmodified having a large number of

channels/features relative to the first layer) a representation

with enough capacity to achieve satisfactory generalization

capabilities. This effect is mitigated in model D, where a

smaller network is configured after the first layers. The

lower capacity of the sub-network that takes as input the

response of the push–pull layer thus reduces the chances to

overfit to the training data. The largest improvement is

Table 1 Configurations of the LeNet architecture used in the exper-

iments on the MNIST data set

Model ConvNet FCNet

1st layer 2nd layer

A 6 (c) 16 (c) 128, 64, 10

B 6 (c) 8 (c) 64, 32, 10

C 4 (c) 16 (c) 128, 64, 10

D 4 (c) 8 (c) 64, 32, 10

PA 6 (pp) 16 (c) 128, 64, 10

PB 6 (pp) 8 (c) 64, 32, 10

PC 4 (pp) 16 (c) 128, 64, 10

PD 4 (pp) 8 (c) 64, 32, 10

The label (c) indicates a convolutional layer, while (pp) a push–pull

layer

Fig. 4 Results of LeNet (lighter colors—A, B, C, D) and LeNet-PP

(darker colors—PA, PB, PC, PD) on the MNIST test set images

corrupted by added Gaussian noise of increasing severity (color

figure online)

17962 Neural Computing and Applications (2020) 32:17957–17971

123

obtained by the model PB with respect to its convolutional

counterpart B. As shown in Fig. 2, the push–pull layer

computes more stable response maps than those of the

convolutional layers in presence of image corruptions. We

conjecture that model PA and PC are more subject to

specialization due to the larger size of the following layers,

model PB achieves the best generalization performance.

This results from the combination of the push–pull layer

output with a network of smaller size, whose optimization

is simpler and can more easily reach a better local mini-

mum of the loss function.

In Fig. 5, we compare the results achieved by the dif-

ferent LeNet models with the push–pull layer (darker col-

ors—PA, PB, PC, PD) with those of the original LeNet

(lighter colors—A, B, C, D) on the MNIST test set images

perturbed by change of contrast and addition of Poisson

noise. We use different factors C to increase or decrease

the contrast of the input image I, and produce new images

IC ¼ ðI � 0:5Þ � C þ 0:5.

The LeNet-PP models considerably outperform their

convolution-only counterparts when the contrast of noisy

test images decreases and the images are corrupted by

Poisson noise. It is interesting that models A and D show a

considerable drop of classification performance when the

contrast level is lower than C ¼ 0:5. We hypothesize that

this is probably due to specialization of the networks on the

characteristics of the images in the training set. Model B

achieves more stable results when the contrast level is

higher or equal to 0.3. Similarly to the case of images

corrupted with Gaussian noise, model PB achieves a better

stability and robustness to corruption of the input images.

Models PA and PD largely benefit from the presence of the

push–pull layer, that is mostly due to the computation of

response maps that are more robust to input corruptions

and favor a more stable further processing in the network.

We observed that using the push–pull layer allows smaller

networks to achieve more robustness than larger networks

without push–pull layers (see B and D, which are roughly

half-size w.r.t. A and C).

It is worth pointing out that in all cases, the classification

accuracy on the original test set (without corruption) is not

substantially affected by the use of the push–pull layer

(A ¼ 98:93%, PA¼ 99:1%—B ¼ 98:85%, PB¼ 98:78%—

C ¼ 99:06%, PC¼ 98:91%—D ¼ 98:58%, PD¼ 98:84%).

4.2 ResNet and DenseNet on CIFAR

4.2.1 CIFAR corruption benchmark data set

The CIFAR-10 is a data set for benchmarking algorithms

for image and object recognition. It is composed of 60 k

natural images (of size 32� 32 pixels) organized in 10

classes and divided into 50 k images for training and 10 k

for test.

In this work, we carried out experiments using a mod-

ified version of the CIFAR-10 data set, namely the CIFAR-

C, where C stands for ‘corruption’. It is a benchmark data

set constructed by applying common corruptions to the

images in the CIFAR test set [17]. The authors released a

data set composed of several test sets, each of them cor-

responding to a particular type of image corruption. The

first version of the data set contained 15 corrupted sets,

while in the extended version four further corruption types

were included. We performed experiments on the complete

set of 19 corrupted test sets. Each corruption is applied to

the images of the CIFAR-10 data set with five levels of

severity, resulting in a total of 90 different versions of the

CIFAR-10 test set. The considered corruptions are of four

types: noise (Gaussian noise, shot noise, impulse noise,

speckle noise), blur (defocus blur, glass blur, motion blur,

Gaussian blur), weather (snow, frost, fog, brightness,

spatter) and digital (contrast, elastic transformation, pixe-

late, jpeg compression, saturate). In Fig. 6, we show

example images from the corrupted test sets of the CIFAR-

C data set, with corruption severity s ¼ 4.

The main strength point of the CIFAR-C data set is that

it contains common image corruptions that occur when

applying computer vision algorithms to real-world data and

problems. It thus serves as a thorough benchmark case to

evaluate the robustness of state-of-the-art CNN algorithms

for image classification in real-world conditions, and their

generalization capabilities.

4.2.2 Experiments and evaluation

We trained several configurations of ResNet and DenseNet

using the training images of the original CIFAR-10 data

no noise 0.5 0.4 0.3 0.2

contrast C

30

40

50

60

70

80

90

100

a
cc

u
ra

cy
(%

)

Results on MNIST with Poisson noise

A

PA

B

PB

C

PC

D

PD

Fig. 5 Results achieved by LeNet (lighter color bars) and LeNet-PP

(darker color bars) on the MNIST test set images corrupted with

changes of contrast and Poisson noise (color figure online)

Neural Computing and Applications (2020) 32:17957–17971 17963

123

set, on which we apply only the standard data augmenta-

tion techniques (i.e., random crop and horizontal flip)

introduced in [25]. We subsequently tested the models on

the CIFAR-C corrupted test sets, which contain image

corruptions that are not present in the training data and not

used for data augmentation.

