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Abs t rac t .  A Bayesian, model-based method for segmentation of Mag- 

netic Resonance images is proposed. A discrete vector valued Markov 

Random Field model is used as a regularizing prior in a Bayesian clas- 

sification algorithm to minimize the effect of salt-and-pepper noise com- 

mon in clinical scans. The continuous Mean Field solution to the MRF is 

recovered using an Expectation-Maximization algorithm, and is a prob- 

abilistic segmentation of the image. A separate model is used to encode 

the relative geometry of structures, and as a spatially varying prior in 

the Bayesian classifier, Preliminary results are presented for the segmen- 

tation of white matter, gray matter, fluid, and fat in Gradient Echo MR. 

images of the brain. 

1 I n t r o d u c t i o n  

The automat ic  segmentation of anatomical  s tructures from medical images such 

as MRI  or CT will likely benefit from the exploitation of four different kinds of 

knowledge: intensity models tha t  describe the gray level appearance  of individual 

s tructures (e.g. fluid appears  bright in T2-weighted MR/),  relative geometric 

models tha t  describe the relative geometry of s t ructures  in a subject-specific 

reference frame (e.g. femoral cartilage is at tached to the subject ' s  femur), shape 

models tha t  describe the shape of individual s t ructures  in a subject- independent 

reference frame (e.g. the brain-stem is tube-like), as well as imaging models that  

capture the relevant characteristics of the imaging process. 

EM-Segmentation,  a segmentation method for MR] images [1], employed 

Gaussian intensity models for the different tissue classes, and used an imaging 

model to account for some distortions of the signal tha t  are unique to the MRI 

process. The work reported here continues along tha t  theme, with two key parts.  

The first contribution is the addition of a regularizer to the imaging model used in 

the EM-Segmentat ion algorithm. Regtflarization combats  sal t -and-pepper  noise 
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common in clinical scans. Previous implementations of EM-segmentation deal 

with this noise effectively by pre-processing the images with structure-preserving 

intensity smoothers, particularly gradient-limited diffusion methods [2, 3]. These 

methods are quite effective, but computationally costly, and not trivial to ad- 

just. We leverage the Bayesian flavor of EM-Segmentation and regularize via a 

prior distribution on the labeling, without incurring undue additional computa- 

tional cost. Specifically, we model the prior distribution as a Markov Random 

Field (MRF), and  recover its Mean Field (MF) solution using the Expectation- 

Maximization algorithm. While MF approximations of MRFs have previously 

been usedin computer vision, we believe that the reported work is novel in its 

use of this prior in conjunction with the EM-Segmentation algorithm. 

In the second component, we propose an algorithm that leverages geometric 

relationships between structures for segmentation purposes. We observe that 

some structures can be directly segmented from medical images by using methods 

from low-level computer vision, e.g. skin surface is reproducibly segmented from 

head MRI using a combination of tkresholding, connectivity, and morphological 

operations. Other structures, such as the brain tissue in head MRI, do not have 

as salient a combination of intensity and topology as the skin, and are harder 

to segment using low-level methods. We propose a "coarse to fine" strategy in 

feature (structure) space - a strategy in which the easily identifiable ("coarse") 

structures are first segmented automatically and their geometry is then used to 

bootstrap the segmentation of other ("fine") structures in the image. We present 

an implementation of this strategy in the form of a relative geometric prior (prior 

distribution on the geometry of "fine" structures, given the geometry of "coarse" 

structures), and integrate it into the EM-Segmentation algorithm along with the 

regularizing MRF prior summarized earlier. 

Combining the two components, the contribution of this paper may be sum- 

marized as the enhancement of the EM-Segmentation algorithm using two priors: 

an MRF prior to encode piecewise-homogeneity of labels, and a spatial prior to 

encode the relative geometry of structures. 

