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tumor mutation profiling in cell-free DNA via paired
normal sequencing using MSK-ACCESS
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Circulating cell-free DNA from blood plasma of cancer patients can be used to non-invasively

interrogate somatic tumor alterations. Here we develop MSK-ACCESS (Memorial Sloan Kettering

- Analysis of Circulating cfDNA to Examine Somatic Status), an NGS assay for detection of very

low frequency somatic alterations in 129 genes. Analytical validation demonstrated 92% sensi-

tivity in de-novo mutation calling down to 0.5% allele frequency and 99% for a priori mutation

profiling. To evaluate the performance of MSK-ACCESS, we report results from 681 prospective

blood samples that underwent clinical analysis to guide patient management. Somatic alterations

are detected in 73% of the samples, 56% of which have clinically actionable alterations. The

utilization of matched normal sequencing allows retention of somatic alterations while removing

over 10,000 germline and clonal hematopoiesis variants. Our experience illustrates the impor-

tance of analyzing matched normal samples when interpreting cfDNA results and highlights the

importance of cfDNA as a genomic profiling source for cancer patients.
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A
dvances in molecular profiling have led to a rapid
expansion in the number of predictive molecular bio-
markers and associated targeted therapies, heightening

the need for large-scale, prospective tumor profiling assays across
all cancer types. The majority of comprehensive next-generation
sequencing (NGS)-based profiling methods utilize tumor tissue as
the primary specimen of choice for biomarker detection.
Although widely used, obtaining an adequate tissue sample can be
challenging in some cases due to the need for invasive biopsies
that may pose an excessive risk to the patient. In addition, based
on our clinical experience, 8.8% of the tissue submitted for
molecular analysis is inadequate for testing due to low tumor
cellularity, low DNA yield, or quality1. Finally, a single tissue
biopsy may not capture the full genetic heterogeneity of a
patient’s cancer, and consequently, clinically actionable bio-
markers may be overlooked even with the most sensitive and
specific genomic assay. Taken together, a sole tissue-based
genomic profiling approach may not be comprehensive and
may limit treatment options for cancer patients.

The successful detection of cancer drivers in circulating-tumor
DNA (ctDNA) found within plasma cell-free DNA (cfDNA)2 has
provided a means to overcome the limitations of tissue
profiling3,4. cfDNA profiling can have a direct impact on patient
care by informing treatment decisions5,6, enabling the monitoring
of cancer response to therapy7,8, revealing drug resistance
mechanisms9,10, and detecting minimal residual disease or
relapse11–13. In addition, by providing a less invasive collection
procedure, cfDNA analyses also enable serial molecular profiling
during the course of the patient’s disease14,15. Plasma profiling
can also potentially capture inter- and intra-tumor heterogeneity
across disease sites especially in patients with advanced metastatic
disease16,17. In addition, recent studies have shown that ctDNA
fragmentation profiles can better facilitate cancer screening and
early diagnosis18.

The use of ctDNA as an analyte, however, has its inherent
limitations. It is usually found in low concentrations in the
plasma19, which may be the result of low disease burden in early-
stage tumors, disease control in response to treatment, or low
tumor DNA shedding in blood. Moreover, the vast majority of
cfDNA is typically derived from normal hematopoietic cells,
leading to low levels of ctDNA and very low mutant allele fre-
quencies for somatic mutations. Highly sensitive assays that are
limited to single mutation ctDNA profiling assays such as droplet
digital PCR (ddPCR)20 are not practical for broad clinical use
given the increasing number of genomic alterations that are
predictive of response to FDA-approved targeted therapies or
required as inclusion criteria for clinical trial enrollment. Given
the low levels of ctDNA in a blood sample, the development of a
highly sensitive NGS assay that comprehensively encompasses all
clinically actionable targets is crucial for the detection of more
low-frequency alterations. Advances in NGS technologies, such as
the introduction of unique molecular identifiers (UMIs) and dual
barcode indexing, have enabled ultra-deep sequencing of cfDNA
while dramatically reducing background error rates, thereby
allowing high-confidence mutation detection of very low allele
frequencies21. Further, technical improvements in sequencing
library preparation methods have reduced the input DNA
required for sequencing, allowing for the efficient generation of
libraries with input DNA as low as 10 ng.

Herein, we describe the design, analytical validation, and
clinical implementation of MSK-ACCESS (Memorial Sloan Ket-
tering - Analysis of Circulating cfDNA to Examine Somatic
Status) as a clinical test that can detect all classes of somatic
genetic alterations (single nucleotide variants (SNVs), indels, copy
number alterations, and structural variants (SV)) in cfDNA
specimens. This assay utilizes hybridization capture and deep

sequencing (~20,000× raw coverage) to identify genomic altera-
tions in selected regions of 129 key cancer-associated genes.
MSK-ACCESS was approved for clinical use by the New York
State Department of Health on 31 May 2019, and has since been
used prospectively to guide patient care. We therefore also report
our clinical experience utilizing MSK-ACCESS to prospectively
profile 681 clinical blood samples from 617 patients, representing
a total of 31 distinct tumor types.

