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Abstract
Circulating cell-free DNA (cfDNA) from blood plasma of cancer patients can be used to interrogate
somatic tumor alterations non-invasively or when adequate tissue is unavailable. We have developed and
clinically implemented MSK-ACCESS (Analysis of Circulating cfDNA to Evaluate Somatic Status), an NGS
assay for detection of very low frequency somatic alterations in select exons and introns of 129 genes.
Analytical validation demonstrated 92% sensitivity in de-novo mutation calling down to 0.5% allele
frequency and 99% for a priori mutation pro�ling. To evaluate the performance and utility of MSK-
ACCESS, we report results from the �rst 681 prospective blood samples (617 patients) that underwent
clinical analysis to guide patient management. Somatic mutations, copy number, and/or structural
variants were detected in 73% of the samples, and 56% of these circulating-tumor DNA (ctDNA) positive
samples had clinically actionable alterations. The utilization of matched white blood cell sequencing
allowed retention of somatic alterations while �ltering out over 10,000 germline and clonal hematopoiesis
variants, thereby greatly enhancing the speci�city of the assay. Taken together, our experience illustrates
the importance of analyzing a matched normal sample when interpreting cfDNA results and highlights
the potential of cfDNA pro�ling to guide treatment selection, monitor treatment response, and identify
mechanisms of treatment resistance.  

Main Text
Advances in molecular pro�ling have led to a rapid expansion in the number of predictive molecular
biomarkers and associated targeted therapies, heightening the need for large-scale, prospective tumor
pro�ling assays across all cancer types. The majority of comprehensive next-generation sequencing
(NGS)-based pro�ling methods utilize tumor tissue as the primary specimen of choice for biomarker
detection. Although widely used, obtaining an adequate tissue sample can be challenging in some cases
due to the need for invasive biopsies that may pose an excessive risk to the patient. Additionally, based
on our clinical experience, 8.8% of the tissue submitted for molecular analysis is inadequate for testing
due to low tumor cellularity, low DNA yield, or quality 1. Finally, a single tissue biopsy may not capture the
full genetic heterogeneity of a patient’s cancer, and consequently, clinically actionable biomarkers may be
overlooked even with the most sensitive and speci�c genomic assay. Taken together, a sole tissue-based
genomic pro�ling approach may not be comprehensive and may limit treatment options for cancer
patients.

 

The successful detection of cancer drivers in circulating-tumor DNA (ctDNA) found within plasma cell-
free DNA (cfDNA) 2 has provided a means to overcome the limitations of tissue pro�ling 3,4. cfDNA
pro�ling can have a direct impact on patient care by informing treatment decisions 5,6, enabling the
monitoring of cancer response to therapy 7,8, revealing drug resistance mechanisms 9,10 and detecting
minimal residual disease or relapse 11-13. Additionally, by providing a less invasive collection procedure,
cfDNA analyses also enable serial molecular pro�ling during the course of the patient’s disease 14,15.
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Plasma pro�ling can also potentially capture inter- and intra-tumor heterogeneity across disease sites
especially in patients with advanced metastatic disease 16,17. In addition, recent studies have shown that
ctDNA fragmentation pro�les can better facilitate cancer screening and early diagnosis 18.

 

The use of ctDNA as an analyte, however, has its inherent limitations. It is usually found in low
concentrations in the plasma 19, which may be the result of low disease burden in early stage tumors,
disease control in response to treatment, or low tumor DNA shedding in blood. Moreover, the vast majority
of cfDNA is typically derived from normal hematopoietic cells, leading to low levels of ctDNA and very
low mutant allele frequencies for somatic mutations. Highly sensitive assays that are limited to single
mutation ctDNA pro�ling assays such as droplet digital PCR (ddPCR) 20 are not practical for broad
clinical use given the increasing number of genomic alterations that are predictive of response to FDA-
approved targeted therapies or required as inclusion criteria for clinical trial enrollment. Given the low
levels of ctDNA in a blood sample, the development of a highly sensitive NGS assay that
comprehensively encompasses all clinically actionable targets is crucial for the detection of more low
frequency alterations. Advances in next generation sequencing technologies, such as the introduction of
unique molecular identi�ers (UMIs) and dual barcode indexing, have enabled ultra-deep sequencing of
cfDNA while dramatically reducing background error rates, thereby allowing high-con�dence mutation
detection of very low allele frequencies 21. Further, technical improvements in sequencing library
preparation methods have reduced the input DNA required for sequencing, allowing for the e�cient
generation of libraries with input DNA as low as 10 ng.