2 B a c k g r o u n d  o n  E M  S e g m e n t a t i o n  

Expectation-Maximization (EM) The EM algorithm is an iterative scheme 

for estimating the parameters of a model that maximize the likelihood of the 

observed signal. The key step in applying the EM algorithm is to identify a 

set of hidden variables, such that it becomes possible to directly compute the 

maximum-likelihood estimate of the model using the values of the observed vari- 

ables and these hidden variables. Once the hidden variables are identified, and 

the model parameters initialized, the EM algorithm alternates between estimat- 

ing the hidden variables (as the expected values of the hidden variables using the 

estimates of the model parameters; the E-step) and the model parameters (as 

the maximum-likelihood estimates of the model given the observed and hidden 

variables; the M-step). Each iteration improves the model estimate [4], and the 

EM algorithm converges to a local minimum of the likelihood fimction. 
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E M - S e g r n e n t a t i o n  Segmentation of MRI images is a challenging problem 

due to the presence of a non-linear gain field attributable to inhomogeneities 

in the imaging equipment. The EM-Segmentation algorithm [1], approached the 

segmentation of MRI images as a maximum likelihood estimation problem and 

used the Expectation-Maximization algorithm [4] to simultaneously estimate the 

class label and gain at each voxel that  maximize the likelihood of the observed 

signal. 

The observed MRI signal was modeled as a product of the true signal gen- 

erated by the underlying anatomy, and the non-linear gain artifact. Using this 

assumption, an iterative, supervised, Expectation-Maximization style segmenta- 

tion algorithm was developed that  treats the underlying label classes as hidden 

variables and alternates between estimating those classes (E-step) and the max- 

imally probable gain field (M-step). 

In this algorithm, intensity data  is log-transformed, thus converting the mul- 

tiplicative gain field to an additive bias field. Observed log intensity, Yij, at each 

pixel is modeled as a normal distribution, independent of all other pixels: 

- -  k,  = N( j - Z , j ;  ok )  , (1) 

where N(x;  #, (7) is the Gaussian distribution, with mean # and variance ~2; y~j is 

the observed log intensity at pixel location (i, j); Fij is tissue class corresponding 

to intensity Yij; #k, ak are the mean and standard deviation in intensity for tissue 

class k; f~j is the bias field at pixe] location (i, j) .  The method used a spatially 

stationary prior probability on the tissue ]abeks F: 

Psto (r) = 1-[psto (r j) (2) 
ij 

where pstat (F~j) is the prior probability that  a given voxel belongs to a particular 

tissue class. This prior probability is constant through the iterations. The bias 

field f~ is modeled as a multi-dimensional zero mean Ganssian random variable, 

to characterize its spatial smoothness. 

The E-step computes the posterior tissue class probabilities, W~jk (posterior 

probability of pixel i j  belonging to tissue class k), when the bias field is known: 

W~jk = p(Y/j[F/j = k;flij)pstat(Fij = k) 

E m  P (Yij IF~j = m; ~ij)P,tat (Fij = m) (3) 

The M-Step computes the value of the bias field f~ that  maximizes the average 

likelihood of observation, as fl = F R ,  where P~j = ~-~k w~j~,(ri~-,k) and F is 
O*1r 2 

a linear operator that  can be approximated by smoothing filters. This step is 

equivalent to a MAP estimator of the bias field when the tissue probabilities W 

are known. Detailed derivations of these steps can be found in [1]. 

In the next two sections, we preserve this EM framework for iterating between 

tissue classification and bias field estimation, and present two different methods 

for computing spatially varying priors on tissue class to enhance the spatially 

stationary prior shown in Equation 2 and used in Equation 3 of the E-step. 
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3 Addi t ion  of Markov Prior 

As noted, EM-Segmentation [1] uses a spatially stat ionary prior on tissue class, 

i.e. at each iteration, the prior probability that  a voxel belongs to a particular 

tissue class remains constant, and is independent of the labels of voxels in its 

neighborhood. In this work, we incorporate a Maxkov prior on tissue class, un- 

der which the prior probabilities at a voxel are influenced by the labels in its 

immediate neighborhood. This prior model acts as a regulaxizer and biases the 

solution towards piecewise-homogeneous labelings. Such a regularizing prior is 

useful in segmenting scans corrupted by salt and pepper noise. 

MRF priors have been used in computer vision to model smoothness as well 

as different textures (e.g., [5]). Typical solvers for MRFs include Gibbs sampling 

[6], the Metropolis algorithm [7], I terated Conditional Modes (ICM) [8], and 

Mean-Field (MF) methods [9]. ICM solvers have been used for the segmentation 

of medical images [10,11]. 