We refer to a ResNet architecture with l layers as

ResNet-l [16] and to a DenseNet with l layers and growing

factor k as DenseNet-l-k [18]. We evaluated the contribu-

tion of the push–pull layer to the performance of models

with different depth and, in the case of DenseNet, also with

different growing factors. For each network configuration,

we train its original version with only convolutional layers

and one version with the proposed push–pull layer as

substitute of the first convolutional layer, which we refer at

with the ‘-PP’ suffix in the model name.

In the original paper, ResNet models are trained for 160

epochs on the CIFAR training set, with a batch size of 128

and an initial learning rate equal to 0.1. The learning rate is

reduced by a factor of 10 at epochs 80 and 120. In this

work, we trained the ResNet models for 40 more epochs,

for a total of 200 epochs, and further reduced the learning

rate by a factor of 10 at epoch 160. The extended training

was required due to the slightly increased complexity of the

learning process determined by the presence of the push–

pull layer. In order to guarantee a fair comparison, we

trained both models with and without the push–pull layer

for 200 epochs. We trained the DenseNet models for 350

epochs, with a batch size equal to 64 and an initial learning

rate equal to 0.1. The learning rate is reduced by a factor of

10 at epochs 150, 225 and 300. For both ResNet and

DenseNet architectures, we use parameter optimization by

means of stochastic gradient descent (SGD) with Nesterov

momentum equal to 0.9 and weight decay equal to 10�4.

For evaluation of performance, we computed the Clas-

sification Error (E), which is a widely used metric for

evaluation of image classification algorithms, and the

corruption error (CE). The CE was introduced in [17] and

is a weighted average error across the different types and

severities of corruption applied to the CIFAR test set.

Given a classifier M, the corruption error computed on the

images with a corruption c and severity s (with 1� s� 5) is

indicated by CEM
c;s. Different corruptions cause different

levels of difficulty to the classifier. Hence, corruption-

specific errors are weighted with the corresponding error

obtained by AlexNet, which is taken as the baseline for the

evaluation. We report details about the configured AlexNet

model and the baseline errors used for normalization of the

CE in ‘‘Appendix 2’’. The normalized corruption error on a

specific corruption c is defined as:

CEM
c ¼

P5
s¼1 CE

M
c;s

P5
s¼1 CE

AlexNet
c;s

ð1Þ

We summarize the performance of a model by computing

the mean corruption error (mCE) across the CE obtained

for the different corruption types. The errors achieved by a

model M for each corruption type and for each severity are

original gaussian noise shot noise impulse noise defocus blur

glass blur motion blur zoom blur snow frost

fog brightness contrast elastic transform pixelate

jpeg compression speckle noise gaussian blur spatter saturate

Fig. 6 An image (top-left

corner) of the class dog from the

original CIFAR-10 test set and

examples of corrupted versions

of it from the CIFAR-C data set.

For all the corrupted images, the

corruption severity is s ¼ 4

17964 Neural Computing and Applications (2020) 32:17957–17971

123

normalized by the corresponding ones achieved by Alex-

Net. Subsequently, they are averaged to compute the mCE,

which is a percentage measure of the corruption error

compared to that achieved by the baseline network.

On the one hand, it can be the case that a classifier is

robust to corruptions as the gap between its classification

errors on clean and corrupted data is very small. However,

such classifier might achieve a high mCE value. On the

other hand, a classifier might achieve a very low classifi-

cation error E on clean data while obtaining high corrup-

tion error CE. In [17], the relative corruption error rCEM
c

was introduced, which is a normalized measure of the

difference between the classification performance of a

model M on clean data and corrupted data. It is defined, for

a particular type of corruption c, as:

rCEM
c ¼

P5
s¼1 CEM

c;s � CEM
clean

� �

P5
s¼1 CEAlexNet

c;s � CEAlexNet
clean

� � ð2Þ

Similarly to the mCE, also the rCEM
c is normalized by the

relative corruption errors of the baseline network AlexNet

so as to fairly count the errors achieved on different cor-

ruption types. Averaging the rCEM
c values obtained for

each corruption type, we compute the relative mean cor-

ruption error (rCE). It measures the average gap between

the performance of a network on clean and corrupted data.

The lower this measure, the more robust the classifier is to

corruptions of the input data.

4.2.3 Results

We evaluated the performance of several ResNet and

DenseNet models with (PP) and without (no PP) the pro-

posed push–pull layer as first layer of the architecture. In

Fig. 7, we show the average classification error achieved

by each considered model with (bars of darker color) and

without (bars of lighter color) a push–pull layer as the first

layer on the CIFAR-C data set. For all the models, the

version with the push–pull layer outperforms (lower clas-

sification error E) original convolutional counterpart.

In Table 2, we report the detailed classification errors

(E) for each image corruption type that we achieved on the

CIFAR-C data set. The push–pull layer contributes to a

considerable improvement of the robustness of classifica-

tion of corrupted images, especially when the images are

altered by different types of noise (i.e., Gaussian, shot,

impulse and speckle noise). In several cases, the presence

of the push–pull layer determines a reduction of the clas-

sification error of about 25% (e.g., for ResNet-32 and

ResNet-56). Also for image blurs (i.e., defocus, glass,

motion, zoom and Gaussian blurring), the model with the

push–pull layer consistently obtains lower classification

error.