 

Herein, we describe the design, analytical validation, and clinical implementation of MSK-ACCESS
(Memorial Sloan Kettering - Analysis of Circulating cfDNA to Examine Somatic Status) as a clinical test
that can detect all classes of somatic genetic alterations (single nucleotide variants, indels, copy number
alterations, and structural variants) in cfDNA specimens. This assay utilizes hybridization capture and
deep sequencing (~20,000X raw coverage) to identify genomic alterations in selected regions of 129 key
cancer-associated genes. MSK-ACCESS was approved for clinical use by the New York State Department
of Health on May 31, 2019, and has since been used prospectively to guide patient care. We therefore
also report our clinical experience utilizing MSK-ACCESS to prospectively pro�le 681 clinical blood
samples from 617 patients, representing a total of 31 distinct tumor types.

 

Panel design and background error assessment

We utilized genomic data from over 25,000 solid tumors sequenced by MSK-IMPACT to generate a list of
826 exons from 129 genes encompassing the most recurrent oncogenic mutations; variants that are
targets of approved or investigational therapies based on OncoKB, an in-house, institutional knowledge
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base of variant annotations 22; frequently mutated exons; entire kinase domains of targetable receptor
tyrosine kinases; and all coding exons of selected tumor suppressor genes. This MSK-IMPACT-informed
design targets an average of 3 non-synonymous mutations and at least 1 non-synonymous mutation in
84% of the 25,000 tumors previously sequenced using MSK-IMPACT, including 91% of breast cancers and
94% of non-small cell lung cancers (Figure 1A). To further expand the detection capability of copy
number alterations and structural variants in 10 genes, we additionally targeted 560 common SNPs and
40 introns known to be involved in rearrangements. MSK-ACCESS incorporates unique molecular indexes
(UMIs) to increase �delity of the sequencing reads. The overall process (Figure 1B) involves the
sequencing of plasma cfDNA and genomic DNA from white blood cells (WBCs) to approximately 20,000X
and 1,000X raw coverage, respectively, followed by collapsing read pairs to duplex (both strands of the
initial cfDNA molecule) or simplex (one strand of the initial molecule) consensus sequences based on
UMIs to suppress background sequencing errors (Figure 1C).

 

We �rst sought to characterize the error rate of MSK-ACCESS using a cohort of 47 plasma samples
collected from healthy donors. The donor plasma samples were sequenced to a mean raw coverage of
18,818X. Post collapsing, the mean simplex and duplex coverage was 658X and 1,103X, respectively
(Figure 1D, Supplemental Figure 1). When considering only the sites with background error across all
targeted sites (i.e. positions with non-reference alleles), we observed a median error rate of 1.2x10-5 and
1.7x10-6 in simplex and duplex BAM �les, respectively, compared to a median of 3.3 x10-4 in the standard
BAMs (Figure 1E). Compared to the relatively equivalent background error rate on the HiSeq 2500
(Supplemental Figure 2), the standard BAMs on the NovaSeq 6000 showed a higher error rate for T>A,
T>G, and C>A base transversions (Figure 1E). However, following collapsing, we observed lower and more
uniform error rates across both sequencers. Moreover, while only 1% of targeted positions in the standard
BAM had an error rate of zero, 92% of positions in the simplex BAM and 94% in duplex BAMs had no
observed base pair mismatches (Figure 1F).

 

Analytical validation

For the analytical validation of MSK-ACCESS, we assembled a cohort of 70 cfDNA samples with a total
of 100 known SNVs and indels in AKT1, ALK, BRAF, EGFR, ERBB2, ESR1, KRAS, MET, PIK3CA, and TP53
identi�ed by orthogonal cfDNA assays (ddPCR or a commercial NGS assay) from the same specimen to
demonstrate accuracy. The range of VAF for the expected mutations, based on orthogonal assays, was
0.1%-73%. We detected 94% of the expected variants (n = 94, 95% CI: 87.4%-97.8%) based on genotyping
and 82% of them (n = 82, 95% CI: 72.7%-88.7%) with de novo mutation calling (R2 = 0.98) (Figure 1G,
Supplemental Table 1A, B). Amongst the undetected mutations, leftover DNA was available for only one
of the samples (orthogonal VAF = 0.16%), and ddPCR testing of this sample revealed no evidence of the
alteration in our specimen. For mutations with VAF ≥ 0.5% from orthogonal assays (n = 83), we called
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92% (n = 76, 95% CI: 84%-96.5%) de novo, and we detected 99% of the mutations by genotyping (n = 82,
95% CI: 92.5%-99.9%).