Results
Panel design and background error assessment. We utilized
genomic data from over 25,000 solid tumors sequenced by MSK-
IMPACT to generate a list of 826 exons from 129 genes encom-
passing the most recurrent oncogenic mutations; variants that are
targets of approved or investigational therapies based on OncoKB,
an in-house, institutional knowledge base of variant annotations22;
frequently mutated exons; entire kinase domains of targetable
receptor tyrosine kinases; and all coding exons of selected tumor
suppressor genes. This MSK-IMPACT-informed design targets an
average of three non-synonymous mutations and at least one non-
synonymous mutation in 84% of the 25,000 tumors previously
sequenced using MSK-IMPACT, including 91% of breast cancers
and 94% of non-small cell lung cancers (NSCLC) (Fig. 1a). To
further expand the detection capability of copy number alterations
and SV in 10 genes, we additionally targeted 560 common SNPs
and 40 introns known to be involved in rearrangements. MSK-
ACCESS incorporates unique molecular indexes (UMIs) to
increase fidelity of the sequencing reads. The overall process
(Fig. 1b) involves the sequencing of plasma cfDNA and genomic
DNA from white blood cells (WBCs) to ~20,000× and 1000× raw
coverage, respectively, followed by collapsing read pairs to duplex
(both strands of the initial cfDNA molecule) or simplex (one
strand of the initial molecule) consensus sequences based on
UMIs to suppress background sequencing errors. Duplex coverage
represents the number of unique double-stranded cfDNA mole-
cules for which both complementary strands were successfully
sequenced. Replicate read pairs from both strands are jointly
collapsed into a duplex consensus sequence to ensure highest-
stringency mutation calling. Only mutations present on reads
originating from both strands of the cfDNA template are retained
and considered high-confidence calls23 (Fig. 1c).

We first sought to characterize the error rate of MSK-ACCESS
using a cohort of 47 plasma samples collected from healthy
donors. The donor plasma samples were sequenced to a mean
raw coverage of 18,818×. Post collapsing, the mean simplex and
duplex coverage were 658× and 1103×, respectively (Fig. 1d,
Supplementary Fig. 1). When considering only the sites with
background error across all targeted sites (i.e., positions with non-
reference alleles), we observed a median error rate of 1.2 × 10−5

and 1.7 × 10−6 in simplex and duplex BAM files, respectively,
compared to a median of 3.3 × 10−4 in the standard BAMs
(Fig. 1e). Compared to the relatively equivalent background error
rate on the HiSeq 2500 (Supplementary Fig. 2), the standard
BAMs on the NovaSeq 6000 showed a higher error rate for T > A,
T > G, and C > A base transversions (Fig. 1e). However, following
collapsing, we observed lower and more uniform error rates
across both sequencers. Moreover, while <1% of targeted
positions in the standard BAM had an error rate of zero, 85%
of positions in the simplex BAM and 99% in duplex BAMs had
no observed base pair mismatches (Fig. 1f).

Analytical validation. For the analytical validation of MSK-
ACCESS, we assembled a cohort of 70 cfDNA samples with a
total of 100 known SNVs and indels in AKT1, ALK, BRAF, EGFR,
ERBB2, ESR1, KRAS, MET, PIK3CA, and TP53 identified by
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orthogonal cfDNA assays (ddPCR or a commercial NGS assay)
from the same specimen to demonstrate accuracy. The range of
VAF for the expected mutations, based on orthogonal assays, was
0.1–73%. We detected 94% of the expected variants (n= 94, 95%
CI: 87.4–97.8%) based on genotyping and 82% of them (n= 82,
95% CI: 72.7–88.7%) with de novo mutation calling (R2= 0.98)
(Fig. 1g, Supplementary Data 1, Supplementary Table 1).

Amongst the undetected mutations, leftover DNA was available
for only one of the samples (orthogonal VAF= 0.16%), and
ddPCR testing of this sample revealed no evidence of the
alteration in our specimen. For mutations with VAF ≥ 0.5% from
orthogonal assays (n= 83), we called 92% (n= 76, 95% CI:
84–96.5%) de novo, and we detected 99% of the mutations by
genotyping (n= 82, 95% CI: 92.5–99.9%).
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To determine the reproducibility of the assay, we prepared and
sequenced seven samples, harboring a total of 152 mutations,
both three different times within the same sequencing run and
also across four separate runs (Supplementary Data 2). By
genotyping, we detected 99% (n= 151, 95% CI: 96.4–100%) of
the expected mutations with an overall median coefficient of
variation of 0.16 (range: 0.04–1.2) for each sample and alteration.
To test the limit of detection of the assay, we sequenced five
different dilution levels (5, 2.5, 1, 0.5, and 0.1%) with a positive
control sample containing19 known mutations. In the 0.1%
dilution, 11% of the mutations (n= 2, 95% CI: 1.3–33.1%) were
called de novo and 74% (n= 14, 95% CI: 48.8–90.9%) were
detected by genotyping. All expected mutations were called de
novo in the 0.5% sample (Supplementary Data 3).

Finally, to calculate specificity, variant calling was performed
on 47 healthy donor plasma samples in comparison to their
matched WBCs, and no mutations were called. In addition, we
utilized the samples from the accuracy analysis with orthogonal
NGS results (n= 37), and considered all genomic positions
interrogated by these assays (n= 1620) (Supplementary Data 4).
Four potential false positives not reported by the orthogonal NGS
assay (TP53 p.R253H with VAFs 0.17 and 0.24%, and PIK3CA p.
H1047R with VAFs 0.05 and 0.07%) were detected by MSK-
ACCESS using genotyping thresholds, implying a specificity of at
least 99.7% (95% CI: 99.3–99.9%). Through de novo mutation
calling, we identified only one false positive mutation, for a
specificity of 99.9% (95% CI: 99.6–100%). Overall, our positive
predictive agreement (PPA) for genotyping was 94% (95% CI:
85–98%) and for de novo mutation calling was 98% (95% CI:
90–99.9%). The negative predictive agreement (NPA) was 99.7%
and 99.2% for genotyping and de novo calling, respectively.

