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PANI/chitosan composite and a ternary composite comprising of PANI, chitosan, and reduced graphene oxide have been
successfully synthesised and characterised using FTIR and UV-VIS spectroscopy. Optical constants of the composites were
extracted from the UV-VIS spectra. The extracted parameters were applied in the simulation of a surface plasmon resonance
(SPR) biosensor functionalised with PANI/chitosan and ternary composites. The aim was to explore the applicability of the
composite-based SPR sensor in the detection of low-concentration acetone vapour within the range of 1.8 ppm–5.0 ppm for
diabetes monitoring and screening. The functionalization of the SPR sensor with the PANI/chitosan and the ternary composites
shows promising application of the sensor in the detection of acetone vapour at a low concentration down to less than 0.5 ppm.
The maximum sensitivity values of about 60 and 180 degree/refractive index change were observed for PANI/chitosan and
ternary composite sensing layers, respectively, in comparison with the bare gold-based SPR which shows no response up to
10 ppm concentration of acetone vapour in air. In addition, the two sensing layers show good selectivity to acetone vapour
compared to ethanol, methanol, and ammonia. The response in the case of ternary composite shows better linearity with a
correlation coefficient of 1.0 compared to PANI/chitosan- and gold-based SPR layers with 0.9999 and 0.9997, respectively.

1. Introduction

The interaction between light waves and conduction elec-
trons at the interface of metal and dielectric media produces
quanta of longitudinal surface waves. The waves are called
surface plasmons and are confined at a smaller wavelength
along the surface of the metal (plasmonic material) in contact

with the dielectric interface [1–3]. Surface plasmon reso-
nance (SPR) happens when energy is exchanged between
the light waves and surface plasmons. The incident angle of
the light at which nearly complete attenuation of the reflected
light occurs is called the SPR angle, and it is a function of the
optical properties of the metal, dielectric medium, and any
adsorbate on the metal. This dependency is exploited in
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SPR biosensing [3, 4]. SPR-based sensors feature high
sensitivity, real-time noninvasive measurement, label-free
measurement, and nonrequirement of electrodes [1, 4].

Gold is widely used as the plasmonic material in SPR
biosensors due to its high SPR shift feature (allowing high
sensitivity) and chemical stability [1]. However, despite these
important features, detection of volatile compounds and
other gases (few hundreds of Daltons) in low concentrations
is difficult to achieve. This is due to their poor interaction
with gold surface [5, 6]. But detection and monitoring of
the molecules of such volatile compounds are required in
many aspects such as the environmental monitoring of toxic
gases that are released through unintended processes as well
as the quality control and industrial monitoring of many
chemical products [7–9]. In addition, some of these mole-
cules can serve as disease biomarkers. An example is the
use ammonia in monitoring kidney complications and
acetone as a diabetes biomarker [10–14].

Exhaled breath acetone can be used as a diabetes bio-
marker because of its high correlation with blood glucose
(conventional diabetes biomarker) [15]. The concentration
of acetone in the human body is generally very low
(0.1 ppm–0.8 ppm), although it can be higher in the case of
metabolism disorders, including diabetes mellitus (DM)
(1.8 ppm–5.0 ppm) [16–18]. Detection of such very low con-
centration has been achieved by chemiresistor-based sensors
that mostly employ metal oxide semiconductors [19, 20].
However, the contact resistance of the sensors’ electrodes
also contributes to the overall resistance of the device. This
leads to unreliable detection and poor selectivity, as little
information other than resistance can be obtained [21].
Furthermore, metal oxide semiconductor sensors operate at
a high temperature [19, 22–25] resulting to an increased
energy consumption and unfavourable detection. SPR
sensors are not subject to these effects.

SPR-based sensors have been successfully applied in the
detection of some volatile compounds and gases like ben-
zene, ammonia, chloroform, ethanol, methanol, ethyl ben-
zene, 2-propanol, toluene, and acetone vapours [8, 26–32].
The performance of the sensors has been improved through
various design modifications which include the incorpora-
tion of nanoparticles of different morphologies [33–35],
bimetallic layers [2, 36–39], porous gold [40–43], graphene
layer on gold [5, 44], conducting and insulating polymer
coatings [26, 45, 46], and metal oxide coatings [47, 48].
However, SPR detection of acetone vapour has not been
optimized for suitable applicability in diabetes monitoring
and screening [32].