The results that we achieved demonstrate that the use of

the push–pull layer increases the average robustness of the

concerned networks to various types of corruption of the

input images. In order to learn effective representations and

exploit the processing of the push–pull layer to improve

generalization, a model is required to have adequately large

capacity (i.e., number of learnable parameters). Smaller

models, such as ResNet-20 or DenseNet-40-12, do not

substantially benefit from the effect of the push–pull layer

in the case of corruptions of the type weather, namely

snow, frost, fog and spatter. In several cases, models with

the push–pull layer achieve higher error than those with

only convolutional layers. Larger models are able to better

exploit the response map of the push–pull layer, especially

for the frost corruption type. We draw similar observations

from the results achieved on the digital corruptions, where

the push–pull layer slightly improves the robustness of

models of adequate size.

It is interesting to highlight the case of the jpeg com-

pression, to which the results show a noticeable and sys-

tematic improvement of robustness of the networks that

employ a push–pull layer. This result has very practical

implications as jpeg is a widely used algorithm to compress

image data. In real-world applications it is very likely that a

classifier receives input images with varying compression

level, and it is required to be robust to such corruptions.

We analyzed and compared the overall performance of

the considered models with and without the push–pull layer

with respect to the classification baseline results achieved

by AlexNet. The choice of AlexNet is in line with the study

reported in [17]. However, one can choose any other

classifier as the baseline. For details about the configuration

of the AlexNet model that we used for the experiments and

Fig. 7 Comparison of the average classification error achieved by the

considered networks on the CIFAR-C data set. Bars of lighter color

refer at the original models, while bars with darker colors at the

models with a push–pull layer as the first layer (color figure online)

Neural Computing and Applications (2020) 32:17957–17971 17965

123

the classification errors obtained for each corruption type,

we refer the reader to ‘‘Appendix 2’’.

We report the mean corruption error mCE and the rel-

ative corruption error rCE achieved by the considered

models in Table 3. A value of 100 indicates that there is no

difference in performance between the concerned model

and the baseline AlexNet model. Other values indicate the

percentage measure of the average error with respect to that

of AlexNet. For instance, 104 and 92 indicate that the error

is 4% worse and 8% better, respectively, than that achieved

by the baseline model. Thus, the ResNet-32-PP model

achieves a corruption error that is 12% better than that of

the ResNet-32 model. The mCE shows that some config-

urations of recent architectures, although achieving much

lower classification error on clean data, are less robust to

image corruptions than an AlexNet model. The ResNet-20

and DenseNet-40-12 models, for instance, achieved a mCE

that indicates that the average corruption error on the

CIFAR-C data set is, respectively, 4% and 8% higher than

that obtained by AlexNet. The accuracy of a given model

mainly depends on the specific architecture and amount of

trainable parameters. When using models with enough

Table 2 Classification error achieved by the considered ResNet and DenseNet models on the CIFAR-C data set

Corruption ResNet-20 ResNet-32 ResNet-44 ResNet-56 DenseNet-40-

12

DenseNet-100-

12

DenseNet-100-

24

No PP PP No PP PP No PP PP No PP PP No PP PP No PP PP No PP PP

Gaussian noise 57.41 49.9 58.38 47.81 54.5 48.43 56.72 44.92 68.67 52.31 56.19 45.2 57.83 42.83

Shot noise 45.75 39.98 47.31 37.12 42.93 38.11 44.02 35.74 56.25 42.45 44.01 34.38 44.12 32.33

Impulse noise 41.88 37.2 45.71 35.55 38.8 35.51 44.68 33.14 50.24 39.15 40.71 37.97 46.41 34.24

Speckle noise 41.34 37.55 43.47 33.96 39.22 35.42 39.72 33.58 51.15 39.74 39.14 31.78 38.68 29.32

Defocus blur 21.43 22.3 22.04 19.86 20.86 20.24 20.02 20.88 22.21 21.22 17.15 17.34 17.9 15.01

Glass blur 58.82 58.56 52.78 50.8 57.4 55.23 59.22 50.46 46.04 52.17 42.92 44.65 42.56 38.8

Motion blur 30.62 29.5 30.2 27.92 28.34 26.83 26.54 27.67 27.93 27.86 20.89 21.07 19.79 18.68

Zoom blur 27.54 29.68 30.33 26.92 28.06 25.89 26.73 26.58 30.62 27.54 22.94 22.19 24.26 18.98

Gaussian blur 31.32 33.24 33.94 30.12 32.83 29.93 30.88 31.22 36.07 30.7 28.58 28.23 33.6 25.25

Snow 25.06 25.59 23.19 22.6 23 23.66 21.99 22.32 21.73 25.01 16.87 18.34 14.41 15.67

Frost 31.39 31.29 30.86 26.37 28.02 26.69 29.08 27.28 28.59 30.25 23.39 22.48 20.16 18.72

Fog 16.56 17.58 16.08 15.45 14.98 14.98 14.55 15.93 17.19 17.12 13.11 12.88 10.66 11.38

Spatter 19.03 17.85 18.37 15.58 16.87 16.6 16.12 15.59 18.13 19.67 14.95 15.76 12.12 13.56

Brightness 9.73 10.34 9.2 8.98 8.63 8.54 8.3 8.68 8.6 9.49 6.3 6.85 5.4 5.97

Contrast 29.59 30.5 28.33 28.08 26.09 27.15 24.89 26.94 25.13 28.34 19.63 21.39 17.13 18.74

Elastic transf. 20.37 20.65 20.58 18.1 19.46 18.79 18.52 18.57 20.37 20.91 16.44 15.92 15.16 14.77