M R F  F o r m u l a t i o n :  We describe the reformulation of the prior distribution on 

the tissue labels F (from Equation 2) as a Maxkov Random Field to represent 

the piecewise homogeneity and the local compatibility of different tissues. The 

MRF parameters are obtained from manually labeled training data, and its Mean 

Field solution is recovered using the EM framework of the previous section. 

Some notation: S = {Sij l l  < i < m, 1 < j < n} is the lattice on which 

the MRF is defined, and each site of this lattice - referred to as either Sij or 

simply i j  - corresponds to the pixel location ( i , j )  in the image. N = {Nij l l  < 

i < m, 1 < j < n} defines the neighborhood system for the MRF, where Nij 

refers to the four neighbors of pixel i j  that  share an edge with it, i.e. Nij = 

{S~,~-l, S~,~+l, s~-l,j ,  S~+l,j }. 
The tissue labels F = {F~jlS~ j 6 S} are modeled as an MRF with the 

neighborhood system N on the lattice S. F 9 is a discrete-valued random-vector 
T 1 T drawn from the set {[100.. .0] , [010.. .0] , . . .  [000.. .1] }, and assigning the 

value [0. . .  1 . . .  0] T (with a 1 in the k th position) to F~j is equivalent to assigning 

the k th tissue class to the pixel i j  in the image. P satisfies the Maxkov condition, 

given by: P ( P i j l S  \ S i j )  = P ( P i j l N i j ) , V i j ,  which means that  the value of each 

random variable Pij in the field depends only on its four neighbors. 

The Hammersley-Clifford theorem established the Markov-Gibbs equivalence 

and states that  the probability of a particular configuration 3' of any MRF F 

can be computed using the Gibbs probability of its clique potentials (a clique is 

a subset of nodes of S that  axe each others neighbors) over N: 

p(r = -~) = l e -  ~ o  vo(~) (4) 

Here Vc is a clique potential which describes the prior probability of a particular 

realization of the elements of the clique c. 

The spatially stationary prior on the labeled image F ,  given by Equation 2, 

may be interpreted as an MRF on the image lattice with zeroth order cliques, i.e. 

there is no interaction between lattice sites. We impose local spatial coherence 
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on the label ing/~ by using first-order cliques. Clique potentials are computed 

using an Ising-like model derived from training data, i.e., the prior probability of 

tissue classes k and l occuring adjacent to each other is computed from manually 

labeled images. Thus, the prior probability on the labeling, P,~rl(I1), is not 

spatially stationary; it interacts with the labels in its neighborhood system. 

Computing the field configuration with the maximum Gibbs probability is 

computationally intractable, so we use a Mean Field approximation to the gen- 

eral Markov model. We approximate the values of the field F at neighboring sites 

by their statistical means, and rewrite P,~f(F), a Mean Field approximation to 

Pmrf(F), as a product  of single site probabilities Pml (F~j, Nij): 1 

Pm (r) = , (5)  

ij 

where the single site probability pmf(Fij,Ni,j) is written as a product  of the 

single-site prior p(Fij)  and the probability of each clique involving pi• i j: 

p,~1(r~j,N~j) = 1 ~p(F~j) �9 Ph- (T~,~-1). Ph+ (T~,j+I). Pv- (T~-I,~). P,+ (Fiq-l,j) (6) 

where F~ 3. is a continuous MF approximation to Fij, - is component-wise vector 

multiplication, and Z is a normalizing constant. Equations 5 and 6 describe a 

general model for a discrete first-order pseudo-Ising MRF, using a particular 

mean-field approximation. To apply this model we must choose specific repre- 

sentations for p and each of the four neighborhood terms Pn-, Pn+, P~-, and 

P~+. In addition we need to supply values for the mean field F in Equation 6. 

Using MtLF Prior on Tissue Classes in E M  Framework: We incorpo- 

rate the model into the EM framework in the following way: For the single site 

probability p we use the independent stationary prior, Pst~t, that  was formerly 

used in the work described in Section 2. For each ofPh-,  Ph+, P . - ,  and P .+ ,  we 

use a model based on the empirical joint probability of neighboring pixels. For 

F we use the estimates on per-pixel tissue probability produced by the previous 

iteration of the EM segmentation algorithm as described in [1]. 