Clinical experience—genomic landscape. Based on the above
analytical validation results, MSK-ACCESS received approval for
clinical use from the New York State Department of Health
(NYS-DOH) on 31 May 2019 and was subsequently launched for
routine clinical diagnostics assessment. Here, we describe the
results from the first 617 patients prospectively sequenced in our
clinical laboratory. A total of 687 blood samples were accessioned,
and 681 (99%) yielded sufficient cfDNA and passed quality
control metrics. The median raw coverage of the plasma isolated
from these blood samples were 18,264× and 1273× for WBCs.
Median duplex consensus coverage for plasma was 1497×.

Of the 681 samples, 51% (n= 349) were from NSCLC patients,
followed by prostate, bladder, pancreatic, and biliary samples as
the next most common cancer types (28%) (Fig. 2a). We assessed
the clinical actionability of genomic alterations detected by MSK-
ACCESS using OncoKB, and 41% (n= 278) of samples had at
least one targetable alteration as defined by the presence of an
OncoKB level 1-3B alteration. The highest frequency of level 1
OncoKB alterations were observed in bladder cancer, breast
cancer, and NSCLC patients at 48%, 37%, and 33%, respectively.

Seventy-three percent (n= 498) of all samples had at least one
alteration (mutation, copy number alteration or a SV) detected,
with a non-zero median of 3 per patient (range 1–28) (Fig. 2b),
56% of which harbored clinically actionable alterations.

Altogether, we clinically reported a total of 1697 SNVs and
indels in 486 samples from 435 patients, with a median VAF of
1.9% (range 0.02–99%) (Fig. 2c). Of these mutation calls, 95%
(n= 1606) were called de novo without the aid of prior molecular
profiling results for the tested patient. For the remaining 91
variants that were rescued by genotyping, the median observed
VAF was 0.08%. As expected, deeper coverage enabled the
detection of mutations at lower allele fractions for both de novo
and genotyping thresholds (Fig. 2d). However, de novo calling of
alterations that were independently seen previously in tumors
occurred across the entire mathematically possible range, given
minimum required alternate alleles, allele frequencies, and
coverage depths (Fig. 2c, d).

To ensure the accurate identification of the expected alterations
by our assay, we examined the most frequently called mutations,
copy number alterations, and SVs in lung cancer and the next five
largest disease cohorts (Fig. 2e). As expected, TP53 was the most
commonly altered gene, with variants in 144 of the 248 (58%)
NSCLC samples with detectable alterations. Of greater therapeutic
relevance, MSK-ACCESS identified oncogenic targetable driver
mutations and amplifications in EGFR, KRAS, MET, ERBB2, and
BRAF. Characteristically, lung cancer samples lacking known
mitogenic drivers by MSK-ACCESS were found to harbor STK11
and KEAP1 mutations. EML4-ALK and KIF5B-RET fusions were
also detected, de novo and by genotyping, in this cohort, along
with rearrangements of ROS1 with multiple partners.

Both clinically actionable and oncogenic alterations were
similarly found in the next five most represented tumor types
prospectively sequenced by MSK-ACCESS (Fig. 2e). TP53 was
again the most commonly altered gene, including both mutations
and likely oncogenic deletions identified. FGFR2 mutations and
fusions (most commonly fused to BICC1) were identified in 8 of
the 24 intrahepatic cholangiocarcinomas with detectable ctDNA,
including missense mutations in the FGFR2 kinase domain
known to confer resistance to targeted therapies. Targetable
alterations were also identified in IDH1 and PIK3CA. Alterations
in FGFR3, ERBB2, AR, and KRAS were recurrently detected in
bladder, breast, prostate, and pancreatic cancer, respectively.
Overall, the alteration rates in select genes and cancer types
between MSK-ACCESS and MSK-IMPACT were comparable,
with some notable exceptions such as a decrease in KRAS
mutations in pancreatic cancer, an increase of EGFR mutations in
the lung, AR mutations in prostate cancer, and NF1 mutations in
Breast cancer in the ctDNA (Fig. 2f).

Concordance with MSK-IMPACT. To compare the detection
sensitivity and the spectrum of mutations observed between
tumor tissue and plasma, we sought to examine the concordance

Fig. 1 Design, characterization, and validation of MSK-ACCESS. a The MSK-ACCESS panel was designed using data from 25,000 tumors analyzed using

MSK-IMPACT tumor sequencing assay to identify at least one mutation in 94% of lung cancers, 91% of breast, and 84% of all cancers. b The laboratory

workflow includes the extraction of cfDNA from plasma and genomic DNA from WBC originating from the same tube of blood. The addition of UMIs during

library construction enables the identification of original cfDNA molecules during analysis and error suppression. c The analysis pipeline is modified from the

standard MSK-IMPACT pipeline to incorporate UMI clipping and the generation of simplex and duplex consensus reads. d The sequencing of healthy donors

to a mean raw coverage of 18,818× yielded a mean duplex coverage of 1103× and a mean simplex coverage of 658× across 47 samples. e The background

error rate of non-reference sites demonstrates the reduction of overall and substitution specific errors via consensus read generation. Only the genomic

position with non-reference reads are used; error rate is defined as the percentage of reads that support non-reference alleles. N= 47 for each boxplot.

f A heatmap of error rate at all positions demonstrates how effective consensus read generation is at decreasing the error to zero at over 85% of sites.

g Comparison of orthogonal and validated testing (expected VAF) to MSK-ACCESS (observed VAF) in the accuracy analysis showed high concordance

