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Abstract
Scholarly work points to 5S+1, a simple yet powerful method of initiating quality in manufacturing, as
one of the foundations of Lean manufacturing and the Toyota Production Systems. The 6th S, safety, is
often used to prevent future occupational hazards, therefore, reducing the loss of time, money, and
human resources.

This paper aims to show how Industry 4.0 technologies such as computer-based vision and object
detection algorithms can help implement the 6th S in 5S+1 through monitoring and detecting workers
who fail to adhere to standard safety practices such as wearing Personal Protective Equipment (PPE).
The paper evaluated and analyzed three different detection approaches and compared their performance
metrics. In total, seven models were proposed to perform such a task. All the proposed models utilized
You-Only-Look-Once (YOLO v7) architecture to verify workers' PPE compliance. In approach I, three
models were used to detect workers, safety helmets and safety vests. Then, a machine learning algorithm
was used to verify if each detected worker is in PPE compliance. In approach II, the model simultaneously
detects individual workers and veri�es PPE compliance. In approach III, three different models were used
to detect workers in the input feed. Then, a deep learning algorithm was used to verify the safety. All
models were trained on Pictor-v3 dataset. It is found that the third approach, when utilizing VGG-16
algorithm, achieves the best performance, i.e., 80% F1 score, and can process 11.79 Frames per Second
(FPS), making it suitable for real-time detection.

1. Introduction
The Lean manufacturing concept was introduced in Japan. The Toyota company �rst implemented the
concept and was known as Toyota Production System. However, nowadays, the Lean concept is widely
applied in industries. Lean manufacturing is de�ned as providing quality products while maintaining the
low cost of manufacturing. The primary purpose of Lean manufacturing is to minimize enterprise waste,
as waste is an extra resource burden that never adds value to the company. Lean manufacturing tools
minimize operational costs by reducing waste, optimizing product quality, and increasing e�ciency [1].
Furthermore, the Lean manufacturing concept is one of the most popular and widely used methods in the
industries to achieve maximum productivity, high quality, and cost reduction in organizations. Results of
a study concluded that the Lean concept boosts the productivity of organizations, reduces the cost of
manufacturing, eliminates unnecessary downtime, better the utilization of resources, and maximizes
pro�tability. Therefore, the Lean concept enhances the competitiveness of any organization in the market
[2]. Therefore, enterprises strive to adopt the Lean manufacturing concept to become economically sound
and practical. It was seen that there was a continuous improvement in organizations after the application
of the Lean manufacturing concept [3]. The introduction of Lean manufacturing tools such as Total
Productive Management (TPM), overall equipment effectiveness (OEE), and Jidoka directly impact the
environment of the enterprise, social, and economic sustainability. Therefore, a safe working environment
is the cause of improvement in employee commitment, morale, safety, and delivery time [4]. 
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Lean manufacturing has operational bene�ts regarding quality, delivery, cost, and volume �exibility. It
was shown that adopting digital technology and Lean manufacturing reduces production costs despite
the different environmental conditions. The application of Lean manufacturing together with digital
technology improves operational performance and e�ciency of production management. Lean
implementation has been shown to improve the �nancial standing of an enterprise by maintaining a safe
shop �oor management approach [5]. The introduction of the Lean manufacturing concept in the
management of railway transport enterprises results in the optimization of labor and material resources.
Thus, it helped reduce operation time, generate a safe environment for labor, improve transportation
quality, and expand their customer base [6]. 

Back in 1970 5S method was �rst introduced by Takashi Osada [7] to sustain the implementation of the
Lean concept. 5S, a Lean tool, includes elements such as Sort, Set, Shine, Standardize and Sustain. The
Safety was later added to make the 5S+1. These tools eliminate unnecessary items that do not add value
to the production by �xing an unhealthy, untidy work environment. In a study, ten different manufacturing
units were used to �nd out the effect of the use of 5S, and it showed a positive result on the
manufacturing units. Furthermore, after applying 5S, there was a continuous improvement in the
workplace and clear evidence of improvement in employee human relations and motivation [8]. 5S
system is the �rst step into Lean thinking to minimize waste and maximize productivity. Through it, they
maintain discipline and order in workstations hence e�cient and effective operational results [9].
Therefore, the 5S can be considered to be a cyclic method. As a result, there is a continuous improvement
[10]. Even when applied in a limited resources environment, 5S has proven to bring positive changes in
the work environment of health centers by reducing the number of unwanted items, improved directional
indicators, and labeling the units of service. Thus, increasing the quality of services in a more e�cient,
safe, and patient-centered style also helped improve the behaviors of staff and patients towards the
resources of the workplace [11]. Applying the 5S in a medical laboratory brought a higher order level,
helped eliminate unnecessary objects, and increased productivity [12]. It was found that applying 5S in
hospitals eliminated waste in motion, thus helping to reduce cycle time [13]. Consequently, a more Lean
and more organized work environment was created while controlling work accidents and errors
beforehand [14]. The application of 5S in the fast food industry contributed to optimizing the work
process. It also contributed to a decrease in production time; and a reduction in energy consumption [15].
Implementing 5S has been shown to improve safety, minimize defect rates, increase equipment
availability [16], and better cost reduction, which can result in higher agility and �exibility of the
manufacturing enterprise and positively impact employee morale [17]. Applying the 5S methodology in
packaging improved quality and food safety [18]. Furthermore, applying 5S in restaurant management
caused a reduction in the number of steps that need to be taken by employees to ful�ll a speci�c task. It
also helped reduce the time spent searching for materials by 95%. Thus, helping reduce order time,
serving more customers, and making more pro�ts [19]. The use of 5S positively impacts performance by
enhancing manufacturing production quality and effectiveness [20]. 5S+1 has also been used to organize
the workplace at a scienti�c instruments manufacturing company [21] and achieved results in process
improvement, continuous improvement, and waste reduction [22].  
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1.1 Sort in 5S+1  