Since the basic EM segmentation algorithm is already computing such tissue 

probabilities, the net effect is a simple modification to the E-step that  relates 

tissue co-occurrence statistics to the tissue probabilities that  were computed on 

neighboring pixels in the previous iteration. 

Since F is a random variable drawn from unit vectors, we may write the 

probability distribution modeled by Ph- as a linear form Pn- (g) ---- An-g, where 

Ah- is a k x k matrix, where k is the number of tissue classes in the training 

data, and its mn th element Ah-,m,~ gives the prior probability of tissue class ra 

and n occuring as a horizontal pair in the image, with the left pixel in the pair 

being tissue class n and the right one being m. The distributions Ph+, Pv-, and 

1 A different tractable MRF model for brain segmentation, uzing an Iterated- 
ConditionaJ-Modes solver has been explored in [10]. 
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Pv+, and the corresponding A's are defined in a similar fashion. We use this 

representation for the neighborhood probabilities in Equation 6 since it may be 

directly evaluated on the more general vectors F.  

4 A d d i t i o n  o f  R e l a t i v e  G e o m e t r i c  P r i o r  

In this section we describe the second component of our work: a method that  

leverages geometric relationships between structures for segmentation purposes. 

The motivating observation is that  while some structures are easily segmented 

using low-level computer vision methods (primary structures),  there are struc- 

tares whose segmentation is facilitated by knowledge of their spatial layout (ge- 

ometry) relative to other structures (secondary structures). 

S u m m a r y  o f  M e t h o d :  In order to use the relative geometry information 

for segmentation of a secondary structure in a given image, we first identify a set 

of primitives in terms of which to define its local geometric relationship to one or 

more primary structures. For example, the distance between points on the outside 

surface of structure P and the closest points on the inside surface of structure 

B is a primitive that  describes local relative geometry of the two surfaces. Next, 

we construct the relative geometric model from training (segmented) images. In 

order to do this, a random variable is defined for each primitive, and segmented 

images are used to construct an empirical joint probability distribution over 

these random variables. This probability distribution serves as a mode] of the 

relative geometric relationship between the primary and secondary structures in 

question. For example, if one primitive is the distance between the outer surface 

of P and the outer surface of S, and another is the distance between the inner 

surface of P and the outer surface of S, then two random variables dl and d2 are 

defined, one for each primitive relationship, and an empirical joint probability 

distribution for dl and d2 is constructed from the segmented images. This joint 

serves as the relative geometric model for structures P and S. Following the 

construction of the model, we segment primary structures in the given image 

using appropriate algorithms. Finally, we use the geometric model as a prior 

on the spatial layout of the secondary structure, conditioned on the geometry of 

the segmented primary structures and used the EM-Segmentation algorithm to 

segment the secondary structure in question. 

Note that  this method is profitably used for the segmentation of a pair of 

structures in which one is a primary structure and the geometric relationship 

between the pair is informative (in an information theoretic sense). If either 

constraint is violated (neither of the structures is primary, or the relationship is 

uninformative), this method does not help the resulting segmentation. 

P r e v i o u s  W o r k :  A similar relative geometric prior was used in a traditional 

Bayesian classifier to segment femoral cartilage from Knee MRI images [12]. Also, 

this work is similar in spirit to landmark based segmentation [13], and different 

in its detection of a dense set of features as the landmarks. 
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Example Usage of Method to Segment Brain Tissue from MR[ Images 
We observe that the skin surface and the ventricles are easily segmented in 

head MRI images, and use those as primary structures for segmentation of brain 

tissue (white matter and gray matter); the relationship between brain tissue and 

these primary structures is well described using two primitives: ds, the distance 

to the inside skin surface, and dr, the distance to the outside ventricle surface. 

Next, we detail the algorithm for constructing the aforementioned empir- 

ical geometric model, and its usage with the EM-Segmentation algorithm for 

segmentation of white matter. 

Empi r i ca l  Jo in t  Dens i ty  Es t ima t ion :  Example images in which the skin, the 

ventricles, and white matter have been manually labeled by experts are used to 

construct a non-parametric estimate for this joint density function. In particular, 

chamfer distance transforms[14] are computed for the inside skin surface and for 

the outside ventricle surface. These chamfer maps are used to find ds~ and dvi, 

the distance to skin and ventricle surfaces for all pixels i that are labeled white 

matter, and the values are histogrammed jointly. The histogram is normalized to 

obtain an empirical estimate of the joint density of ds and dv for white matter. 