Pixelate 32.33 32.7 32.18 28.87 30.23 28.99 29.79 29.06 31.51 33.11 30.73 28.66 25.99 26.27

jpeg compr. 23.81 22.16 23.68 20.73 22.71 20.44 22.88 19.82 26.61 23.43 23.28 19.63 21.39 17.85

Saturate 11.52 11.7 10.9 11.24 9.94 9.8 9.56 9.9 11.63 11.86 8.25 8.43 7.15 7.61

Average error E 30.29 29.38 30.4 26.63 28.57 26.91 28.64 26.33 31.51 29.07 25.55 23.85 24.99 21.37

Best results are highlighted in bold

For each model configuration, we report the results obtained for every corruption type by the network version that employs a push–pull layer as

first layer (‘PP’ column) and its convolutional only counterpart (‘no PP’ column). The results are grouped by corruption type (noise, blur, weather

and digital)

Table 3 Overall results obtained on the original CIFAR-10 test set

(Eclean column) and on the CIFAR-C data set by the network models,

with and without the proposed push–pull layer, that we considered for

the experiments

Model Eclean Ecorr mCE rCE

AlexNet (baseline) 13.87 29.08 100 100

ResNet-20 7.56 30.29 104 169

ResNet-20-PP 8.29 29.83 101 158

ResNet-32 7.29 30.4 104 171

ResNet-32-PP 7.15 26.63 92 145

ResNet-44 6.76 28.57 98 162

ResNet-44-PP 6.87 26.91 92 149

ResNet-52 6.64 28.64 97 161

ResNet-52-PP 7.01 26.23 91 144

DenseNet-40-12 6.38 31.51 108 187

DenseNet-40-12-PP 7.13 29.07 101 168

DenseNet-100-12 4.7 25.55 88 160

DenseNet-100-12-PP 5.04 23.85 82 144

DenseNet-100-24 3.88 24.99 84 156

DenseNet-100-24-PP 4.5 21.37 73 129

17966 Neural Computing and Applications (2020) 32:17957–17971

123

capacity (e.g., ResNet-52 and DenseNet-100-12), the mCE

shows that generalization to corrupted data improves with

respect to the performance achieved by AlexNet. For all

the network configurations that we employed, the use of the

push–pull layer as first layer of the architecture determines

an average improvement of accuracy in presence of input

corruptions, corresponding to a substantial decrease (up to

12% for ResNet-32-PP) of the mCE.

We observed that progressive improvements of the

classification error achieved by the considered models with

only convolutional layers on clean data did not correspond

to similar improvements in generalization to corrupted

data. The relative corruption error rCE measures the

average gap between the classification error on clean and

corrupted data. For all the tested models, the measured rCE

indicates that the generalization capabilities of recent

models are consistently worse than those of a much earlier

AlexNet model. The improvement of the mCE obtained by

models with only convolutional layers is mostly due to the

increase in classification accuracy on clean data and model

capacity of successively published architectures, rather

than to an improvement of generalization [17].

This does not hold when using a push–pull layer in the

network architecture. In this case, on the one hand, we

noticed a very small increase in the classification error on

clean data, but on the other we recorded a substantial and

systematic improvement of the mCE and rCE. Although

the generalization capabilities of a classifier to corrupted

input data depend on the particular architecture and its

amount of parameters, the push–pull layer consistently

contributes to achieve a lower corruption error and embues

the concerned model with an intrinsic improved robustness

to various input corruptions. The push–pull layer con-

tributes to reduce the rCE, which indicates better general-

ization to corrupted data.

4.3 Sensitivity to push–pull parameters

We performed an evaluation of the sensitivity of the clas-

sification error with respect to variations of the parameters

of the push–pull layer, namely the upsampling factor h and

the inhibition strength a. In Table 4, we report the results

that we achieved with several ResNet-14-PP models, for

which we configured push–pull layers with different h and

a parameter values. We tested the performance of these

models on the CIFAR-10 data set images, which we cor-

rupted by means of added Gaussian noise of increasing

severity. The first row of the tables reports the results of the

ResNet-14 model without the push–pull layer.

We observed that, despite the particular configuration of

the hyper-parameters h and a, the push–pull layer con-

tributes to improve, often substantially, the robustness to

added Gaussian noise of increasing variance. Models with

the push–pull layer usually achieve a slightly lower accu-

racy on the clean test images, while having higher

robustness to corruptions. The sensitivity analysis on

Gaussian noise corruption shows that the configuration of

the push–pull layer makes the concerned models more or

less robust to a certain corruption. We configured, for the

experiments discussed in the previous sections, the push–

pull layer with h ¼ 2 and a ¼ 1 as these values contribute

to achieve on average good performance on a number of

corruption types. However, one may optimize the model

for a certain type of input perturbation, which depends on

the particular application at hand.