Conducting polymers, particularly, polyaniline, have
been used as an active layer in gas sensors since early 1980s
[49]. In contrast to metal oxide-based sensors, polyaniline-
based sensors are operated at room temperature [21]. Polya-
niline is also widely researched for its easy synthesis, high
sensitivity even at room temperature, short response time,
good mechanical properties enabling facile fabrication, high
surface area to volume ratio, and high surface tension. Fur-
thermore, chitosan has demonstrated ppm-level detection
of acetone vapour based on a different means of detection
[50]. Graphene-based SPR sensors are also well known at

improving sensitivity and selectivity due to graphene’s
unique physical, optical, and electrical properties [51–53].
Additionally, adsorption of gas molecule onto the surface
of an organic material (active sensing layer) can alter its
structural, electrical, or optical properties. Better sensitivity
and selectivity are normally expected with possible solva-
tion effect/and potential of hydrogen bond formation. For-
tunately, Hildebrand and Hansen solubility parameters of
polyaniline and acetone are closer than many other similar
vapours [54]. In addition, both polyaniline and chitosan
can form a hydrogen bond with the CO group from ace-
tone [54, 55]. Furthermore, graphene has been described
as among the best adsorbent material for carbon-based
biomolecules [56].

In this work, we have synthesised p-toluene sulfonic-
doped polyaniline (PANI)/chitosan composite and a ternary
composite comprising of PANI, chitosan, and reduced gra-
phene oxide (RGO). The composites were characterised by
ultra violet-visible spectroscopy (UV-VIS) and Fourier trans-
form infrared spectroscopy (FTIR). Furthermore, the optical
properties of the composites were extracted from their
respective optical spectra (UV-VIS). The applicability of the
PANI/chitosan and the ternary composites in SPR sensing
was then investigated and compared with conventional
gold-based SPR sensor using mathematical modeling and
simulation. Our aim was to investigate the potential of the
PANI/chitosan and the ternary composite-based SPR biosen-
sors for utilization in the detection of low concentration of
acetone vapour for diabetes monitoring and screening.

2. Materials and Methods

2.1. Materials. Aniline monomer (Aniline 99%), p-toluene
sulfonic acid (PTSA), ammonium peroxodisulfate (APS)
(98%), graphene oxide (GO), acetic acid, hydrazine monohy-
drate (>99%), and chitosan were all supplied by Avanti
chemicals supply from Merck and Sigma-Aldrich. All the
chemicals were analytical grade. RGO was obtained by
hydrazine reduction.

2.2. Synthesis of PANI Composites and Characterisation

2.2.1. PANI/Chitosan Composites. The synthesis of PANI/
chitosan composites is in accordance with some previous
works [57, 58]. In a typical synthesis, 0.5 g of chitosan was
dissolved in 50ml of aqueous acetic acid (2%v/v), and the
solution was stirred for 24 hours at room temperature. To
this mixture, about 30ml of 0.1M of aniline (dissolved in
0.4M PTSA) was added and stirred for 15min to form a
homogenous solution. The resultant mixture was cooled to
less than 5°C. In order to initialised the polymerisation
process, 10ml of 0.15M solution of APS was prepared in
0.1M PTSA and added to the above homogenous solution
drop by drop with constant stirring at 0°C-5°C. After
that, the reaction mixture was kept under constant stirring
for 6 hours. A greenish-black precipitate was obtained. The
precipitate was filtered and washed (with water and ethanol)
until the filtrate becomes colourless. The final composite was
dried at 60°C for 24 hours.
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2.2.2. Ternary Composites. Based on the previous literatures
[59, 60], a ternary composite was synthesised. In a typical
synthesis, 1 g of chitosan was dissolved in 100ml of aqueous
acetic acid (2%v/v), and the solution was stirred for 24 hours
at room temperature. A separate homogeneous dispersion of
100mg RGO in 45ml of 0.4M solution of PTSA was pre-
pared by ultrasonication for 2 hours. The two components
were mixed under continuous stirring. To the resulting
mixture, about 50ml of 0.1M of aniline (dissolved in 0.4M
PTSA) was added and stirred for 15 minutes to form a
homogenous dispersion. 0.15M APS solution was then
added to the dispersion drop by drop with constant stirring
at 0°C-5°C. The reaction mixture was kept under constant
stirring for an additional 6 hours. A greenish-black precipi-
tate was obtained. It was then filtered and washed with water
and ethanol until the filtrate becomes colourless. The final
composite was dried at 60°C for 24 hours.