Note that instead of histogramming the values of the random variables, methods 

such as Parzen Windowing [15] could be used effectively for density estimation. 

Usage  wi th  E M - S e g m e n t a t i o n :  The class conditional density is thus: 

P(dsi, dvilxi e W M )  (7) 

where xi are the spatial coordinates of the ith data pixel; W M  is the set of all 

pixels belonging to white matter; S is the set of all pixels belonging to the skin; 

V is the set of all pixe]s belonging to the ventricles; dsi is short for dsi (S), which 

is the distance from xi to the inside surface of the skin; dvi is short for dye(V), 

which is the distance from xi to the outside surface of the ventricles. 

Bayes rule allows us to express the posterior probability that a pixel should be 

classified as white matter based on observations of its intensity and spatial rela- 

tion to the skin and the ventricles (P(x~ C WMIds~(S ), dye(V), I~)) as a product 

of the prior probability that a given pixel belongs to white matter (P(x~ e WM))  

and the class conditional density P(ds~(S), dvi(Y),hlz~ E W M )  as follows: 

P(xl �9 WMIds~, dvi, Ii) = P(dsl, dv~, I~lxl E WM)P(:c~ �9 WM) 
P(dsi, dye, I~) (8) 

where Ii is the intensity at xi, and the other terms are as in Equation 7. This 

expression may be rewritten assuming independence between the intensity at a 

pixel and its spatial relationship to skin and ventricles as: 

P(xi e WMIds~,dv,,Ii) = P(ds~, dr, ix, E WM)P(h]xi �9 WM)P(x,  �9 WM) (9) 
P(ds~, dvl, I~) 

The first term in the numerator is the class conditional density for the model 

parameters, and is estimated using the method described above. The second term 

is a Ganssian intensity model for tissue class, obtained from samples of white 
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matter  intensity. The third term is the prior probability tha t  a pixel belongs to 

white matter,  computed as a ratio of white mat ter  volume to total  head volume 

in a segmented scan. The denominator is a normalization factor. 

This spatial probability distribution (Equation 9) can be used either in con- 

junction with the Mean-Field prior of Section 3, or by itself, instead of the 

spatially stationary prior in the E-step of the EM-Segmentation algorithm. 

The above method is repeated to obtain a segmentation of gray matter.  

5 Re su l t s  

We have used the work presented in this paper to classify several images from 

different Gradient Echo brain MRI scans. Two examples are described here. 

Gradient Echo Brain M R I  w i t h  M F :  Figure 1 shows the restflts of EM 

Segmentation using a Mean-Field prior on a sagittal slice of a Gradient Echo 

brain MRI. In the left column of the figure, the top image is the gray scale slice 

with additive white noise. The second image, provided as a baseline, is its classi- 

fication (gray - gray matter ,  white - white matter,  black - air/csf, red - skin/fat) 

that  was obtained using a standard MAP classifier. The third image in the first 

column is the classification obtained using EM Segmentation with a spatially 

stat ionary prior, and the fourth image is the classification obtained using EM 

Segmentation with a Mean Field prior. Notice that  the segmentation that  uses 

the Mean-Field prior is much less fragmented compared to the segmentation 

that  uses only the spatially stationary prior. Since each of these segmentations 

is obtained by thresholding the respective weights (Wijk from Equation 3) asso- 

ciated with each tissue class, the middle and the right column of the figure show 

the weights for each tissue class (gray matter ,  white matter ,  csf/air, skin/fat) 

when the spatially stat ionary prior and Mean-Field prior are used, respectively. 

Again, the point to note is the lack of fragmentation when the MF prior is used. 