This is the �rst step when implementing the 5S+1 strategy. It improves the quality of the work with better
care in keeping things in order, thus improving the management of the workspace. Sort helps separate
waste from the manufacturing process [23]. The �rst S, Sort, eliminates steps that do not add value [24].
In this process, a red tag is placed on the unnecessary items or the items that are not in the proper place
or quantity. The red tag items are then moved or recycled, disposed or reassigned. Hence sorting helps to
generate �oor space and remove the items that are broken, scrap, or excess raw material [25]. The Sort
element of 5S helps enterprises shorten searching time, maintain a Lean and safe workspace and quickly
detect any fault in equipment [26]. The 5S method is a foundation for improving the production process
in any company. That is why it should be adequately implemented to increase the effectiveness of a
process by eliminating waste [27].[28].  

1.2 Shine in 5S+1 

Once sorting is done, keeping order in the workspace is vital. Routine Lean up is essential for the
production system's proper functioning. In 5S+1, work is divided among employees in terms of the
Leaning time and area of Leaning [29]. Also, faulty equipment due to excessive vibrations, leakages,
misalignments, and other causes can be easily noticed in a Lean working environment. If these
malfunctions are not �xed at the moment, it can lead to loss of production or equipment failure.
Therefore, having a Lean and organized workplace can help prevent sources of potential failure or
downtime from going unnoticed. Shine is taken from Seiso, which means sweep, scrub, or shine. The
primary purpose of Seiso is to Lean up the workspace by removing dust, dirt, chips, and other
contaminations. It emphasizes on that by guiding operators or workers on the shop �oor to maintain the
state of Lean of the machines and shop �oor. Training is given to the employees about the adverse
effects of contamination and how to avoid them to establish and maintain a risk-free working
environment [30]. Shine indicates the need to Lean systematically to keep a healthy work environment,
which helps maintain quality work in production [31]. When equipment is Lean, it performs more
e�ciently, thus eliminating extra costs that can be incurred due to unnoticed problems. Manufacturers
have realized that if machines are kept clean while daily maintenance is carried out, chances of
downtime decrease; thus, margins of pro�ts increase [32]. It has been documented that the number of
common accidents and risks in a Lean factory has gone down in a Lean workspace or shop �oor [33].  

1.3 Set in 5S+1 

Set or Seiton is another element of the 5S+1 method that means systemization, set in order, or
organization. It helps in a facility layout when planning where to place different resources such as raw
materials, machine tools, semi-�nished products, etc. This strategy ensures that it should not take more
than 30 seconds to �nd a necessary object [23]. Once the sort has eliminated all the unnecessary items,
set in order can be implemented. Set in order means to arrange items based on size and frequency of use.
Further, the items are labeled for ease of use and stored or placed in a location based on that. In set in
order, arrangements are made in such an order that tools are located according to the frequency of their
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use. As a result, this procedure helps to minimize movements and search time. Set in order can be
achieved by labels, using tapes, signs, and marking �oors. In addition, Seiton eliminates wastes, including
search wastes, waste in motion, and excessive inventory waste [34]. Many positive changes have been
noticed as a result of adopting 5S+1. For example, it was found that there was a reduction of employee
movement by 60% and a reduction of 20% in operational costs [35]. Furthermore. It has been shown to
increase productivity, quality of work and products, safety, health, and e�ciency [36]; and reduction of
waste in motion, such as excessive movements between production halls and work stations [37].  