2.2.3. Characterisation. The successful synthesis of the
PANI composites was confirmed by FTIR spectroscopy
(PerkinElmer, Spectrum One) in the 4000–400 cm-1 range.
UV-VIS spectroscopy of the composites’ thin films was
also carried out in order to further confirm the synthesis
and for optical constant measurements. The thickness
measurement was conducted using surface roughness tester,
SV-mutitoyo-3000.

2.3. Optical Constants and SPR Studies of the
PANI Composites

2.3.1. Optical Constant of the PANI/Chitosan and the Ternary
Composites. The optical constants of the composites were
extracted from the UV-VIS spectra of the thin film of the
respective composites. The thin films were deposited from
the dispersion concentration of 0.015 g/ml. Deionised water
was used as solvent in the case of the PANI/chitosan and
the ternary composites while 1-Methyl-2-pyrrolidinone
(NMP) was used in the case of PANI and PANI/RGO. The
process was complemented by constant magnetic stirring
for 3 hours at a 350 rpm test. Later, the resulting dispersions
were spin coated using POLOS™ spin coater at 1500 rpm.

The extraction of the optical constants was based on the
well-known relationship between the reflectance (R), trans-
mittance (T), and absorbance (A) spectral data [61]. This is
shown in equation (1). The optical absorption based on
Beer’s law, transmittance, and absorption coefficient (α) of
the composites were also calculated using equations (2), (3),
and (4), respectively [61, 62].

R + T + A = 1: ð1Þ

I dð Þ = I0e
−αd , ð2Þ

where IðdÞ is the intensity at depth of thickness d, I0 is
intensity at zero thickness, and α is absorption coefficient.

T = 1 − Rð Þ2e−αd:
ð3Þ

α =
2:303A

d
:

ð4Þ

However, the extinction coefficient, k (imaginary part
refractive index) is related to α by equation

k =
αλ

4π
, ð5Þ

where λ is the wavelength of the light waves (633 nm in
this case).

Based on all these above equations ((1)–(5)), the real part
of refractive indices, n of the composites were evaluated from
the Fresnel equation (equation (6))-based reflectivity mea-
surement of the composites using equation (7) [61, 62]
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Furthermore, the complex dielectric constant values of
the composites were evaluated from the n and k values using
the ff. equations [61]

ε1 = n2 − k2: ð8Þ

ε2 = 2nk, ð9Þ

where ε1 and ε2 are real part and imaginary part dielectric
constants, respectively.

2.3.2. SPR Studies of the Composites. The design of a surface
plasmon-based sensors is guided by the knowledge of the
penetration depth of a surface plasmon wave. It is defined
as the distance from the interface of metal-dielectric at which
the amplitude of the field becomes 1/e of the value at the
interface [1]. The penetration depth in the dielectric gives
us a measure of the length over which the surface plasmon
is sensitive to the changes in the refractive index of the dielec-
tric medium, while the penetration depth into metal gives us
an idea of the thickness of the metal film required for the cou-
pling of light incident from the other interface of the metal
film [1]. In this study, the dielectric constant value of gold
from literature and that of the composites was substituted
in equations (10) and (11) in order to find the penetration
depth through the gold (δm) and the composite materials
ðδdÞ adjacent to the gold film, respectively [26].
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where λ0 is the free space wavelength and εm′ and εd are
the real part dielectric constant of gold and the material
adjacent to the gold, respectively.

The design was further optimized using 5 different light
sources, namely red light at 633nm, yellow light at 589nm,
green light at 546 nm, violet light at 441nm, and blue light
at 436 nm (G-Line). The sketch diagram of the sensing device
is shown in Figure 1.