(R2= 0.98). All boxplots show the median (center line) and 25th and 75th percentiles (bounding box) along with the 1.5 interquartile range (whiskers).
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of mutation calling between MSK-IMPACT and MSK-ACCESS
where available. For a consistent comparison analysis across all
patients, we selected plasma mutations from the first sample
sequenced by MSK-ACCESS for each patient for whom multiple
time points were analyzed, and used the union of mutations
across all tissue samples for each patient sequenced on MSK-
IMPACT. Of the 617 patients tested with MSK-ACCESS, 383 also

had clinical MSK-IMPACT results from 520 sequenced tumor
tissues. A total of 1206 mutations were reported in the over-
lapping target regions across both assays, and 59% (n= 706) of
the mutations were reported by both assays (Fig. 3a). The dis-
tribution of allele frequencies in tissue was slightly higher for
the shared mutations than for the MSK-IMPACT-only
calls (p= 2.06 × 10−18), but this effect was not observed for the
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MSK-ACCESS-only calls (Fig. 3b). While the VAFs of shared
mutations in tissue and plasma were weakly correlated, we
nonetheless observed high-frequency tumor mutations at extre-
mely low VAF by MSK-ACCESS, and vice versa (Fig. 3c).

We next considered the alterations specific to one assay.
Twenty-one and twenty percent of the mutations were reported
individually by either MSK-IMPACT tumor sequencing
(n= 254) or MSK-ACCESS plasma sequencing (n= 246),
respectively (Fig. 3a). Interestingly, 58 of 246 mutations reported
by MSK-ACCESS-only were present at low sub-threshold levels
in tissue by MSK-IMPACT, highlighting the potential for
increased sensitivity obtained by utilizing ultra-high depth of
coverage and UMIs. Eighteen percent (n= 46) of the MSK-
IMPACT-only mutations were clinically actionable (OncoKB
Level 1-3), as were 12% (n= 30) of the MSK-ACCESS-only
detected mutations (Supplementary Fig. 3), clearly demonstrating
the importance and value of complementary tissue and cfDNA
analyses. Moreover, for patients that did not receive MSK-
IMPACT testing (n= 234), MSK-ACCESS detected 79 total
clinically actionable mutations in 26% (n= 61) of the patients.

In order to evaluate whether the tumor content played a role in
mutation discordance, we computationally estimated tumor
purity of tissue samples (n= 433 samples from 331 of the 383
patients for whom purity can be determined by FACETS, see
“Methods”) and found no significant difference between samples
from patients who had mutations detected only in plasma vs both
plasma and tissue (p= 0.812) (Fig. 3d). This was also true when
purity was compared for patients with only actionable mutations
(Supplementary Fig. 4). Next, we evaluated the clonality of
mutations (see “Methods”) in tissue samples of patients tested on
both MSK-IMPACT and MSK-ACCESS. A larger proportion of
shared mutations were clonal compared to tissue-only mutations
(p= 8.10 ×10−13), which was also true when only actionable
mutations were considered (p= 6.06 × 10−3) (Fig. 3e), indicating
the role clonality plays in mutation concordance between tissue
and plasma testing.

We also assessed whether the time between the tissue collection
for MSK-IMPACT and blood collection for MSK-ACCESS
(difference in date of procedure, ΔDOP) had an impact on the
mutation concordance (see “Methods”). Overall, the average
ΔDOP was 65 weeks (median: 27 weeks, range: 0–679 weeks).
Patients with mutations only detected on either MSK-IMPACT
(mean= 598 days; median= 491 days, p= 3.63 × 10−14) or
MSK-ACCESS (mean= 616 days; median= 288 days,
p= 1.33 × 10−9) showed a higher ΔDOP than patients for whom
mutations were detected on both assays (mean= 351 days;
median= 83 days; Fig. 3f, Supplementary Table 2). Evaluation of
ΔDOP based only on actionable mutations across the three
categories−MSK-IMPACT only, shared mutations, and MSK-
ACCESS only−yielded similar findings (Supplementary Fig. 5).
Taken together, these results underlie the importance of
timing of sample collection and tumor heterogeneity with respect
to mutation concordance between tissue and plasma-based
testing.

Utility of matched WBC analysis. Similar to MSK-IMPACT,
MSK-ACCESS utilizes matched WBC sequencing to confidently
identify and remove germline variants from cfDNA results. To
quantify the benefit of matched WBC sequencing, we performed
plasma-only variant calling in all clinical cases, resulting in 24,561
variant calls. We then simulated filtering criteria for unmatched
sequencing, removing 14,508 variant calls (median: 14 ± 8 var-
iants per sample), based on their presence in our curated plasma
normal samples or in at least 0.5% of the population by gnomAD
(Fig. 4a, Supplementary Fig. 6). We could further filter out 721
(7.2%) likely germline variants based on their VAF within the
heterozygous germline variant VAF range (between 35 and 65%
in both WBCs and cfDNA). However, using this VAF-based fil-
tering would improperly remove a total of 70 verified somatic
mutations from the cfDNA callset, 15 of which were clinically
actionable (Supplementary Table 3). Therefore, 10,053 variants
with a mean VAF of 4.7% (median: 0.05%) still remained after
database-driven filtering, highlighting the utility of patient-
matched WBC profiling to filter out definitive germline
mutations.

Notably, we were able to use the sequenced WBC sample to
correctly classify several events as germline that were included as
somatic events by commercial providers. As an example, a
commercial cfDNA test reported an ATM p.E522fs*43 mutations
as somatic and suggested therapies for this alteration, but our
matched analysis revealed the indel to be present at ~50% in both
the plasma and WBC and clearly ruled it out as a germline event.
We have similarly been able to reassign mutations in TP53,
BRCA2, and ROS1 that had been previously reported as somatic
as germline variants. In addition, the use of WBC sequencing
revealed the germline origin of observed copy number deletions
in ATM, BRCA2, and for two patients with retinoblastoma, RB1,
based on deletions in their matched WBC sample (Supplementary
Fig. 7).