1.4 Standardize in 5S+1 

Seiketsu is another element of 5S that means standardization, tidiness, and sanitization. It helps to carry
out repeated activities without any hindrance and extra usage of time [23]. The primary objective of
standardization is to make the �rst 3S; sort, set in order, and shine as a habit, so workers do not return to
the old unorganized practices [38]. Seiketsu creates standards and monitors them for upcoming events,
such as inspection and safety plans. Standardization aims to maintain a safe working environment and
reduce the disruption that might happen due to a change in the scope of duties for the workers, allowing
a shorter training time and smooth and quick adaptation to the new changes in the working environment
[30]. Further, standardization prevents the accumulation of waste, and maintains a consistent procedure
and a Lean working environment. Without any standards in an organization, it is impossible to improve
product quality [39]. In the current overlapped environments of Lean Industry 4.0, standardization is one
of the critical parameters to maintain a safe workspace, reduce disruptions, and increase production.
5S+1 is a business or industrial approach that primarily focuses on improving the production process by
enhancing workplace standards [40]. In addition to integrating standards into maintenance procedures,
production planning and speci�cations, and transportation of goods, standardization is also used in
other signi�cant activities, such as human resource management, customer service, and bookkeeping
[41]. Implementation of 5S+1 depends upon employee commitment, sustainability initiatives, and training
[42]. 5S+1 practices generate new rules for production plants and set up processes that are adapted in
the company [43]. Chiarini [44] attempted to create a �rst guideline on how the 5S+1 concept and tools
could be integrated into established standard texts such as ISO 9001.  

1.5 Sustain in 5S+1 

The Shitsuke element of the 5S means sustains. The main objective of Shitsuke is to keep or maintain all
the new and effective processes as standards of the organization. Workplace inspections should be
carried out as planned routine activities every speci�c period [23]. 5S+1 helps eliminate obstacles that
reduce the potential to reach an e�cient production process [45]. Sustain is viewed as an essential step
to maintain the �rst 4S when applied while allowing for better implementation of the sixth S in safety
[46]. The most crucial goal of sustain is to make the best practices a habit of the workforce in any
business. Further sustain helps improve human relationships in the company as it teaches discipline and
helps continuous running of the 5S+1 process [39]. Adopting 5S+1 has encouraged employees to create
better work conditions by teaching them how to reduce waste through Value Stream Mapping (VSM) and
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continuous improvement. When implemented, the 5S+1 method in�uences individual behaviors. It creates
simple, precise, and e�cient rules, thus constructing a disciplined functional working environment [47]. It
is di�cult to change the traditional way of doing things and maintain the new procedures which
disrupted the old ways; that is why this �fth S is considered to be the most challenging procedure [48].
Without sustain, it is impossible to maintain the application of 5S+1 [49]. Maintaining the 5S+1 strategies
in the workplace simpli�es the work environment and makes it easy for everyone to follow the rules and
guidelines [50].  

1.6 Safety in 5S+1 

Safety focuses on preventive measures to protect workers from hazardous conditions and provide them
with a safe environment. Studies recall that safety plays a signi�cant role in maintaining an environment
that is free of stress, safe, and secure hence improving the work environment [51]. 

Operations such as welding, gas cutting, and casting process need extra precautionary measures to
reduce the number of incidents that can happen [52]. The 5S+1 method cannot be separated from
industrial, manufacturing, or construction operations. Implementing 5S+1 tools creates safer work
conditions [53], [54]. Deploying 5S+1 in the healthcare industry reduced waste and mistakes and
increased productivity [55]. Applying 5S+1 ensured that operators used Personal Protective Equipment
(PPE) and gear to avoid accidents. [56]. The 5S+1 method is a powerful engine that enhances the quality
of the work environment by improving safety [57]. 

2. Background
With the purpose of showing the effectiveness of object detection algorithms in monitoring and detecting
workers who fail to adhere to standard safety practices, a dataset was utilized that contained numerous
instances of construction workers that could be classi�ed as wearing a safety helmet, safety vest, both,
or neither. Construction workers comprise 5% (more than 7 million employees) of the total workforce in
the United States and almost 6.3% (more than $1.3 trillion) of its Gross Domestic Product (GDP) [58], [62].
According to the Bureau of Labor Statistics (BLS), almost 19% of fatal occupational accidents are
recorded in the construction industry, and about 9% of non-fatal occupational accidents [60]. Most of
these accidents could have been prevented if workers adhered to appropriate safety measures such as
wearing PPE such as a safety helmet, safety vest, gloves, safety goggles, and steel-toe shoes [61]. While
governing laws and safety regulations holds employers responsible for enforcing, monitoring, and
maintaining appropriate PPE on the job site [62], a recent study revealed that almost 40% of workers do
not wear any PPE. Inadequate risk management measures, including failure to use or incorrect use of
PPE, may signi�cantly increase the risk of accidents [63]. Employers can be �ned an amount of up to
$13260 for each employee who is out of compliance with PPE [67]. Applying 5S + 1 can help employers
avoid workplace accidents and hefty non-compliance �nes, reducing time and resources spent dealing
with �nes, lawsuits, and settlements as a result of non-compliance.



Page 7/39

Integrating automation and big data in the Industry 4.0 [74] helped enhance the monitoring of PPE
compliance. So far, there are two types of monitoring techniques, sensor-based which consist of utilizing
Radio Frequency Identi�cation (RFID) tags installed on each PPE component and monitoring the signals
of the tags to verify if workers were adhering to PPE compliance [65], [66], [67]. The second type of
monitoring is vision-based; in the past, this used to be done with the human eye of a foreman on the site;
these days, it utilizes camera systems to record images or videos of the job site, which are then analyzed
to verify PPE compliance [68], [69]. Table 1 shows a comparison between the vision-based model and
sensor-based model.