The system is comprised of He-Ne laser light
(λ0 = 633 nm), SF11 prism (n1 = 1:7786 at 633nm), Au
(d2 = 46 nm, n2 = 0:19404 + 3:5934i) [63, 64], PANI/chitosan
composite or ternary composites (d3 = 15 nm), and dry air
environment. Using equations (5) and (7), the complex
refractive indices (n3) of PANI/chitosan and ternary com-
posites at 633nm were found to be 1:803 + 0:318i and
2:526 + 0:432i, respectively. The refractive index of dry air
(n4) at temperature ðtÞ = 25°C and pressure ðpÞ = 101325 Pa
was found to be 1.000263719 using the ff. equation [65, 66]

n4 − 1 = ns − 1ð Þ ×
p 1 + p 60:1 − 0:972tð Þ × 10−10
� 	

96095:43 1 + 0:003661tð Þ
, ð12Þ

where ns is the refractive of standard air at 633nm, 15°C,
and 101325 with 0.045% by volume of carbon dioxide
(1.000272874).

To explore the response linearity of the proposed sensor,
the transfer matrix method (TMM) was applied in MATLAB
environment to generate SPR curves. The system was consid-
ered to be composed of N layers with dielectric constants and
thicknesses εi and di, respectively, placed between SF11 prism
with dielectric constant εp and air medium with dielectric
constant εair. The system also assumed a fixed thickness
refractive index change of 0.005 units due to the presence of
analyte of certain concentration. The complex reflection

coefficient (rp) for the p-polarised incident light was there-
fore described using equation [3]

rp αð Þ =
M11 +M12 ky,air/εair


 �
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where M represents the transfer matrix:

M=M1 ⋅M2 ⋯⋯MN, ð14Þ

Mi =

cos ky,idi

 � −jεi

ky,i
sin ky,idi


 �

−jky,i
εi

sin ky,idi

 �

cos ky,idi

 �

0

B

B

B

@

1

C

C

C

A

, ð15Þ

where ky is the wave vector perpendicular to the interface.
The angular dependence of rp is contained in the ky,i, and

the reflectance was obtained from equation

Rp = rp
�

�

�

�

2
: ð16Þ

For the SPR simulation of the detection of low concentra-
tion of acetone vapour in dry air for diabetes monitoring, the
Arago–Biot mixing formula (equation (17)) was applied for
the estimation of the refractive index of 0.5 ppm, 2 ppm,
4 ppm, 6 ppm, 8 ppm, and 10ppm concentration of acetone
vapour in dry air [67].

nacetone ppmð Þ = ϕairnair + ϕacetonenacetone, ð17Þ

where ϕacetone is the n-millionth fraction by volume of ace-
tone vapour, n = 0:5, 2, 4, 6, 8, and 10 for 0.5 ppm, 2 ppm,
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Figure 1: Diagram of the proposed SPR sensor based on PANI/chitosan and ternary composites.
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4 ppm, 6 ppm, 8 ppm, and 10 ppm of acetone, respectively.
Also, ϕair = 1 − ϕacetone. nair and nacetone are the refractive
index of dry air and acetone vapour, respectively.

Furthermore, the detection of such low concentration of
acetone vapour was simulated based on the following
assumptions. The thickness of gold was considered to be con-
stant during the detection process due to its lack of good
adsorption capability for gases [6]. However, the thicknesses
and the refractive indices of PANI/chitosan and ternary com-
posites were increased by 0.0005 and 0.1 nmunits, respec-
tively. This is due to potential adsorption, solvation, and
swelling effect of PANI and chitosan [26, 30, 54, 68–70].
Equation (18) was applied in comparing the sensitivity of
the SPR sensors based on gold, PANI/chitosan, and ternary
composite [3]. The refractive index change, Δn, of the
sensing layer was considered in the case of PANI/chitosan
and ternary composites because the contributions from the
gas-phase atop the polymer are not anticipated to substan-

tially influence the sensor response [26]. For gold-based
SPR sensor, the refractive index change of the gas phase
was considered.

sn =
Δθ

Δn
, ð18Þ

where Δθ is the shift in the SPR angle (SPR shift) and Δn is
the refractive index change.
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Figure 2: FTIR spectra of (a) PANI/chitosan and (b) ternary composites.
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Figure 3: UV-VIS spectra of (a) PANI/chitosan and (b) ternary
composites.