 

To determine the reproducibility of the assay, we prepared and sequenced seven samples, harboring a
total of 152 mutations, both three different times within the same sequencing run and also across four
separate runs (Supplemental Table 2). By genotyping, we detected 99% (n = 151, 95% CI: 96.4%-100%) of
the expected mutations with an overall median coe�cient of variation of 0.16 (range: 0.04-1.2) for each
sample and alteration. To test the limit of detection of the assay, we sequenced �ve different dilution
levels (5%, 2.5%, 1%, 0.5%, 0.1%) with a positive control sample containing19 known mutations. In the
0.1% dilution, 11% of the mutations (n = 2, 95% CI: 1.3%-33.1%) were called de novo and 74% (n = 14, 95%
CI: 48.8%-90.9%) were detected by genotyping. All expected mutations were called de novo in the 0.5%
sample (Supplemental Table 3).

 

Finally, to calculate speci�city, variant calling was performed on 47 healthy donor plasma samples in
comparison to their matched WBCs, and no mutations were called. Additionally, we utilized the samples
from the accuracy analysis with orthogonal NGS results (n = 37), and considered all genomic positions
interrogated by these assays (n = 1,620) (Supplemental Table 4). Four potential false positives not
reported by the orthogonal NGS assay (TP53 p.R253H with VAFs 0.17% and 0.24%, and PIK3CA
p.H1047R with VAFs 0.05% and 0.07%) were detected by MSK-ACCESS using genotyping thresholds,
implying a speci�city of at least 99.7% (95% CI: 99.3%-99.9%). Through de novo mutation calling, we
identi�ed only one false positive mutation, for a speci�city of 99.9% (95% CI: 99.6%-100%). Overall, our
positive predictive agreement (PPA) for genotyping was 94% (95% CI: 85%-98%) and for de novo mutation
calling was 98% (95% CI: 90%-99.9%). The negative predictive agreement (NPA) was 99.7% and 99.2% for
genotyping and de novo calling, respectively.

 

Clinical experience

Genomic landscape

Based on the above analytical validation results, MSK-ACCESS received approval for clinical use from the
New York State Department of Health (NYS-DOH) on May 31, 2019 and was subsequently launched for
routine clinical diagnostics assessment. Here, we describe the results from the �rst 617 patients
prospectively sequenced in our clinical laboratory. A total of 687 blood samples were accessioned, and
681 (99%) yielded su�cient cfDNA and passed quality control metrics. Median raw coverage of the
plasma isolated from these blood samples was 18,264X and 1,273X for WBCs. Median duplex consensus
coverage for plasma was 1,497X.
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Of the 681 samples, 51% (n = 349) were from non-small cell lung cancer (NSCLC) patients, followed by
prostate, bladder, pancreatic, and biliary samples as the next most common cancer types (28%) (Figure
2A). We assessed the clinical actionability of genomic alterations detected by MSK-ACCESS using
OncoKB, and 41% (n = 278) of samples had at least one targetable alteration as de�ned by the presence
of an OncoKB level 1-3B alteration. The highest frequency of level 1 OncoKB alterations were observed in
bladder cancer, breast cancer, and NSCLC patients at 48%, 37%, and 33%, respectively. Seventy-three
percent (n = 498) of all samples had at least one alteration detected, with a non-zero median of 3 per
patient (range 1-28) (Figure 2B), 56% of which harbored clinically actionable alterations.  

 

Altogether, we clinically reported a total of 1697 SNVs and indels in 486 samples from 435 patients, with
a median VAF of 1.9% (range 0.02% - 99%) (Figure 2C). Of these mutation calls, 95% (n = 1606) were
called de novo without the aid of prior molecular pro�ling results for the tested patient. For the remaining
91 variants that were rescued by genotyping, the median observed VAF was 0.08%. As expected, deeper
coverage enabled the detection of mutations at lower allele fractions for both de novo and genotyping
thresholds (Figure 2D). However, de novo calling of alterations that were independently seen previously in
tumors occurred across the entire mathematically possible range, given minimum required alternate
alleles, allele frequencies, and coverage depths (Figure 2C, 2D). 