Table 1
Sensor-based vs. Vision-based monitoring of PPE compliance

Sensor-based Vision-based

Utilizes tags that contain a sensor attached to an
antenna that enables the transmission of data to the
reader, transmitted data receiver, and computer
database for storing captured data [70], [71], [72]

Requires high-resolution cameras, software
embedded with image processing
algorithms, computer power,

and computer database for storing captured
data [73]

High maintenance cost, RFID tags are expensive, and
they are likely to be damaged during loading and
unloading [74]; batteries can run out in active RFID
tags [75]

Lower maintenance cost since it has a
longer product life, but there might be a need
to upgrade outdated systems every few
generations [76]

More labor intense Minimal human effort

Implementation can be complex and time-consuming Easier to implement

Electromagnetic data transmission [77] Visual data transmission

Different tag types can be affected differently by
environmental damage; overall, they can better
handle exposure to sun and rain [78]

Algorithm performance can be affected by
an environmental factor such as rain

It can read through objects [79] Must be in sight

Reading range depends on the frequency; materials
like metal and liquid can impact signal

The reach depends on the speci�cations of
the camera; light and motion can affect
camera performance putting more pressure
on the computer processing stage [80]

Utilizes RFID tags or short-range transponders [81] Utilizes Machine Learning (ML) methods

In the last decade, Deep Learning (DL) models have gained recognition due to their ability to power
computer vision-related tasks [82], [83]. Convolutional Neural Network (CNN) uses a feed-forward
topology to propagate signals and is being widely used for image classi�cation and object detection [84].
CNN uses a feed-forward topology to propagate signals; CNN is more often used in classi�cation and
computer vision recognition tasks [84]. CNN was used to recognize hand-written digits [85], and to
classify images into different classes [86], [87]. CNN was also used to detect objects on roof construction
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sites [88], [89]. Long Short Term Memory (LSTM) comprises Recurrent Neural Networks (RNN) that
propagate data forward and also backward from later processing stages to earlier stages [84], [90] and
are capable of learning order dependence in sequence prediction and able to remember much previous
information using Back Propagation (BP) or previous neuron signals and include it for the current
processing [91], [92]. LSTM can be leveraged with various other architectures of NN [93]; CNN-LSTM was
used to recognize workers' potentially unsafe behavior [94]. CNN was used to identify construction-related
objects such as buildings, equipment, and workers [95]. A Fully Convolutional Neural Network (FCN) is a
CNN without fully connected layers [96], [97]. A signi�cant advantage of using FCN models is that it does
not require heavy preprocessing or feature engineering, thus making a good choice for image processing
[98]. FCN has been used to detect fake �ngerprints [99]. It was shown that FCN provides high detection
accuracy in addition to less processing times and fewer memory requirements than other NN. Region
Proposed Networks (RPN) [100], [101] such as Faster R-CNN has been deployed in an array of object
detection-related applications, for example, in accounting applications such as receipt information
extraction [102], handwriting text recognition [103], and matching process-related applications [104]. It
has also been applied in detecting mathematical expressions in scienti�c document images [105] and
tested in a plagiarism detection tool [106]. Table 2 shows a summary of surveyed literature where
machine vision has been used to detect PPE and Fig. 1 shows a �owchart of the PPE compliance
detection system.

Table 2
Summary of surveyed literature

Model Goal

R-CNN, Faster
R-CNN

To detect if a worker is not wearing a hard hat [107]

SSD To detect if a worker is not wearing a hard hat [108]

FCN To detect if a worker is not wearing a hard hat [109]

YOLO v6 To detect PPE for construction sites [110]

YOLO v4 Real-time detection of �re [111] and PPE [112]

YOLO v5 Fast detection of PPE in construction sites [113], [114]

HOG Detection of PPE compliance [115]

CNN-LSTM Detection of PPE [116]

YOLO v3 with
DL classi�ers

Detection of PPE compliance [117], [118]

YOLO v7 with
ML and DL
classi�ers

Our work: Detection of safe behavior (workers wearing safety helmets and safety
vests) and nonsafe behavior (workers not wearing safety helmets or safety vests,
or both)

YOLO: You Only Look Once, SSD: Single Shot Detector, R-CNN: Region-based CNN, HOG: Histogram of
Oriented Gradient,
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3. Dataset And Methodology
The dataset Pictor-v3 [118] contains 774 crowdsourced and 698 web-mined images which contain 2,496
and a total of 2,230 instances of workers in these images, respectively. The crowdsourced images come
already annotated via LabelMe [119], as seen in Fig. 2 below. Annotation is very time consuming and
costly process, therefore, for the purpose of our paper, we choose the crowdsourced part of the dataset to
conduct our analysis. Crowdsourced images were obtained from three different construction projects,
while web-mined images were retrieved from publicly available images on the web. The dataset has four
classes in total, workers (W) can either wear a safety helmet (H), safety vest (V), both (WVH) or none at
all. A brief statistic of the dataset is shown in Table 3 below. Data augmentation was done through the
YOLO v7 built-in feature. The data was trained for up to 50 epochs to help prevent over�tting [120], [121].
The dataset had a random 64%/16%/20% split for training, validation, and testing.