Table 1: Assignment of FTIR peaks in PANI/chitosan and ternary
composites.

Absorption frequencies (cm-1)
PANI/chitosan Ternary

NH stretching 3433 3433

OH group 3433 3433

CH stretching 2853, 2916 2853, 2919

C-N stretching 1695 1584

C=C quinoid ring 1487 1491

C=C benzoid ring 1633 1589

Protonation of imine nitrogen 1274 1295

CH bending 799 805

SO3
- group 1079 1088

C-S vibration mode 559 560

Table 2

Wavelength (nm) Assignment

259-508 π-π transition+localised Polaron

>750 Delocalised polaron

<259 Electronic conjugation due RGO

<259 Chitosan absorption band
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3. Results and Discussion

The successful synthesis of the composites was confirmed by
FTIR and UV-VIS characterisations as shown in Figures 2
and 3, respectively. All the characteristics peaks for PANI,
chitosan, and RGO were observed as summarised in
Tables 1 and 2 for FTIR and UV-VIS, respectively. FTIR con-
firmed the presence of two important PANI peaks due to
quinoid and benzoid vibration, respectively (Table 1) [71, 72].

Assignment of UV-VIS peaks in PANI/chitosan and ter-
nary composites for UV-VIS, both composites, shows PANI
characteristics’ peaks attributable to π − π∗ transition of the
benzenoid rings, localised polarons, and delocalised polarons
at 325, 433, and above 900 nm, respectively (Table 2). The
broad peaks before 259nm were all attributed to the presence
of chitosan and RGO [73].

3.1. Optical Constants of the Sensing Layers and SPR Studies.
The optical constants of the PANI composites, particularly
the complex refractive index and the dielectric constants,
were all evaluated through the application of equations
((1)–(12)) at 633 nm. Their values together with other mate-
rials used are illustrated in Table 3. It is observed that the
values of the optical constant in the ternary composites are
greater compared to those of PANI/chitosan. This is due to
the presence of reduced graphene oxide (RGO) which fea-
tures many unique optical features [74–76].

Prior to the commencement of the SPR studies, different
light sources were assessed for the applicability in SPR sen-
sors based on the optical properties of the PANI composites.
The assessment was conducted through the evaluation of
penetration depth through the PANI composites (dielectric
in this case) and the gold film. Table 4 shows the optical con-
stant of gold thin film at different wavelengths of light [63].

For a better SPR sensing capability, the penetration depth
through metal is required to be as low as possible while
the penetration depth through the dielectric is required
to be as high as possible. Figure 4 shows a comparison
between (δm) and the composite materials ðδdÞ at different
light source wavelengths of red light (633 nm), yellow light
(589 nm), green light (546 nm), violet light (441 nm), and
blue light (436 nm, G-Line). Based on the above criterion,
633nm was selected as the best light source for the subse-
quent SPR sensing studies based on PANI/chitosan and
ternary composites. It can be observed that blue and violet
light sources are not feasible as far as this study is concern.

However, apart from the red light source which is the best,
yellow light could also be applicable.

In order to obtain maximum sensitivity in our studies, we
optimized the reflectance minimum (Rmin) and minimized
the width of the resulting resonance curve. As shown in
Figures 5(a) and 5(b), this was achieved by selecting the
appropriate thickness of the gold layer. We selected 10 differ-
ent thicknesses of gold, from 42nm to 51nm in dry air. The
narrowest width of SPR curve is observed in 51 nm thickness.
However, its reflectance minimum is the shallowest. But as
shown in the inset of Figures 5(a) and 5(b), the greatest depth
is observed when the thickness of the gold is decreased to
46 nm (Figure 5(b)). In addition, its full width at half maxi-
mum is not the worst. As such, we selected the appropriate
thickness of the gold layer throughout this study as 46nm.