4.4 Learning the inhibition strength a

The value of the a parameter of the proposed push–pull

model can be learned during training. We report in Table 5

results achieved by models in which the value of a is

trained (subscript a is present in the model name), com-

pared to those of models with fixed value of a ¼ 1 and

Table 4 Sensitivity analysis of the classification error with respect to

changes of the configuration parameters of the push–pull layer in a

ResNet-14 model

Sensitivity analysis of ResNet-PP w.r.t. inhibition parameters

Severity of Gaussian noise (r2)

h a 0 0.0001 0.0005 0.001 0.005 0.01

– – 4.09 5.18 10.47 18.76 59.53 77.46

1 0.5 3.99 4.81 9.5 17.1 57.2 72.51

1 1 4.17 4.86 9.58 16.62 55.95 71.17

1 1.5 4.19 4.97 10.11 17.85 60.79 77.32

1.5 0.5 4.24 4.98 8.76 14.26 45.92 62.56

1.5 1 4.16 5.17 9.18 14.64 47.97 65.58

1.5 1.5 4.33 4.91 8.32 12.82 42.41 59.82

2 0.5 4.38 4.72 8.54 13.18 41.15 58.86

2 1 4.55 5.97 10.1 14.94 44.56 63.91

2 1.5 4.38 4.97 7.98 11.98 41.11 63.17

In bold, we report the best result for each severity of Gaussian noise

added to the CIFAR-10 test set

Table 5 Comparison of the classification and corruption error

achieved by learning or not the value of the inhibition strength a

Learned a parameter

Eclean Ecorr

ResNet-20 7.56 30.29

ResNet-20-PP 8.29 29.38

ResNet-20-PPa 7.89 31.09

ResNet-56 6.64 28.64

ResNet-56-PP 7.01 26.23

ResNet-56-PPa 6.48 26.82

Neural Computing and Applications (2020) 32:17957–17971 17967

123

without push–pull inhibition. In the case of ResNet-20, we

did not observe an improvement of the robustness of the

network with push–pull layers and learned inhibition

strength. In the case of ResNet-56, the learned inhibition

strength contributes to a consistent improvement of the

robustness also slightly reducing the classification error on

clean data. However, we observed that the optimization

process becomes more complicated, with slower conver-

gence, and requires longer training time when the value of

the a parameter is learned. Hence, it is worth to consider

further future analyses to study the effects of learning the

inhibition strength on the configuration of the training

process, i.e., the learning rate schedule, batch size, etc.

5 Discussion

We demonstrated that the use of a push–pull layer as

substitute of the first convolutional layer of state-of-the-art

CNNs contributes to a substantial increase in robustness of

the networks to corruption of the input images. This is

attributable to the capability of a push–pull kernel to detect

a feature of interest more robustly than a convolutional

kernel also when the input data is heavily corrupted. Being

robust to different kinds of corruption of the input, for

instance in the case of low illumination or adverse weather

conditions that disturb our visual perception, is a key

property of the visual system of the brain. Inhibition phe-

nomena at different levels of the visual system hierarchy

are known to play a key role in such mechanism [2].

The design of the push–pull layer is inspired by the

functions of some neurons in the early part of the visual

system of the brain, which exhibit a response inhibition

phenomenon known as push–pull inhibition. In this light,

the implementation of the push–pull layer strengthens the

relation between the processing of visual information that

is performed inside a CNN and that in the human system of

the brain. Indeed, the hierarchical computation of features

with increasing semantic value in the CNN architectures

resemble the layered organization of the visual system. In

this work, we augmented actual convolutional neural net-

works with an explicit implementation of inhibition of

visual responses as it is known to happen in area V1 of the

visual cortex [21].

In the experiments, we used a fixed value of the inhi-

bition strength a for all the kernels in a push–pull layer. It

is, however, known from neuro-physiological studies that

not all the neurons in area V1 of the visual system of the

brain exhibit push–pull inhibition properties. Furthermore,

those neurons that have an inhibitory component do not all

actuate it with the same intensity [42]. This behavior can

be implemented in the proposed push–pull layer by training

the value ai of the inhibition strength of the i-th kernel in a

push–pull layer. In this way, only few kernels are expected

to implement inhibition functions, according to what is

known to happen in the visual system.

In principle, one can deploy the push–pull layer at any

level into a CNN architecture, as it is designed as a substitute

of a convolutional layer. However, neuro-physiological

studies recorded the functions of push–pull inhibition only in

the early parts of the visual cortex, up to the area V1. In a

CNN, these areas can be related to the first group of convo-

lutional layer, e.g., the first residual block of ResNet or the

first dense block of DenseNet. However, it is expected that

deploying the proposed push–pull layer inside a residual or

dense block changes the learning dynamics of the classifi-

cation models, making the optimization process more diffi-

cult. Thus, further studies are needed to employ the push–

pull layer at deeper layers in CNN architectures.

6 Conclusions

We proposed a novel push–pull layer for CNN architec-

tures, which increases the robustness of existing networks

to various corruptions of the input images. Its parameters

can be trained by error backpropagation, similarly to those

of convolutional layers. This allows to use the push–pull

layer as a substitute of any convolutional layer in a CNN

architecture.

We validated the effectiveness of the push–pull layer by

deploying it in state-of-the-art CNN architectures, by

substituting the first convolutional layer. The results that

we achieved using LeNet on the MNIST data set, and

ResNet and DenseNet models on corrupted versions of the

CIFAR data set, namely the CIFAR-C benchmark data set,

demonstrate that the push–pull layer considerably increases

the robustness of existing networks to input image cor-

ruptions. Furthermore, the use of the push–pull layer as

first layer of any CNN, replacing the first convolutional

layers, guarantees a systematic improvement of general-

ization capabilities of the network, which we measured by

a substantial reduction of the relative corruption error

between performance on clean and corrupted data. We

released the code and trained models at the url http://

github.com/nicstrisc/Push-Pull-CNN-layer.

Funding This study was partially funded by the European Commis-

sion H2020 program under project TrimBot2020 (Grant Number

688007).

Compliance with ethical standards

Conflict of interest The authors declare that they have no further

conflict of interest.

17968 Neural Computing and Applications (2020) 32:17957–17971

123

http://github.com/nicstrisc/Push-Pull-CNN-layer
http://github.com/nicstrisc/Push-Pull-CNN-layer

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Appendix 1: Brain-inspired model design

The design of the proposed push–pull block is inspired by

neuro-physiological evidence of the presence of a partic-

ular form of inhibition, called push–pull inhibition, in the

visual system of the brain.