Table 3
A brief statistic of the dataset

Category Images Instances

Crowdsourced Web mined Crowdsourced Web mined

W 240 54 873 336

WV 0 91 0 328

WH 517 195 1583 623

WVH 17 358 40 943

Total 774 698 2496 2230

In computer vision, the object detection problem consists of two stages, identifying an object
(classi�cation) in an image and precisely estimating its location (localization) within the image [122]. For
example, a region-based detection algorithm such as R-CNN [123] �rst identi�es Regions of Interest (ROI).
It then uses a CNN to classify the identi�ed ROI to detect objects in them [124]. Faster R-CNN is an
improved version of R-CNN that performs classi�cation and detection tasks faster than R-CNN [125].
Mask R-CNN [126] has also been proposed as a faster variant of R-CNN. However, these algorithms still
needed to perform faster and with better performance. Therefore, algorithms of single-stage detectors
were introduced; these algorithms include SSD [127], YOLO [128], R-FCN [129], and Mask R-FCN [130],
among others that eliminated the need for designing a set of anchor boxes [131]; such as CenterNet [132],
RetinaNet [133], CornerNet [134], and their different variants. While these fast single-stage detectors often
signi�cantly compromise accuracy for achieving real-time detection, to date, only YOLO is faster yet more
accurate than other alternatives [135]. In our paper, three different detection approaches were proposed to
perform compliance inspections by detecting workers wearing PPE (safety helmet and safety vest) and
workers who do not.
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3.1 Approach I
The YOLO-v7 model individually detects the worker, helmet, and vest (three object classes). Next, an ML
classi�er is used to combine them WH (worker wearing only a helmet), WV (worker wearing only a vest),
WHV (worker wearing both helmet and vest), or W (worker wearing nothing). In this approach the YOLOv7
detects three classes �rst (W, H, and V) then a classi�er is used to sort them into four classes (W, WH, WV,
and WHV). For example, if a worker is classi�ed as wearing both (WHV), his practice would be labeled
“SAFE” and recorded as in compliance. If not, the worker would be labeled “NOT SAFE” and recorded as
out of compliance. The ML classi�ers used in this approach were Decision Tree (DT), K-Nearest
Neighbors (KNN), and Multilayer Perceptron (MLP). Figure 3 shows an illustration of this approach.

3.2 Approach II
The YOLO-v7 model localizes workers in the input image and directly classi�es each detected worker as
W, WH, WV, or WHV. In this approach the YOLOv7 detects all the classes from the �rst look. For example, if
a worker is classi�ed as wearing both (WHV), his practice would be labeled “SAFE” and recorded as in
compliance. If not, the worker would be labeled “NOT SAFE” and recorded as out of compliance. Figure 4
shows an illustration of this approach.

3.3 Approach III
YOLO-v7 model �rst detects all workers in the input image, and then, a CNN-based classi�er model is
applied to the cropped worker images to classify the detected worker as W, WH, WV, or WHV. In this
approach the YOLOv7 detects the W class �rst then a classi�er is used to sort them into four classes (W,
WH, WV, and WHV). For example, if a worker is classi�ed as wearing both (WHV), his practice would be
labeled “SAFE” and recorded as in compliance. If not, the worker would be labeled “NOT SAFE” and
recorded as out of compliance. These DL-based classi�ers are VGG-16, ResNet-50, and Xception. Figure 5
shows an illustration of this approach.

3. 4 Algorithms Utilized In The Three Approaches

3.4.1 You Only Look Once (YOLO)
Utilized in all the three proposed approaches, a YOLO v7 model takes 640 x 640 images as input.
Therefore, all images were resized to a size of 640 x 640. YOLO has been used in extracting information
from tables [136], [137], [138]; license plate recognition [139], [140], automated invoice parsing [141], and
for automated meter reading [142]. Instead of learning regions like in a Faster R-CNN, YOLO (currently in
its seventh version) looks at the complete image, splits it into n x n grids, then uses a single CNN to
predict the bounding boxes and the class probabilities for these boxes [143]. Finally, the bounding boxes
are used to locate the class within the tested image [96]. Figure 6 shows an illustration of the algorithm
utilized in approach II.
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3.4.2 Decision Tree (DT)
DT is a set of rules for dividing a large heterogeneous population into smaller, more homogeneous
groups concerning a particular output feature. DT is one of the most common Data Mining (DM)
techniques widely used for classi�cation and regression analysis. DT comes in many decision
algorithms, some of which are binary trees that always produce two categories (binary-split) at any level
of the tree-like CART and QUEST. Others like CHAID and C5.0 are non-binary trees that often grow more
than two categories at any level in the tree. Other minor differences exist between these four main DT
algorithms, such as how to deal with missing values, variable selection, capacity to handle a vast number
of classes in variables, and pruning methods [145], [146]. Figure 7 shows an illustration of the algorithm
utilized in approach I with DT.