For the selection of appropriate thickness of the PANI
layers, it is well-known that reflectance minimum and
FWHM of SPR curves deteriorate with increasing thickness
of over layer coatings [26, 74] and Figure 6 proves that for
Figure 6(a), PANI/chitosan, and Figure 6(b), ternary com-
posites films. However, in this study, thickness that could
be achieved in reality has been considered [77, 78]. As shown
in the figures (Figures 6(a) and 6(b)), as the thickness
increases from 10nm to 16nm in dry air, the properties tend
to be affected significantly. But we assumed the attainment of
15 nm thickness of the PANI composites as something closer
to reality. As such, all our evaluations were based on that
thickness except otherwise described.

The response linearity of the proposed sensor to change
in the refractive index is illustrated in Figure 7. The values
were generated by increasing the refractive index of dry air
at interval of 0.005 due to the presence of analyte. It is shown
that the SPR shift is completely linear over the wide range of
refractive index change for both the bare gold-based SPR

Table 4: Optical constant values of gold film at different
wavelengths of light sources.

Wavelength
(nm)

Refractive
index (n)

Extinction
coefficient (k)

Real part dielectric
constant

633 0.19404 3.5934 -12.875

589 0.26146 3.1019 -9.5532

546 0.39631 2.5581 -6.3871

441 1.55410 1.9847 -1.5239

436 1.57050 1.9933 -1.5067

Table 3: Optical constants values used in SPR studies.

Material
Refractive index (n)

(633 nm)
Extinction coefficient (k)

(633 nm)
Real part dielectric constant

(633 nm)
Ref.

Dry air 1.0026 [65]

PANI/chitosan 1.8957 0.0910 3.5853 Equations ((1)–(12))

Ternary 2.6973 0.1249 7.2599 Equations ((1)–(12))

Acetone vapour 1.0011 — — [65]

SF11 glass prism 1.7786 3.8652E-08 3.1633 [77]
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sensor and the composite-based SPR sensors. This shows
the potential application of the PANI composite materials
in SPR sensors.

Figure 8 shows the SPR curves generated from the detec-
tion of low concentration of acetone vapour in air from
0.5 ppm to 10 ppm using gold-based (Figure 8(a)), PANI/chi-
tosan composite-based (Figure 8(b)), and ternary composite-
based (Figure 8(c)) SPR sensors. Using equation (17), the
refractive indices of acetone vapour at different concentra-
tions were calculated. The values of refractive index change

with respect to air are illustrated in Table 5. It is observed
from Figure 8(a) that bare gold surface could not show any
significant SPR shift for acetone vapour in 0.5 ppm to
10 ppm concentration range. This is the diabetes range of
interest. However, the PANI/chitosan and the ternary com-
posites show maximum sensitivity of about 60 and 180
degree per refractive index change, respectively. The perfor-
mance of the gold-based SPR sensor in the detection of the
acetone vapour is due to its lack of adsorption capability to
gases at a low concentration.
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Figure 5: (a) Optimisation of the thickness of gold layer for SPR sensing in gas phase. The inset shows the thickness that gives the deepest
reflectance minimum (46 nm). (b) Reflectance minima versus different thicknesses of gold layer.
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The selectivity of the PANI/chitosan- and the ternary
composite-based SPR biosensors to acetone vapour was also
investigated by examining the sensor response (SPR shift)
to the common interfering vapours such as ethanol,
methanol, and ammonia [79, 80]. Figure 8(d) shows the
selectivity of the two sensing layers to 10 ppm concentra-
tions of acetone, ethanol, methanol, and ammonia
vapours with their refractive index values estimated based
on Arago–Biot mixing formula (equation (17)). The incre-
ment in refractive index for the vapours with respect to that