Gradient Echo Brain MRI  with  MF and Condit ional-Spatial  Priors: 

Figure 2 shows the results of EM Segmentation using a Spatial-Conditional prior 

in conjunction with a Mean-Field prior on a coronal slice of a Gradient Echo 

brain MRI. In the left column of the figure, the top image is the grayscale 

slice. The second image, provided as a baseline, is its classification (gray - gray 

matter ,  white - white matter,  black - air/csf, red - skin/fat) that  was obtained 

using a standard MAP classifier. The third image in the first column is the 

classification obtained using EM Segmentation with a spatially s tat ionary prior, 

and the fourth image is the classification obtained using EM Segmentation with 

Spatial-Conditional and Mean Field priors. Notice that  the segmentation that  

uses the relative spatial priors is much less fragmented, and shows improved 

distinction between skin and brain tissue, as well as in the segmentation of 

white mat ter  in the brain stem, compared to the segmentation that  uses only the 

spatially stat ionary prior. Since each segmentation is obtained by thresholding 

the respective weights (Wijk from Equation 3) associated with each tissue class, 

the middle and the right column of the figure show the weights for each tissue 

class (gray matter ,  white matter,  csf/air, skin/fat) when the spatially stationary 



465 

prior and Mean-Field prior are used, respectively. Again, the point to note is 

the lack of fragmentation due to the MF prior, and the improved distinction 

between brain tissue and skin as well as improved segmentation of white matter.  

6 D i s c u s s i o n  

T r a d e o f f  b e t w e e n  Prior and Observation:  A characteristic of Bayesian 

methods is the delicate balance that  needs to be maintained between the in- 

fluence of the prior term and fidelity to the observed data. If the degree of faith 

in the prior term is high (i.e. it models the underlying phenomenon accurately) 

and the observation noisy, then conflicts between the prior and the observations 

are resolved in favor of the prior. In contrast, ]f there is negligible noise in the 

observations, then the prior can be discarded altogether, giving rise to a prior- 

less or maximum-likelihood solution. Unfortunately, it is often the case that  the 

prior term is somewhat accurate, and the data  is somewhat noisy i.e. it is not 

as clear how the two terms should be traded off in Bayes rule. The art of main- 

taining this balance is colloquially referred to as "tweaking the Bayesian fudge 

factor" and is arguably crucial to the success of the resulting algorithm. 

Empirically speaking, in our case, the relative importance of the regularizing 

(Markov) prior is inversely proportional to the signal to noise ratio (SNR) in 

the MRI scan. Since SNR in MR scans is directly proportionally to imaging 

parameters such as the strength of the ambient magnetic field, we weigh the 

prior by these parameters. For example, a scan acquired with a 0.5 Tesla magnet 

is segmented using a higher weight on the MRF prior, as compared with a scan 

acquired using a 1.5Tesla magnet. 

How best to characterize the weighing scheme for the geometric prior is less 

obvious. It would not be unreasonable, however, to measure the variation of the 

geometric prior model across individuais and assign a relative importance that  

is inversely proportional to that  measure of variance. As a side-effect of this pro- 

cess, the variance in the relative geometric model could be used to characterize 

which structures this method is best suited for, and analyze its failure modes. 

Unless bet ter  schemes become apparent, this is the approach we plan to take for 

characterizing the importance of the geometric prior in classification. 

M o v i n g  o n t o  3D: Since the images we are dealing with are inherently 3D 

volumes, the natural  next  step is to extend the reported priors by a dimension. 

While the 3D extension of the regularizing prior is simple to conceptualize and 

implement, the extension of the geometric prior to 3D will require a convention 

for normalizing images from different subjects, so that  the prior usefully encodes 

information across a population. The Tailarach coordinate system is a popular 

normalization method and a possible choice for us. 
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Fig.  i. The results of segmentation using an MRF Prior within h3M-Segmentation. 

The top left image is the input image, and the bottom image in the first column is 

its segmentation. The middle colum shows the weights Wija (for gray matter, white 

matter, air/csf, skirl respectively) upon convergence of the EM-Segmentation algorithm 

wi~h spatially stationary priors. The right column allows the weights when the M1R,F 

prior is used with EM-Segmentation. See the text for a discussion of the results. 
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:Fig. 2. The results of segmentation using a Relative Geometric Prior within •M- 

Segmentation. The top left image is the input image, and the bot tom image in the first 

column is its segmentation. The middle colum shows the weights Wijk (for gray mat- 

ter, white matter ,  air/csf, skin respectively) upon convergence of the EM-Segmentation 

algorithm with spatially s tat ionary priors. The right column shows the weights when 

the geometric prior is used with EM-Segmentation. See the text for a discussion of the 

results. 