3.4.3 K-Nearest Neighbors (KNN)
KNN is a supervised machine learning algorithm that can be used to solve both classi�cation and
regression problems. KNN assumes that similar data points exist nearby. In other words, similar data
points are near to each other. KNN searches the entire data set for the k number of most neighbors and
calculates distances for proximities before sorting the calculated distances in ascending order from
smallest to largest and picking the �rst K with its feature that is associated with the smallest distance.
KNN uses a large amount of training data, plotting data points in a high-dimensional space, where each
axis in the space corresponds to an individual variable that characterizes that data point [147]. KNN has
been used in intelligent mechanical systems to detect online fraud [148] and has been successfully
implemented in a large number of business problems [149],[150]. Figure 8 shows an illustration of the
algorithm utilized in approach I with KNN.

3.4.4 Multilayer Perceptron (MLP)
MLP is a class of feedforward Arti�cial Neural Network (ANN) that has been widely used in machine
learning applications in all aspects of science [151]. The MLP gives an AI system the ability to do data-
based problem solving by helping computers in programming themselves based on input data. MLP can
be used in both supervised learning methods and unsupervised learning methods. It has an initial
structure consisting of a network of nodes (neurons or perceptron) arranged in three layers: input, hidden,
and output. The ways of its learning (inner workings) resemble how a newborn's brain is being developed
without prior knowledge. The MLP model learns how to transform (in a linear or nonlinear way) input
variables into output variables by creating layers upon layers of neurons of random weights [152].
Figure 9 shows an illustration of the algorithm utilized in approach I with MLP.

3.4.5 VGG-16
VGG-16 is a sixteen layers deep CNN algorithm that is used in many computer vision tasks. VGG-16 can
classify images into 1000 object categories and has about 138 million parameters [153]. It has a unique,



Page 12/39

consistent architecture of 3 x 3 convolutional layers and 2 x 2 max-pooling layers [154], [155]; in the end,
it has three fully connected layers [156], [157], [158]. VGG-16 was used to classify and identify different
varieties of peanuts and achieved an average accuracy of 96.7% [159]. In addition, it was utilized in the
computer vision process in Unmanned Aerial Vehicles (UAV) [160] to detect �ower heads with prominent
stamens (tassel). Furthermore, VGG-16 was used in real-time detection in surveillance cam feed [161]. It
has also been utilized in hand-gesture recognition tasks [162], detecting defects in a wafer structure [163],
recognizing oil rigs in aerial images [164], and corn leaf disease diagnosis [165]. Figure 10 shows an
illustration of the algorithm utilized in approach III with VGG-16.

3.4.6 Xception
Xception by Google is a CNN that consists of 71 deep convolutional layers [166]. This e�cient deep
architecture was achieved by maintaining fewer connections between the convolutional layers of the
model, thus making it less dense. Xception has about 22.8 million parameters and one fully connected
layer at the end. Xception has been used in a wide variety of applications, including face detection [167],
medicinal leaf classi�cation [168], automated semantic segmentation of tree branches [169], garbage
image classi�cation [170], detection of brain tumors in MR images [171], and urban scene analysis [172],
[173]. Figure 11 shows an illustration of the algorithm utilized in approach III with Xception.

3.4.7 ResNet-50
VGG-16 and Xception were limited in their number of deep layers due to the vanishing gradient problem
with added depth. The vanishing gradient problem happens when the value of the product of the
derivative decreases until, at some point, the partial derivative of the loss function approaches a value
close to zero before the gradient propagates to the �nal depth. ResNet-50 is immune to this problem,
which could allow us in some cases to get better performance. ResNet is a type of Arti�cial Neural
Network (ANN) that consists of Residual Neural Networks (ResNet) used as a backbone for many
computer vision tasks. ResNet-50 consists of 152 deep convolutional layers and has about 25.5 million
parameters and one fully connected layer at the end [174]. ResNet-50 has been used in a wide variety of
applications, including food recognition tasks [175], �ower detection [176], breast cancer diagnosis in
histopathological images [177], Pneumonia prediction from medical images [178], Malaria cell-image
classi�cation [179], and urban planning [180]. Figure 12 shows an illustration of the algorithm utilized in
approach III with ResNet-50.

4. Results And Discussion
Object detectors such as YOLO v7 predict the location of objects of the given four classes in an image
with a particular con�dence score. The con�dence score re�ects how likely the predicted bounding box
contains the targeted class and how con�dent the classi�er is about it. The object position is de�ned by
placing bounding boxes around the objects to locate them. Therefore, our detection models were
represented by a set of attributes: object class with a corresponding bounding box, coordinates for each
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box, a certain height and width for the box, and a con�dence score. For example, consider the object of
interest (WHV) represented by a ground-truth bounding box (blue color) and the detected area represented
by a predicted bounding box (reds color) in Fig. 13 below. A perfect match occurs when the area and
location of the predicted and ground-truth boxes are the same [181], [182].