 

To ensure the accurate identi�cation of the expected alterations by our assay, we examined the most
frequently called mutations, copy number alterations, and SVs in lung cancer and the next �ve largest
disease cohorts (Figure 2E). As expected, TP53 was the most commonly altered gene, with variants in
144 of the 248 (58%) NSCLC samples with detectable alterations. Of greater therapeutic relevance, MSK-
ACCESS identi�ed oncogenic targetable driver mutations and ampli�cations in EGFR, KRAS, MET, ERBB2,
and BRAF. Characteristically, lung cancer samples lacking known mitogenic drivers by MSK-ACCESS were
found to harbor STK11 and KEAP1 mutations. EML4-ALK and KIF5B-RET fusions were also detected, de
novo and by genotyping, in this cohort, along with rearrangements of ROS1 with multiple partners.

 

Both clinically actionable and oncogenic alterations were similarly found in the next �ve most
represented tumor types prospectively sequenced by MSK-ACCESS (Figure 2E). TP53 was again the most
commonly altered gene, including both mutations and likely oncogenic deletions identi�ed. FGFR2
mutations and fusions (most commonly fused to BICC1) were identi�ed in 8 of the 24 intrahepatic
cholangiocarcinomas with detectable ctDNA, including missense mutations in the FGFR2 kinase domain
known to confer resistance to targeted therapies. Targetable alterations were also identi�ed in IDH1 and
PIK3CA. Alterations in FGFR3, ERBB2, AR, and KRAS were recurrently detected in bladder, breast, prostate,
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and pancreatic cancer, respectively. Overall, the alteration rates in select genes and cancer types between
MSK-ACCESS and MSK-IMPACT were comparable, with some notable exceptions such as KRAS in
pancreatic cancer or AR and TP53 mutations in prostate cancer (Figure 2F).

 

Concordance with MSK-IMPACT

To compare the detection sensitivity and the spectrum of mutations observed between tumor tissue and
plasma, we sought to examine concordance of mutation calling between MSK-IMPACT and MSK-ACCESS
where available. For a consistent comparison analysis across all patients, we selected plasma mutations
from the �rst sample sequenced by MSK-ACCESS for each patient for whom multiple time points were
analyzed, and used the union of mutations across all tissue samples for each patient sequenced on MSK-
IMPACT. Of the 617 patients tested with MSK-ACCESS, 383 also had clinical MSK-IMPACT results from
520 sequenced tumor tissues.  A total of 1,212 mutations were reported in the overlapping target regions
across both assays, and 58% (n = 702) of the mutations were reported by both assays (Figure 3A). The
distribution of allele frequencies in tissue was slightly higher for the shared mutations than for the MSK-
IMPACT-only calls (Mann-Whitney p value < 0.0001), but this effect was not observed for the MSK-
ACCESS-only calls (Figure 3B). While the VAFs of shared mutations in tissue and plasma were weakly
correlated, we nonetheless observed high-frequency tumor mutations at extremely low VAF by MSK-
ACCESS, and vice versa (Figure 3C).

 

We next considered the alterations speci�c to one assay. Twenty-one percent of the mutations were
reported individually by either MSK-IMPACT tumor sequencing (n = 260) or MSK-ACCESS plasma
sequencing (n = 250) (Figure 3A). Interestingly, 61 of 250 mutations reported by MSK-ACCESS-only were
present at low sub-threshold levels in tissue by MSK-IMPACT, highlighting the potential for increased
sensitivity obtained by utilizing ultra-high depth of coverage and UMIs. Twenty-seven percent (n = 69) of
the MSK-IMPACT-only mutations were clinically actionable (OncoKB Level 1-3), as were 12% (n = 30) of
the MSK-ACCESS-only detected mutations (Supplemental Figure 3), clearly demonstrating the importance
and value of complementary tissue and cfDNA analyses. Moreover, for patients that did not receive MSK-
IMPACT testing (n = 234), MSK-ACCESS detected 79 total clinically actionable mutations in 26% (n = 61)
of the patients.

 

In order to evaluate whether the tumor content played a role in mutation discordance, we computationally
estimated tumor purity of tissue samples (n = 433 samples from 331 of the 383 patients for whom purity
can be determined by FACETS, see Methods) and found no signi�cant difference between samples from
patients who had mutations detected only in plasma vs both plasma and tissue (Mann-Whitney p value =
0.7904) (Figure 3D). This was also true when purity was compared for patients with only actionable
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mutations (Supplemental Figure 4). Next, we evaluated the clonality of mutations (see Methods) in tissue
samples of patients tested on both MSK-IMPACT and MSK-ACCESS. A larger proportion of shared
mutations were clonal compared to tissue-only mutations, which was also true when only actionable
mutations were considered (p<0.001) (Figure 3E), indicating the role clonality plays in mutation
concordance between tissue and plasma testing.