As previous reports have demonstrated that tumor- and
normal-derived cfDNA may be distinguishable from genomic
DNA by fragment length24,25, we sought to confirm this
observation in MSK-ACCESS data and use this information to
better inform the origin of variants detected in cfDNA. The
general fragment length distribution exhibited the expected
bimodal cfDNA peaks around 161 and 317 base pairs, when
factoring the trimming of 3 bases from read ends by the
pipeline26 (Fig. 4b). For all cfDNA fragments harboring a somatic
tumor-derived mutation confirmed to be absent in WBCs
(n= 1558), we observed that these fragments were significantly
shorter than those harboring the wild-type allele, consistent with
their tumor origin (Fig. 4c–i) (bootstrapped p value < 0.0001). In
several variants with limited supporting evidence in WBC DNA
but significantly greater VAF in plasma cfDNA we were able to
distinguish the origin as somatic tumor-derived (ctDNA) nature
based on the slight cfDNA insert size profile peak in the WBC
sample. As demonstrated in Fig. 4c-II, these reads did have a
shortened fragment length (bootstrapped p value < 0.0001),
confirming that they originated from the cell-free compartment.

Fig. 2 Clinical experience with MSK-ACCESS. a Distribution of cancer types amongst the first 617 patients sequenced with MSK-ACCESS. Colors indicate

the highest OncoKB level ascribed to each patient’s genomic findings. b Distribution of all alterations found in each ctDNA sample (n= 681). c Variant

allele frequencies (VAF) of all mutations found in ctDNA samples from MSK-ACCESS. Samples were sorted by the median VAF and each mutation was

colored based on whether prior evidence was found for the mutation. De novo: mutations were called in ctDNA and were not reported in tissue testing or

tissue testing was not performed; De novo and prior evidence: mutations were called in ctDNA and also were present in tissue testing; Genotyped from

prior evidence: mutations were not detected in ctDNA by genotyping based on tissue results. d Same mutations in c showing the distribution of total

collapsed coverage and VAF. Dotted line indicates the theoretical limits of calling threshold. e Oncoprint of genomic alterations found in lung, biliary,

bladder, breast, prostate and pancreatic cancer samples with reported alterations. Colors indicate the OncoKB levels as in (a). f Comparison of cohort

alteration rate of tumor types in (e) for genes where the alteration rate was greater than 3% by both MSK-ACCESS and MSK-IMPACT.
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In stark contrast, the variant calls from the unmatched analysis
that were filtered out as putative germline variants by their
presence in WBCs at high VAF demonstrated an equivalent
fragment length distribution as wild-type alleles (Fig. 4c-III)
(bootstrapped p value= 0.94). As we have shown, by integrating
the fragment length analysis into the MSK-ACCESS assay, we can
confidently distinguish between tumor-derived somatic and
normal-derived variants in cfDNA.

Assessing the filtering of putative clonal hematopoiesis (CH)
mutations. Several recent studies have suggested that CH

mutations present a challenge for proper filtering in highly sen-
sitive NGS-based liquid biopsy assays27–30. We observed that the
use of patient-matched normal WBC DNA in MSK-ACCESS
eliminated 7,760 (77%) of variant calls below 10% VAF (Fig. 4a-
IV). We posited that the majority of these calls represent potential
CH mutations. Recent reports31 have suggested that fragments
supporting CH variants have length distributions similar to
cfDNA derived from non-cancerous cells and distinct from
ctDNA27,29,32. Indeed, the sequence reads harboring variants with
plasma VAF < 10% and present in WBCs exhibited fragment
lengths indistinguishable from wild-type and germline variants
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(Fig. 4c-IV) (bootstrapped p value= 0.99), adding confidence to
the hypothesis that these were properly filtered WBC-derived
somatic mutations associated with CH. The previously described
alterations in Fig. 4c-II with a lower frequency of reads in the
WBC sample than in the cfDNA sample could also have been
interpreted as having a CH origin. Nonetheless, the shorter length
distribution for fragments harboring these mutations reaffirmed
that these were likely tumor-derived as originally postulated.

Given our ability to recognize CH from WBCs, we have been
able to reclassify several variant calls reported as somatic events
by commercial vendors. While some of these calls were in
commonly mutated CH genes such as DNMT3A, some were in

less common genes. In one case, a patient with lung adenocarci-
noma with an external report of KRAS p.G12S. However, we
identified this alteration at equivalent frequencies (0.44 and
0.31%) in the plasma and WBC, suggesting that it most likely
represents a CH mutation, underlying the complexities of
assigning such alterations to different compartments when
considering the clinical presentation of the patient.

The identification of driver genetic alterations in key oncogenes
and tumor suppressor genes plays an essential role in the
diagnosis and treatment of many cancers. For more than a
decade, biomarker analyses have been predominantly accom-
plished in solid tumors by sequencing tumor tissue collected at
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the time of surgical resection, diagnostic tumor biopsy, or
cytology. However, in recent years, several studies have demon-
strated that “liquid biopsies” could provide similar, and in some
cases, more comprehensive information accompanied by a less
invasive approach. Due to the significantly reduced procedure
risk, they also enable longitudinal monitoring, which can
substantially impact patient management. Here, we describe the
analytical validation and clinical implementation of MSK-
ACCESS, a hybridization capture-based NGS assay comprising
129 genes and capturing multiple classes of genomic alterations
(SNV, indels, copy number alterations, and SV). Because of the
scarcity of cfDNA material in the plasma and even smaller
amounts of ctDNA, the development of this assay was guided by
two key considerations: First, the assay had to enable the
detection of low-frequency genomic alterations; and second, it
had to incorporate the implementation of matched WBC
sequencing to effectively filter out germline variants and CH
mutations.