The threshold value, or what is known as Intersection over Union (IoU), is used to evaluate these two
bounding boxes. IoU is equal to the area of the overlap (intersection) between the predicted bounding box
(red) and the ground-truth bounding box (blue) divided by the area of their union. Even a small IoU value
still constitutes a valid prediction. However, an IoU close to one is considered more restrictive than an IoU
close to zero [181],[182]. In our work, we choose an IoU value of 0.5, which is neither loose nor restrictive.
Many object detection performance measurements are decided based on the elements of its confusion
matrix. These elements include True Positive (TP), False Positive (FP), False Negative (FN), and True
Negative (TN). Figure 14 below shows an illustration of the elements (TP, FP, FN, and TN) and Table 4
summarizes the conditions at which each of these elements takes place. While Table 5 shows the values
of TP, FP, FN, and TN of each class (W, WH, WV, WHV) and for each approach with its variations.

Table 4
Conditions for TP, FP, TN, and FN in Fig. 7

TP Correctly classi�ed to the class, IoU ≥ 0.5, meaning the object is there and the model correctly
detects it, there is an overlap between the ground-truth box and the prediction box (A, B)

FP Incorrectly classi�ed the class, IoU < 0.5, meaning the object is there, but the predicted box has
an IoU against the ground-truth box (C), or the object is not there but still the model detects one
(D)

FN Incorrectly classi�ed to another class, IoU = 0, meaning the object is there and the model does
not detect it or the ground-truth box has no prediction box against it (E, F)

TN This is all the other unrelated classes or the background region correctly detected as a non-
object. Thus, TN includes all possible negative classes that were not detected. In addition, in
calculating object detection metrics, which we will address furthermore in details, FN are not
essential and usually assigned a null value [183], (G, H)
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Table 5
Values of TP, FP, FN, and TN for all approaches

  Class

Approach variation W WH WV WVH

TP FP FN TP FP FN TP FP FN TP FP FN  

AI - MLP 128 56 16 263 14 13 0 0 0 5 2 2  

AI - DT 129 59 15 263 12 13 0 0 0 5 1 2  

AI - KNN 129 57 15 262 12 14 0 1 0 5 2 2  

AII 129 58 16 253 73 22 0 0 0 0 0 7  

AIII - ResNet-50 143 8 4 276 45 0 0 4 0 7 11 0  

AIII - Xception 153 28 0 274 31 0 0 1 0 5 8 2  

AIII - VGG-16 146 24 1 278 40 0 0 2 0 6 2 1  

TN is considered to be a null value, as explained earlier

Since the utilized part of the dataset does not contain workers with vests only, as we noted earlier (refer to
Table 3), we expect to see zero TP, FP, and FN values for the WV class. However, the models were trained
to detect workers with safety vests and helmets. So in some cases, as seen in Table 5, the models
incorrectly detects a safety vest, as seen in the case with FP values for the WV class. Furthermore, to
evaluate our detection approaches' performance in detecting the ground-truth bounding boxes for each
class, we need to use performance metrics such as accuracy, precision, recall, and F1 score. In object
detection, accuracy is not a reliable measurement due to the nature of class distribution, which is
considerably non-uniform. The performance of our models is usually evaluated using precision, recall,
and F1 score. Precision (= TP / (TP + FP)) is the ability of the model to detect relevant class. Precision
scores range from 0 to 1; a high precision implies that most detected objects match ground truth objects.
In comparison, recall (= TP / (TP + FN)) measures the probability of correctly detecting ground truth
objects. Recall ranges from 0 to 1, where a high recall score means that most ground truth objects were
detected. [184]. Table 6 shows a summary of precision, recall, and F1 scores.
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Table 6
Precision, recall, and F1 score values for all approaches

  Approach AI AII AIII

Class Metric MLP DT KNN AII ResNet-50 Xception VGG-16

W Precision 69.57% 68.62% 69.35% 68.98% 94.70% 84.53% 85.88%

Recall 88.89% 89.58% 89.58% 88.97% 97.28% 100.00% 99.32%

F1 Score 78.05% 77.71% 78.18% 77.71% 95.97% 91.62% 92.11%

WH Precision 94.95% 95.64% 95.62% 77.61% 85.98% 89.84% 87.42%

Recall 95.29% 95.29% 94.93% 92.00% 100.00% 100.00% 100.00%

F1 Score 95.12% 95.46% 95.27% 84.19% 92.46% 94.65% 93.29%

WV Precision 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Recall 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