 

We also assessed whether the time between the tissue collection for MSK-IMPACT and blood collection
for MSK-ACCESS (difference in date of procedure, ΔDOP) had an impact on the mutation concordance
(see Methods). Overall, the average ΔDOP was 48 weeks (median: 13 weeks, range: 0 - 518 weeks).
Patients with mutations only detected on either MSK-IMPACT (mean = 400 days; median = 279 days) or
MSK-ACCESS (mean = 515 days; median = 232 days) showed a higher ΔDOP than patients for whom
mutations were detected on both assays (mean = 218 days; median = 28 days; Mann-Whitney p value <
0.001, Figure 3F, Supplemental Table 5). Evaluation of ΔDOP based only on actionable mutations across
the three categories – MSK-IMPACT only, shared mutations, and MSK-ACCESS only – yielded similar
�ndings (Supplemental Figure 5). Taken together, these results underlie the importance of timing of
sample collection and tumor heterogeneity with respect to mutation concordance between tissue and
plasma-based testing.

 

Utility of matched WBC analysis

Similar to MSK-IMPACT, MSK-ACCESS utilizes matched WBC sequencing to con�dently identify and
remove germline variants from cfDNA results. To quantify the bene�t of matched WBC sequencing, we
performed plasma-only variant calling in all clinical cases, resulting in 24,561 variant calls. We then
simulated �ltering criteria for unmatched sequencing, removing 14,508 variant calls (median: 14 ± 8
variants per sample), based on their presence in our curated plasma normal samples or in at least 0.5%
of the population by gnomAD (Figure 4A, Supplemental Figure 6). We could further �lter out 721 (7.2%)
likely germline variants based on their VAF within the heterozygous germline variant VAF range (between
35% and 65% in both WBCs and cfDNA). However, using this VAF-based �ltering would improperly
remove a total of 70 veri�ed somatic mutations from the cfDNA callset, 15 of which were clinically
actionable (Supplemental Table 6). Therefore, 10,053 variants with a mean VAF of 4.7% (median: 0.05%)
still remained after database driven �ltering, highlighting the utility of patient-matched WBC pro�ling to
�lter out de�nitive germline mutations.

 

Notably, we were able to use the sequenced WBC sample to correctly classify several events as germline
that were included as somatic events by commercial providers. As an example, a commercial cfDNA test
reported an ATM p.E522fs*43 mutation as somatic and suggested therapies for this alteration, but our
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matched analysis revealed the indel to be present at ~50% in both the plasma and WBC and clearly ruled
it out as a germline event. We have similarly been able to reassign mutations in TP53, BRCA2, and ROS1
that had been previously reported as somatic as germline variants. Additionally, the use of WBC
sequencing revealed the germline origin of observed copy number deletions in ATM, BRCA2, and for two
patients with retinoblastoma, RB1, based on deletions in their matched WBC sample (Supplemental
Figure 7).

 

As previous reports have demonstrated that tumor- and normal-derived cfDNA may be distinguishable
from genomic DNA by fragment length 23,24, we sought to con�rm this observation in MSK-ACCESS data
and use this information to better inform the origin of variants detected in cfDNA. The general fragment
length distribution exhibited the expected bimodal cfDNA peaks around 161 and 317 base pairs, when
factoring the trimming of 3 bases from read ends by the pipeline 25 (Figure 4B). For all cfDNA fragments
harboring a somatic tumor-derived mutation con�rmed to be absent in WBCs (n = 1,558), we observed
that these fragments were signi�cantly shorter than those harboring the wild type allele, consistent with
their tumor origin (Figure 4C-I) (bootstrapped p value < 0.0001). In several variants with limited supporting
evidence in WBC DNA but signi�cantly greater VAF in plasma cfDNA we were able to distinguish the
origin as somatic tumor derived (ctDNA) nature based on the slight cfDNA insert size pro�le peak in the
WBC sample. As demonstrated in Figure 4C-II, these reads did have a shortened fragment length
(bootstrapped p value < 0.0001), con�rming that they originated from the cell free compartment. In stark
contrast, the variant calls from the unmatched analysis that were �ltered out as putative germline
variants by their presence in WBCs at high VAF demonstrated an equivalent fragment length distribution
as wild-type alleles (Figure 4C-III) (bootstrapped p value = 0.94). As we have shown, by integrating the
fragment length analysis into the MSK-ACCESS assay, we can con�dently distinguish between tumor-
derived somatic and normal-derived variants in cfDNA.