Our analytical validation of MSK-ACCESS was performed using
70 cfDNA samples known to be positive for mutation hotspots
using orthogonal methods. MSK-ACCESS has demonstrated a low
background error rate, a 92% de novo sensitivity down to 0.5% VAF
for SNVs and indels, and a 99% specificity. Following approval by
the NYS Department of Health, we prospectively sequenced 681
plasma samples from 617 unique patients with non-small lung
cancer, prostate, bladder, pancreatic, and biliary cancer most
commonly. Alterations were detected in 73% of all prospective
clinical samples, with some of the negative cases representing
patients with known disease control or in the post-operative setting.
Clinically actionable alterations were called in 41% of all samples
and 56% of samples with alterations. Mutations were detected with
VAF as low as 0.02%. While, we did leverage available MSK-
IMPACT data to genotype prior mutations for higher sensitivity at
lower allele frequencies, 95% of mutations were called de novo
without the need for additional data.

In our clinical cohort, 62% of patients had a patient-matched
tissue specimen analyzed using MSK-IMPACT. A total of 260
mutations found in the tissue were not reported by MSK-
ACCESS. This discordance could be the result of a very low
tumor fraction in cfDNA, tumor heterogeneity, or differential
shedding into the plasma by different tumor sites. Therefore, we
do not believe that plasma cfDNA profiling can replace tissue
testing in all situations. Studies are ongoing to better elucidate the
clinical and analytic factors that may lead to a lack of mutation
detection in the cfDNA of such discordant cases. In addition, 250
mutations were detected by MSK-ACCESS but not reported in
the patient tissue, and 12% of those were actionable. These MSK-
ACCESS specific alterations are likely due in part to the inherent
spatial/temporal limitations of tissue profiling, though in some
cases it represented acquired drug resistance, such as the
identification of FGFR3 point mutations known to confer
resistance to FGFR inhibitor therapy in the FGFR3-TACC3
bladder cancers. As comprehensive data on oncologic therapy
becomes available, the detailed mechanisms of discordance
between tissue and plasma-derived mutations can be investigated
further in future studies.

Taken together, our clinical experience has shown the
importance of deep sequencing and the inclusion of matched
WBCs to achieve high sensitivity and specificity to detect
mutations in cfDNA. In addition, it has also demonstrated that
tissue and cfDNA based sequencing approaches are complemen-
tary in certain cases and can be used to effectively and
comprehensively detect all classes of genomic alterations.
Specifically, 91 out of the 1697 mutations detected by MSK-
ACCESS with a median VAF of 0.08% were rescued by
genotyping based on events called previously by MSK-IMPACT

in the matched tissue. Conversely, 26% of patients in this cohort
harbored at least one actionable mutation not previously known
from tumor tissue profiling.

As the ability to detect ctDNA in the minimal residual disease
setting is proportional to the number of mutations interrogated, a
uniform panel such as MSK-ACCESS will exhibit differential
sensitivity across patients with variable mutation burden. In most
cases, MSK-ACCESS will not be as sensitive as patient-specific
bespoke panels customized to detect dozens or more mutations
identified from a tumor exome or genome33. However, the path
to clinical validation and operationalization of a patient-specific
approach is uncertain and unattainable to most laboratories.
Moreover, the design of MSK-ACCESS incorporates the most
frequently mutated genomic regions from a cohort of more than
25,000 solid tumors clinically profiled, thereby maximizing the
number of mutations that may be genotyped and monitored
throughout treatment for a standardized assay.

Correctly classifying mutations associated with CH represents
a major challenge for all blood-based liquid biopsy assays.
Commercially reported CH mutations could be misconstrued as
recurrence when in fact no recurrence may be present or
wrongfully considered as a tumor mutation and tracked across
multiple blood draws for monitoring of response to therapy. By
incorporating the sequencing of a time-matched WBC sample, we
significantly decrease the likelihood of calling and reporting CH
alterations that are frequently observed in commercial tests that
do not include the normal DNA. CH27,34 mutations that occur at
very low allele frequencies may be incorrectly classified as tumor-
derived somatic mutations when they are detected in individual
cfDNA molecules but not in WBC DNA. Reassuringly, our
analysis suggests that our approach effectively eliminates a large
number of CH events that exhibit fragment length characteristics
consistent with hematopoietic cell-derived rather than tumor cell-
derived cfDNA.

In conclusion, MSK-ACCESS can be used to detect clinically
relevant alterations through a less invasive mechanism than
tumor biopsies, better enabling treatment decisions. The use of
WBCs from the same blood draw limits the improper reporting of
germline and CH alterations, which allows for more accurate
reporting of somatic alterations. By automatically integrating
prior patient-specific results into the analysis of plasma sequen-
cing data, liquid biopsy profiling can provide a more sensitive and
comprehensive representation of the genomic makeup of a
patient’s cancer, enabling improved patient care.

Methods
Cohort information. All samples were collected with informed consent from the
patients for routine prospective clinical genomic analyses. Clinical sequencing data
from 681 patients who were enrolled in an IRB-approved research protocol
(MSKCC; NCT01775072) were used. This study was approved by the MSKCC
Institutional Review Board/Privacy Board.