WVH Precision 71.43% 83.33% 71.43% 0.00% 38.89% 38.46% 75.00%

Recall 71.43% 71.43% 71.43% 0.00% 100.00% 71.43% 85.71%

F1 Score 71.43% 76.92% 71.43% 0.00% 56.00% 50.00% 80.00%

High recall but low precision implies that all ground truth objects have been detected, but most detections
are incorrect (many false positives). On the other hand, low recall but high precision implies that all
predicted boxes are correct, but most ground truth objects have been missed (many false negatives). The
ideal detector happens when both precision and recall values are high, meaning the model has most
ground truth objects detected correctly. F1 score is the weighted average between precision and recall, F1
= ((2 x Precision x Recall) / (Precision + Recall), high F1 score value indicate high model performance
[185]. Therefore, the models with the highest F1 score values perform best. It is also found that models
generally performed the best when detecting WH class. Finally, all models in approach III showed the
most promising result in detecting the W class since the model YOLO v7 algorithm was dedicated to
learning one object class. Table 7 shows the rank of such performance for each model, where a rank of 1
indicates the highest or best performance and a rank of 7 indicates the lowest or poor performance.
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Table 7
Rank of F1 Score performance in detecting

each class for all models
Model W WH WV WVH

AI - MLP 5 3 - 4

AI - DT 6 1 - 2

AI - KNN 4 2 - 3

AII 7 7 - 7

AIII - ResNet-50 1 6 - 5

AIII - Xception 3 4 - 6

AIII - VGG-16 2 5 - 1

According to Table 7, approach II has the lowest performance among all the proposed approaches and
their variations in detecting any class. This is because, in AII, the model tried to detect all four classes
from the �rst look. A possible way to improve the performance of this approach is to train it with more
images. Meanwhile, AIII with VGG-16 performed best when detecting workers with safety vests and
helmets. This is because the VGG-16 has three fully connected convolutional layers at the end compared
to one for ResNet-50 and Xception, respectively. Another reason is that VGG-16 has more than 138 million
parameters compared to 25.5 and 22.2 for ResNet-50 and Xception, respectively. Following the
performance of AIII with VGG-16 is AI with all its ML variations which were shown to perform very well
compared to AIII with Resnet-50 or Xception. A possible reason for it is that DT and KNN are known for
their excellent performance in sorting tasks and that their classes were trained for more epochs than all
the other models. An epoch is the number of complete passes through the algorithm that each model was
trained for to achieve the lowest loss value possible [186]. Table 8 shows the number of epochs each
class was trained for in each model to achieve the lowest possible �nal loss value. While Table 9 shows
the processing speed of each model in terms of Frames Per Second (FPS).
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Table 8
The number of epochs each class was trained for in each model

Approach Class Starting loss value Final loss value Epochs

A1 W 0.02321 0.0003838 300

H 0.08541 0.0214 300

V 0.5748 0.006783 300

AII W 0.03212 0.02437 100

WH 0.007252 0.006797 100

WV 0.01557 0.01496 100

WHV 0.05429 0.04655 100

AIII W 0.04147 0.02723 50

Table 9
Speed of each model in FPS

  AI AII AIII

Model MLP DT KNN AII ResNet-50 Xception VGG-16

FPS 13.273 13.273 13.273 15.2 11.65 11.9 11.79

Based on Table 9 the approach (AII) with the highest speed was the same approach with the lowest
ranking performance (refer to Table 7), which could indicate that higher processing speeds might have an
effect on the performance of the model. All models were ran on Google Colab Cloud-based GPU [187].
One of the main limitations of vision-based detection methods is that they are susceptible to occlusion,
poor illumination, and blurriness. [188].

5. Conclusions
Real-time monitoring of proper PPE use is essential, and several ML and DL methods are explored to
make this possible. In this study, PPE compliance detection techniques based on computer vision were
proposed. Results from experiments comparing seven different algorithms revealed that the suggested
YOLO v7 with VGG-16 algorithm performs very well in terms of F1 score and FPS performance measures.
The models presented in this paper utilized Pictor-v3 dataset, where images were taken separately on
different devices, locations, times, perspectives, PPE styles, and industry projects. The YOLO v7 with the
VGG-16 model performed the best, which makes it the perfect candidate for real-time PPE detection. The
proposed methods were only tested on safety vests and helmet classes; therefore, future work can focus
on data with more classes, such as safety shoes, glass, and gloves, to draw more applications of the
proposed models. Furthermore, future work can focus on combining Natural Language Processing (NLP)
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to generate safety reports that could be used in root cause analysis to prevent accidents from reoccurring
in the future.
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Figure 1

Flowchart of the PPE compliance detection system

Figure 2

Example of annotated images in the training dataset [118].

Figure 3

Illustration of Approach I
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Figure 4

Illustration of Approach II

Figure 5

Illustration of Approach III

Figure 6

Illustration of approach II algorithm
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Figure 7

Illustration of approach I algorithm with DT

Figure 8

Illustration of approach I algorithm with KNN

Figure 9

Illustration of approach I algorithm with MLP
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Figure 10

Illustration of the algorithm utilized in approach III with VGG-16

Figure 11

Illustration of the algorithm utilized in approach III with Xception

Figure 12

Illustration of the algorithm utilized in approach III with ResNet-50
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Figure 13

Prediction area in red vs. ground-truth area in blue



Page 39/39

Figure 14

Illustration of TP, FP, FN, and TN