In general, inhibition is the phenomenon of suppression

of the response of certain neural receptive fields by means

of the action of receptive fields with opposite polarity.

From neuro-physiological studies of the visual system of

the brain, there is evidence that neurons exhibit various

forms of inhibition. For instance, end-stopped cells are

characterized by an inhibition mechanism that increases

their selectivity to line-ending patterns [7]. In the case of

lateral inhibition, the response of a certain neuron sup-

presses the responses of its neighboring neurons. Lateral

inhibition inspired the design of the Local Response Nor-

malization technique in CNNs, which increased the

generalization results of AlexNet [22]. Center-surround

inhibition is known to increase the detection rate of pat-

terns of interest by suppression of texture in their sur-

roundings, and has been shown to be effective in image

processing [15].

Neurons that exhibit push–pull inhibition are composed

of one receptive field that is excited by a certain positive

stimulus (push) and one that is excited by its negative

counterpart (pull). In practice, the negative receptive field

is larger than the positive one and suppresses its

response [26, 27]. The effect of push–pull inhibition is to

increase the selectivity of neurons for stimuli for which

they are tuned, even when they are corrupted by noise [11].

Appendix 2: AlexNet on CIFAR-C: baseline
results

In Fig. 8, we depict the AlexNet architecture that we used

for the baseline experiments on the CIFAR-10 data set. The

concerned model is the result of a modification of the

ImageNet version of AlexNet, that is configured to work

with images from the CIFAR data set. The main differ-

ences with respect to the ImageNet version of AlexNet is

that in this implementation, the size of all the convolutional

kernels is 3� 3 pixels and the input size of the first layer of

the fully connected network is 1024. Furthermore, we set

the stride of the first convolution conv1 equal to 2 (instead

of 4 as in the ImageNet model).

Fig. 8 AlexNet architecture used as the baseline model for the

analysis of results on the CIFAR-C data set. Light yellow indicates a

convolution, while darker yellow is a ReLU function. Similarly, light

purple is a linear layer while the darker purple box indicates the

corresponding ReLU function. The max-pooling operation is repre-

sented with the orange box (color figure online)

Neural Computing and Applications (2020) 32:17957–17971 17969

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

The used AlexNet model achieved a classification error

on clean data of 13.87. In the following we report the

values of the AlexNet classification error (as percentage)

on the corrupted CIFAR-C test sets, which we used to

normalize the corruption errors CEM
c;s—Gaussian noise:

38.44, shot noise: 31.82, impulse noise: 46.13, speckle

noise: 31.26, defocus blur: 23.53, glass blur: 40.97, motion

blur: 29.32, zoom blur: 26.89, Gaussian blur: 27.78, snow:

26.94, frost: 28.26, fog: 30.31, spatter: 25.19, brightness:

17.84, contrast: 46.77, elastic transformation: 22.25, pixe-

late: 18.36, jpeg compression: 18.48, saturate: 22.15.

References

1. Akhtar N, Mian A (2018) Threat of adversarial attacks on deep

learning in computer vision: a survey. IEEE Access

6:14410–14430. https://doi.org/10.1109/access.2018.2807385

2. Alitto HJ, Dan Y (2010) Function of inhibition in visual cortical

processing. Curr Opin Neurobiol 20(3):340–346. https://doi.org/

10.1016/j.conb.2010.02.012

3. Azzopardi G, Petkov N (2012) A CORF computational model of

a simple cell that relies on LGN input outperforms the Gabor

function model. Biol Cybern 106(3):177–189. https://doi.org/10.

1007/s00422-012-0486-6

4. Azzopardi G, Rodrı́guez-Sánchez A, Piater J, Petkov N (2014) A

push–pull corf model of a simple cell with antiphase inhibition

improves snr and contour detection. PLoS ONE 9(7):e98424.

https://doi.org/10.1371/journal.pone.0098424

5. Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Train-

able cosfire filters for vessel delineation with application to

retinal images. Med Image Anal 19(1):46–57. https://doi.org/10.

1016/j.media.2014.08.002

6. Badrinarayanan V, Kendall A, Cipolla R (2015) Segnet: a deep

convolutional encoder-decoder architecture for image segmenta-

tion. CoRR arXiv:1511.00561

7. Bolz J, Gilbert CD (1986) Generation of end-inhibition in the

visual cortex via interlaminar connections. Nature

320(6060):362–365

8. Carlini N, Wagner DA (2016) Towards evaluating the robustness

of neural networks. CoRR arXiv:abs/1608.04644

9. Cohen TS, Welling M (2016) Steerable cnns. CoRR arXiv:abs/

1612.08498

10. Dodge S, Karam L (2017) A study and comparison of human and

deep learning recognition performance under visual distortions.

In: 2017 26th international conference on computer communi-

cation and networks (ICCCN), pp 1–7. https://doi.org/10.1109/

ICCCN.2017.8038465

11. Freeman TC, Durand S, Kiper DC, Carandini M (2002) Sup-

pression without inhibition in visual cortex. Neuron

35(4):759–771. https://doi.org/10.1016/S0896-6273(02)00819-X

12. Fukushima K (1980) Neocognitron: a self-organizing neural

network model for a mechanism of pattern recognition unaffected

by shift in position. Biol Cybern 36(4):193–202. https://doi.org/

10.1007/BF00344251

13. Geirhos R, Temme CRM, Rauber J, Schütt HH, Bethge M,

Wichmann FA (2018) Generalisation in humans and deep neural

networks. In: Advances in neural information processing systems

31 (NeurIPS2018), pp 7538–7550

14. Goodfellow I, Shlens J, Szegedy C (2015) Explaining and har-

nessing adversarial examples. In: International conference on

learning representations. arXiv:1412.6572

15. Grigorescu C, Petkov N, Westenberg M (2004) Contour and

boundary detection improved by surround suppression of texture

edges. Image Vis Comput 22(8):609–622. https://doi.org/10.