Panel design. Probes (120 bp long) were designed to cover the entire length of 826
exons and 40 introns of 129 genes, targeting ~400 kilobases of the human genome.
Probes were divided into 2 pools: Pool A included regions covering protein-coding
exons for the detection of SNVs and indels, as well as 171 microsatellite regions for
the detection of microsatellite instability (MSI). Pool B included regions covering
introns for the detection of gene fusion breakpoints in 10 genes and SNPs for
quality control and improved detection of copy number alterations. Pool A and
Pool B were combined in a 50:1 ratio to efficiently distribute sequence reads such
that, in a single capture reaction, we achieved ultra-deep raw sequencing coverage
(12,000–25,000×) for Pool A targets and standard raw sequencing coverage
(500–1500×) for Pool B targets. For matched WBC samples, a 1:1 ratio of Pool A to
Pool B was used.

cfDNA extraction, library construction, and capture. For each patient, with
appropriate informed consent, both cfDNA and WBC DNA were extracted from
plasma (MagMAX cfDNA isolation kit) and buffy coat (Chemagen magnetic bead
technology). Whenever possible, 20 ng of plasma cfDNA was used, but analyses
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were attempted for samples with as little as 3 ng plasma cfDNA. UMIs and xGen
Duplex Seq Adapters with dual index barcodes from IDT (Integrated DNA
Technologies) were introduced during library construction. Libraries were pooled
in equimolar concentrations and captured using the above-described custom IDT
xGen Lockdown probes. Captured DNA fragments were then sequenced on an
Illumina sequencer (HiSeq 2500 or NovaSeq 6000) as paired-end reads as described
above for plasma cfDNA samples and to a target depth of ~1500× of raw
sequencing coverage for WBCs.

Analysis pipeline. Sequencing data were demultiplexed with BCL2FASTQv2.1.9
(Illumina), UMIs were trimmed with Trim Galore (v0.2.5) and Marianas (https://
github.com/mskcc/Marianas), and read pairs underwent alignment to the human
GRCh37 reference genome with further post-processing using BWA MEM
(v0.7.5a), ABRA2 (v2.17), and GATK (v3.3) to generate a “standard” BAM file. All
pipeline workflows were built using the common workflow language (CWL) spe-
cification (https://www.commonwl.org/) and toil workflow engine35. Aligned PCR
duplicates were collapsed into error-suppressed consensus reads based on UMI and
position by Marianas. An additional three bases were trimmed from the ends of the
collapsed reads due to increased sequencing errors at these positions. Collapsed
and trimmed, reads were then re-aligned using the above standard pipeline. Col-
lapsed BAM files include the “duplex” BAM with consensus reads generated from
both strands of the original cfDNA template molecule, the “simplex” BAM with
consensus reads generated from at least 3 reads of only one strand of the original
template molecule, and the “all unique” BAM representing all sequenced template
molecules: duplex consensus reads, simplex consensus reads, as well as sub-simplex
consensus reads and singleton reads from 2 or 1 reads of one strand.

Variant calling was performed in a matched tumor-informed manner
(“genotyping”) using GetBaseCountsMultiSample (GBCM v.1.2.2, https://github.
com/mskcc/GetBaseCountsMultiSample) when prior molecular profiling results
were available for an individual. This genotyping method required at least 1 duplex
or 2 simplex consensus reads, comprised of both Read1 and Read2, to call a SNV or
indel at a site known to be mutated in a previous sample from that patient. De novo
mutation calling by VarDict (v1.5.1) or MuTect (v1.1.5) required a minimum of 3
duplex consensus reads for a known cancer hotspot mutation or 5 for a non-
hotspot mutation. Unless otherwise noted, reported variant allele depths (AD),
total depth (DP), and allele frequencies (VAFs) represent the combined counts
from simplex and duplex consensus reads. Copy number alterations were identified
from the “all unique” BAM using a described previously method22. SV were called
in the “standard” BAM files using Manta (v1.5.0)23 and required a minimum of 3
fusion-spanning reads for a de novo SV or 1 fusion-spanning read for an SV
previously identified in that patient.

Quality control metrics were calculated for all samples. Coverage and
background error rate were calculated using Waltz (https://github.com/mskcc/
Waltz). Base quality metrics per cycle were collected by Picard (v2.8.1). Plasma—
normal matches were confirmed using a set of fingerprint SNPs.

Clinical actionability and treatment implications of specific cancer gene
alterations were annotated using OncoKB (v2.2.0)22.

Error rate analysis. Background error rate was characterized using Waltz, for pool
A regions covering protein-coding exons for the detection of SNVs and indels
(~200 kilobases). Using a cohort of 47 plasma samples from healthy donors, the
error rate was calculated as fraction of reads supporting each of the substitution
types across all targeted sites. A maximum allele frequency cut off of 2% was used
in the error rate analysis. For each of the standard, duplex, and simplex bam types,
median error rates were determined using the error rates for all substitution types
across all 47 plasma samples. To determine the percentage of targeted sites with
zero error rate, first, a matrix of error rate for all possible substitution types in each
of the targeted sites across the 47 plasma samples was generated for standard,
simplex, and duplex bams. For each substitution type at a given genomic position,
the error rate was determined as the 95th percentile of the error rates across the 47
plasma samples. The substitution type error rates were then summarized to yield
error rates for each of the targeted sites. Percentage of targeted sites with zero error
rates were determined and reported for standard, simplex, and duplex bam types.