of air (1.000263719) was found to be 8:22 × 10−9, 6:14 ×

10−9, 3:23 × 10−9, and 1:12 × 10−9 for acetone, ethanol, meth-
anol, and ammonia vapours, respectively. Both the PANI/-
chitosan- and the ternary-based SPR sensors show higher
response for acetone vapour compared to other three
vapours. Furthermore, PANI/chitosan-based SPR sensors
show no response to 10ppm concentrations of methanol
and ammonia. In addition, the ternary composite-based
SPR sensor still maintained the highest response compared
to the PANI/chitosan-based sensor.
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Figure 6: Optimisation of the PANI composites’ layer thickness for SPR sensing in gas phase in (a) PANI/chitosan and (b) ternary
composites’ films.
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The improved sensitivity and selectivity of PANI/chito-
san- and the ternary composite-based SPR biosensors are
due to the abundance of functional groups in the PANI
composites, their possible solvation, and unique optical and
electronic properties. In addition, the better performance
of the ternary composites could also be attributed to the
unique properties of reduced graphene oxide. Furthermore,
graphene-based materials are known to adsorb carbon-
based materials strongly and stably. Hence, our PANI
composite-based SPR sensors, especially the ternary based,
could open a way to achieve a reliable gas-phase SPR sen-
sor with potential applications in health and environmen-
tal monitoring.
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Figure 8: Gaseous-phase SPR sensing of acetone vapour using (a) bare gold-, (b) PANI/chitosan-, and (c) ternary composite-based SPR
biosensor at different concentrations in ppm. (d) Selectivity of the SPR biosensor to acetone vapour against other interfering gases such as
ethanol, methanol, and ammonia for 10 ppm concentration.

Table 5: Refractive index change of low-concentration acetone
vapour in dry air (1.000263719, refractive index of acetone vapour
at certain concentration) estimated using the Arago–Biot mixing
formula.

Concentration (ppm) Refractive index change (∆n)

0.5 4:11 × 10−10

2 1:64 × 10−9

4 3:29 × 10−9

6 4:93 × 10−9

8 6:58 × 10−9

10 8:22 × 10−9
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Usually, gas sensing mechanisms are explained based on
the change in the index of refraction in the analyte volume,
the formation of an adsorbed layer, the diffusion of the ana-
lyte gas into the sensor layer, and the solvation of the analyte
gas in the sensor layer [81]. Interestingly, in addition to low
temperatures (below 100 °C), operation capability, and inex-
pensiveness in PANI-based sensors, PANI optical properties
can be tailored (through doping or composites formation) to
attract a specific gas (based on mechanisms stated in the
introduction part) and thus can have high selectivity [54].
As such, we investigated the possible improvement in SPR
shift with an increased value of refractive index in PANI/-
chitosan (Figure 9(a)) and ternary composites (Figure 9(b)).
The imaginary value of the refractive index was kept con-
stant. The result shows the 0.1 unit refractive increment to
produce almost no improvement in SPR shift (also sensitiv-
ity) for both PANI/chitosan (Figure 9(a)) and ternary com-
posites (Figure 9(b)). However, as the refractive index is
increased by 0.5 units, the SPR shift increased significantly
before dropping after adding about 1.5 unit of refractive
index. Therefore, it could be concluded that the two compos-
ites need no further improvement. This is because the
increment in refractive index that is normally achieved
experimentally is within 0.1 unit increment range.

4. Conclusions

This work presents the application of PANI/chitosan
composite and a ternary composite comprising of PANI,
chitosan, and reduced graphene oxide in the SPR sensing of
acetone vapour for the monitoring and screening of diabetes
using mathematical modeling and simulation. The synthesis
of the composites was based on oxidative polymerisation of
aniline using ammonium peroxydisulfate (APS) and charac-
terised using FTIR and UV-visible spectroscopy. Optical
constants of the composites were extracted from the absorp-
tion spectra of the UV-VIS spectroscopy and applied in the
simulation of a surface plasmon resonance- (SPR-) based
acetone vapour sensor functionalised with PANI/chitosan

and ternary composites for diabetes interest, 1.8 ppm–

5.0 ppm. The response in the case of ternary composite shows
best linearity with correlation coefficient values of 1.0 com-
pared to PANI/chitosan- and gold-based SPR layers with
0.9999 and 0.9997, respectively. The result indicates prom-
ising application of the composite-based sensor in the
detection of acetone vapour at a low concentration down
to less than 0.5 ppm. The maximum sensitivity values of
about 60 and 180 degree per refractive index change were
observed for PANI/chitosan and ternary composite sensing
layers, respectively, in comparison with the bare gold-
based SPR which shows zero response up to 10 ppm
concentration of acetone vapour in air. The sensing layers
also show better selectivity to acetone vapour compared to
ethanol, methanol, and ammonia vapours. Hence, the
PANI/chitosan and ternary composite sensing layers, espe-
cially the ternary composite, would have a great potential
in realising a gas-phase SPR biosensor for health and
environmental monitoring.
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