1016/j.imavis.2003.12.004

16. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for

image recognition. CoRR arXiv:abs/1512.03385

17. Hendrycks D, Dietterich T (2019) Benchmarking neural network

robustness to common corruptions and perturbations. In: Pro-

ceedings of the international conference on learning

representations

18. Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017)

Densely connected convolutional networks. In: 2017 IEEE con-

ference on computer vision and pattern recognition (CVPR),

pp 2261–2269

19. Hubel D, Wiesel T (1962) Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex. J Physiol-

Lond 160(1):106–154

20. Hui TW, Tang X, Loy CC (2018) Liteflownet: a lightweight

convolutional neural network for optical flow estimation. In:

Proceedings of IEEE conference on computer vision and pattern

recognition (CVPR), pp 8981–8989

21. Kremkow J, Perrinet LU, Monier C, Alonso JM, Aertsen A,

Frégnac Y, Masson GS (2016) Push–pull receptive field organi-

zation and synaptic depression: mechanisms for reliably encoding

naturalistic stimuli in v1. Front Neural Circuits 10:37. https://doi.

org/10.3389/fncir.2016.00037

22. Krizhevsky A, Sutskever I (2012) Imagenet classification with

deep convolutional neural networks. In: Pereira F, Burges CJC,

Bottou L, Weinberger KQ (eds) Advances in neural information

processing systems 25. Curran Associates, Inc., New York,

pp 1097–1105

23. Kurakin A, Goodfellow IJ, Bengio S (2016) Adversarial exam-

ples in the physical world. CoRR arXiv:abs/1607.02533. URL

http://dblp.uni-trier.de/db/journals/corr/corr1607.html#Kurakin

GB16

24. LeCun Y, Haffner P, Bottou L, Bengio Y (1999) Object recog-

nition with gradient-based learning. In: Forsyth D (ed) Feature

grouping. Springer, Berlin

25. Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-

supervised nets. In: Proceedings of the eighteenth international

conference on artificial intelligence and statistics, proceedings of

machine learning research, vol 38, pp 562–570. PMLR

26. Li Y, Ma WP, Li LY, Ibrahim LA, Wang SZ, Tao HW (2012)

Broadening of inhibitory tuning underlies contrast-dependent

sharpening of orientation selectivity in mouse visual cortex.

J Neurosci 32(46):16466–16477. https://doi.org/10.1523/JNEUR

OSCI.3221-12.2012

27. Liu BH, tang Li YT, Ma WP, Pan CJ, Zhang LI, Tao HW (2011)

Broad inhibition sharpens orientation selectivity by expanding

input dynamic range in mouse simple cells. Neuron

71(3):542–554. https://doi.org/10.1016/j.neuron.2011.06.017

28. Lu J, Sibai H, Fabry E, Forsyth DA (2017) Standard detectors

aren’t (currently) fooled by physical adversarial stop signs. CoRR

arXiv:abs/1710.03337

29. Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2018)

Towards deep learning models resistant to adversarial attacks.

CoRR arXiv:abs/1706.06083

30. Marĉelja S (1980) Mathematical description of the responses of

simple cortical cells�. J Opt Soc Am 70(11):1297–1300. https://

doi.org/10.1364/JOSA.70.001297

31. Metzen JH, Genewein T, Fischer V, Bischoff B (2017) On

detecting adversarial perturbations. In: Proceedings of 5th

17970 Neural Computing and Applications (2020) 32:17957–17971

123

https://doi.org/10.1109/access.2018.2807385
https://doi.org/10.1016/j.conb.2010.02.012
https://doi.org/10.1016/j.conb.2010.02.012
https://doi.org/10.1007/s00422-012-0486-6
https://doi.org/10.1007/s00422-012-0486-6
https://doi.org/10.1371/journal.pone.0098424
https://doi.org/10.1016/j.media.2014.08.002
https://doi.org/10.1016/j.media.2014.08.002
http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/abs/1608.04644
http://arxiv.org/abs/abs/1612.08498
http://arxiv.org/abs/abs/1612.08498
https://doi.org/10.1109/ICCCN.2017.8038465
https://doi.org/10.1109/ICCCN.2017.8038465
https://doi.org/10.1016/S0896-6273(02)00819-X
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
http://arxiv.org/abs/1412.6572
https://doi.org/10.1016/j.imavis.2003.12.004
https://doi.org/10.1016/j.imavis.2003.12.004
http://arxiv.org/abs/abs/1512.03385
https://doi.org/10.3389/fncir.2016.00037
https://doi.org/10.3389/fncir.2016.00037
http://arxiv.org/abs/abs/1607.02533
http://dblp.uni-trier.de/db/journals/corr/corr1607.html#KurakinGB16
http://dblp.uni-trier.de/db/journals/corr/corr1607.html#KurakinGB16
https://doi.org/10.1523/JNEUROSCI.3221-12.2012
https://doi.org/10.1523/JNEUROSCI.3221-12.2012
https://doi.org/10.1016/j.neuron.2011.06.017
http://arxiv.org/abs/abs/1710.03337
http://arxiv.org/abs/abs/1706.06083
https://doi.org/10.1364/JOSA.70.001297
https://doi.org/10.1364/JOSA.70.001297

international conference on learning representations (ICLR).

arXiv:1702.04267

32. Moosavi-Dezfooli S, Fawzi A, Frossard P (2016) Deepfool: a

simple and accurate method to fool deep neural networks. In:

CVPR. IEEE Computer Society, pp 2574–2582

33. Moosavi-Dezfooli S, Fawzi A, Fawzi O, Frossard P (2017)

Universal adversarial perturbations. In: CVPR. IEEE Computer

Society, pp 86–94

34. Papernot N, McDaniel PD, Wu X, Jha S, Swami A (2015) Dis-

tillation as a defense to adversarial perturbations against deep

neural networks. CoRR arXiv:abs/1511.04508

35. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. CoRR arXiv:abs/1409.