Fragment size analysis. Fragment size calculations were performed using the pysam
module (https://github.com/pysam-developers/pysam). Read pairs, identified using
SAM flags, mapping to all ACCESS targets were used to determine sample level
fragment size distribution. Read pairs overlapping mutated loci that support either
reference allele or variant allele were used to determine the size distribution of
reference DNA fragments and mutated fragments, respectively. Analysis was
restricted to fragments of size 500 bp or lower, which accounted for at least 95% of all
fragments in a duplex plasma bam (Supplementary Fig. 8). Mutations with allele
frequency lower than 0.05% in plasma samples were also excluded. Non-parametric
bootstrap hypothesis testing was used to test the null hypothesis that the mean
fragment sizes of reference and variant alleles are the same.

H0 : μREF ¼ μALT

Δ ¼ μREF � μALT

where, µREF, is the mean fragment size of reference allele fragments, µALT, is the mean
size of variant allele fragments, and, Δ, is the test statistic. The null hypothesis was
modeled using the data and the test statistic was calculated for 10,000 null datasets
simulated using bootstrapping. Bootstrapped p values were estimated based on the
fraction of the time that the simulated dataset gave a statistic equal to or greater than
the observed statistic in the original dataset.

Performance statistic calculations. Error assessment was calculated using plasma
and matched WBCs collected from a cohort of 47 healthy donors (median age 29,
range 21–48). The mean duplex consensus coverage for the normal plasmas was
1103X (sd= 181X). The error rate was calculated by averaging across all targeted
genomic positions at non-SNP and in non-repetitive regions where the non-
reference variant frequency was <2%.

The reference set for the analytical validation was generated from time-matched
plasma samples or its extracted cfDNA tested with a validated ddPCR test or a
commercial NGS assay. Seventy unique cfDNA samples from patient plasma, as
well as SeraCare and AccuRef control samples, were used for assay validation. All
calculations were performed for both genotyping of known variants as well as de
novo calling thresholds. Sensitivity was calculated on patient samples as true
positive (TP, called by both MSK-ACCESS and the orthogonal test) divided by all
calls made orthogonally.

To calculate specificity, PPA, and NPA, we selected the 36 samples orthogonally
sequenced by a commercial NGS assay and considered the 45 sites that had been
called positive by at least one sample orthogonally, yielding 1620 total sites. A true
negative (TN) was one called by neither MSK-ACCESS nor the orthogonal assay, a
false positive (FP) was one called positive by MSK-ACCESS but negative by the
orthogonal assay, and a false negative (FN) as negative by MSK-ACCESS but called
orthogonally. Specificity was calculated as TN/(TN+ FP). PPA was calculated as
TP/(TP+ FP), and NPA was calculated as TN/(TN+ FN). For each, we also
calculated Pearson exact confidence intervals at 95% power.

To calculate precision and reproducibility, the cfDNA from four patient
samples, AccuRef 1% control, SeraCare 1%, and SeraCare 2.5% control samples
were tested in triplicate within the same library preparation and sequencing run
and in triplicate across multiple days of library construction and sequencing runs,
each with a different barcode. To assess the limit of detection of the assay, 19
known mutations in SeraCare control samples at 5, 2.5, 1, 0.5, and 0.1% allele
frequencies, and wild type were used.

Clinical experience and concordance analysis. For MSK-ACCESS/MSK-
IMPACT concordance analysis, only the clinically reported mutation calls from the
first MSK-ACCESS sample per patient were used when multiple samples were
sequenced. The union of clinically reported mutation calls from all samples
sequenced on MSK-IMPACT for each patient was used given that MSK-ACCESS
could potentially overcome tumor heterogeneity. This combined mutation list was
re-genotyped as fragments, or overlapping reads, using GBCM, and the genotyped
values were used for downstream analyses. Where mutations were reported in
multiple IMPACT samples, the maximum genotyped VAF was used. Calls labeled
as sub-threshold had at least two supporting fragments.

For comparisons of the prevalence of alterations across patients, we used
mutation data from 47,116 solid tumor samples sequenced with MSK-IMPACT
and considered only mutations that intersected with the MSK-ACCESS target
exons. Comparisons were performed for select genes and cancer types where the
alteration rate was greater than 3% by both MSK-ACCESS and MSK-IMPACT.

Tumor content in tissues and clonality of mutations on MSK-IMPACT were
estimated using FACETS36 (v0.5.14, https://github.com/mskcc/facets). A mutation
was classified as clonal if the cancer cell fraction value obtained from FACETS was
greater than 80%, otherwise the mutation was classified as sub-clonal. Since a union
of clinically reported mutation calls from all MSK-IMPACT samples per patient
was used for the concordance analysis, tumor content of all MSK-IMPACT
samples for these patients were used to assess the impact of tumor purity on
mutation concordance. Mutations for which purity and clonality were
indeterminate by FACETS, were excluded from analyses evaluating the impact of
purity and clonality, respectively, on mutation concordance between MSK-
IMPACT and MSK-ACCESS.

To assess the impact of time between sample collection for MSK-IMPACT and
MSK-ACCESS on mutation concordance, we determined for each patient the absolute
time difference between first blood collection for MSK-ACCESS and the tissue
collection for MSK-IMPACT (ΔDOP) corresponding to a particular mutation.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The raw sequencing data are protected and are not available due to privacy laws. All

results derived from the analysis of clinical sequencing data (mutations, copy number

alterations, and structural variants) for all samples from 617 patients, including MSK-

ACCESS and MSK-IMPACT, where applicable, are available through publicly accessible

cBio Portal study (https://www.cbioportal.org/study/summary?id=msk_access_2021).

The remaining data are available within the Article or Supplementary Information.
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Code availability
Analysis code for in-house developed pipeline modules are made available on Github.

Marianas: https://github.com/mskcc/Marianas. Waltz: https://github.com/mskcc/Waltz.

GetBaseCountsMultiSample: https://github.com/mskcc/GetBaseCountsMultiSample.
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