1556

36. Song X, Zhao X, Hu H, Fang L (2018) Edgestereo: a context

integrated residual pyramid network for stereo matching. CoRR

arXiv:abs/1803.05196

37. Strisciuglio N, Petkov N (2017) Delineation of line patterns in

images using b-cosfire filters. In: IWOBI, pp 1–6. https://doi.org/

10.1109/IWOBI.2017.7985538

38. Strisciuglio N, Azzopardi G, Petkov N (2019) Brain-inspired

robust delineation operator. In: Computer Vision—ECCV 2018

Workshops, pp 555–565

39. Strisciuglio N, Azzopardi G, Petkov N (2019) Robust inhibition-

augmented operator for delineation of curvilinear structures.

IEEE Trans Image Process 28(12):5852–5866. https://doi.org/10.

1109/TIP.2019.2922096

40. Szegedy C, Inc G, Zaremba W, Sutskever I, Inc G, Bruna J,

Erhan D, Inc G, Goodfellow I, Fergus R (2014) Intriguing

properties of neural networks. In: In ICLR

41. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,

Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with

convolutions. In: Computer vision and pattern recognition

(CVPR). arXiv:1409.4842

42. Taylor MM, Sedigh-Sarvestani M, Vigeland L, Palmer LA,

Contreras D (2018) Inhibition in simple cell receptive fields is

broad and off-subregion biased. J Neurosci 38(3):595–612.

https://doi.org/10.1523/JNEUROSCI.2099-17.2017

43. Temel D, Kwon G, Prabhuhankar M, AlRegib G (2017) CURE-

TSR: challenging unreal and real environments for traffic sign

recognition. In: Advances in neural information processing sys-

tems (NIPS) machine learning for intelligent transportations

systems workshop

44. Temel D, Lee J, AlRegib G (2018) CURE-OR: challenging

unreal and real environments for object recognition. CoRR arXiv:

abs/1810.08293

45. Vasiljevic I, Chakrabarti A, Shakhnarovich G (2016) Examining

the impact of blur on recognition by convolutional networks.

CoRR arXiv:abs/1611.05760

46. Weiler M, Hamprecht FA, Storath M (2017) Learning steerable

filters for rotation equivariant cnns. CoRR arXiv:abs/1711.07289

47. Worrall DE, Garbin SJ, Turmukhambetov D, Brostow GJ (2016)

Harmonic networks: deep translation and rotation equivariance.

CoRR arXiv:abs/1612.04642

48. Zagoruyko S, Komodakis N (2016) Wide residual networks. In:

BMVC

49. Zheng S, Song Y, Leung T, Goodfellow I (2016) Improving the

robustness of deep neural networks via stability training. In: 2016

IEEE conference on computer vision and pattern recognition

(CVPR), pp 4480–4488. https://doi.org/10.1109/CVPR.2016.485

50. Zoumpourlis G, Doumanoglou A, Vretos N, Daras P (2017) Non-

linear convolution filters for cnn-based learning. In: IEEE inter-

national conference on computer vision, ICCV 2017, Venice,

Italy, October 22–29, 2017, pp 4771–4779. https://doi.org/10.

1109/ICCV.2017.510

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:17957–17971 17971

123

http://arxiv.org/abs/1702.04267
http://arxiv.org/abs/abs/1511.04508
http://arxiv.org/abs/abs/1409.1556
http://arxiv.org/abs/abs/1409.1556
http://arxiv.org/abs/abs/1803.05196
https://doi.org/10.1109/IWOBI.2017.7985538
https://doi.org/10.1109/IWOBI.2017.7985538
https://doi.org/10.1109/TIP.2019.2922096
https://doi.org/10.1109/TIP.2019.2922096
http://arxiv.org/abs/1409.4842
https://doi.org/10.1523/JNEUROSCI.2099-17.2017
http://arxiv.org/abs/abs/1810.08293
http://arxiv.org/abs/abs/1810.08293
http://arxiv.org/abs/abs/1611.05760
http://arxiv.org/abs/abs/1711.07289
http://arxiv.org/abs/abs/1612.04642
https://doi.org/10.1109/CVPR.2016.485
https://doi.org/10.1109/ICCV.2017.510
https://doi.org/10.1109/ICCV.2017.510

	Enhanced robustness of convolutional networks with a push--pull inhibition layer
	Abstract
	Introduction
	Related works
	Method: CNN augmentation with a push--pull layer
	Implementation
	Use of the push--pull layer

	Experiments and results
	LeNet on MNIST
	Training
	Results

	ResNet and DenseNet on CIFAR
	CIFAR corruption benchmark data set
	Experiments and evaluation
	Results

	Sensitivity to push--pull parameters
	Learning the inhibition strength \alpha

	Discussion
	Conclusions
	Funding
	Open Access
	Appendix 1: Brain-inspired model design
	Appendix 2: AlexNet on CIFAR-C: baseline results
	References