 

Assessing the �ltering of putative clonal hematopoiesis (CH) mutations

Several recent studies have suggested that CH mutations present a challenge for proper �ltering in highly
sensitive NGS-based liquid biopsy assays 26-29. We observed that the use of patient-matched normal
WBC DNA in MSK-ACCESS eliminated 7,760 (77%) of variant calls below 10% VAF (Figure 4A-IV). We
posited that the majority of these calls represent potential CH mutations.  Recent reports 30 have
suggested that fragments supporting CH variants have length distributions similar to cfDNA derived from
non-cancerous cells and distinct from ctDNA 26,28,31. Indeed, the sequence reads harboring variants with
plasma VAF <10% and present in WBCs exhibited fragment lengths indistinguishable from wild-type and
germline variants (Figure 4C-IV) (bootstrapped p value = 0.99), adding con�dence to the hypothesis that
these were properly �ltered WBC-derived somatic mutations associated with clonal hematopoiesis. The
previously described alterations in Figure 4C-II with a lower frequency of reads in the WBC sample than in
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the cfDNA sample could also have been interpreted as having a CH origin. Nonetheless, the shorter length
distribution for fragments harboring these mutations rea�rmed that these were likely tumor-derived as
originally postulated.

 

Given our ability to recognize CH from WBCs, we have been able to reclassify several variant calls
reported as somatic events by commercial vendors. While some of these calls were in commonly mutated
CH genes such as DNMT3A, some were in less common genes. In one case, a patient with lung
adenocarcinoma with an external report of KRAS p.G12S. However, we identi�ed this alteration at
equivalent frequencies (0.44% and 0.31%) in the plasma and WBC, suggesting that it most likely
represents a CH mutation, underlying the complexities of assigning such alterations to different
compartments when considering the clinical presentation of the patient.

Discussion
The identi�cation of driver genetic alterations in key oncogenes and tumor suppressor genes plays an
essential role in the diagnosis and treatment of many cancers. For more than a decade, biomarker
analyses have been predominantly accomplished in solid tumors by sequencing tumor tissue collected at
the time of surgical resection, diagnostic tumor biopsy, or cytology. However, in recent years, several
studies have demonstrated that “liquid biopsies” could provide similar, and in some cases, more
comprehensive information accompanied by a less invasive approach. Due to the signi�cantly reduced
procedure risk, they also enable for longitudinal monitoring, which can substantially impact patient
management. Here, we describe the analytical validation and clinical implementation of MSK-ACCESS, a
hybridization capture-based NGS assay comprising 129 genes and capturing multiple classes of genomic
alterations (SNV, indels, copy number alterations, and structural variants). Because of the scarcity of
cfDNA material in the plasma and even smaller amounts of ctDNA, the development of this assay was
guided by two key considerations: First, the assay had to enable the detection of low frequency genomic
alterations; and second, it had to incorporate the implementation of matched WBC sequencing to
effectively �lter out germline variants and CH mutations.

 

Our analytical validation of MSK-ACCESS was performed using 70 cfDNA samples known to be positive
for mutation hotspots using orthogonal methods. MSK-ACCESS has demonstrated a low background
error rate, a 92% de novo sensitivity down to 0.5% VAF for SNVs and indels, and a 99% speci�city.
Following approval by the NYS Department of Health, we prospectively sequenced 681 plasma samples
from 617 unique patients with non-small lung cancer, prostate, bladder, pancreatic, and biliary cancer
most commonly. Alterations were detected in 73% of all prospective clinical samples, with some of the
negative cases representing patients with known disease control or in the post-operative setting. Clinically
actionable alterations were called in 41% of all samples and 56% of samples with alterations.  Mutations
were detected with VAF as low as 0.02%. While, we did leverage available MSK-IMPACT data to genotype
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prior mutations for higher sensitivity at lower allele frequencies, 95% of mutations were called de novo
without the need for additional data.

 

In our clinical cohort, 62% of patients had a patient-matched tissue specimen analyzed using MSK-
IMPACT. A total of 260 mutations found in the tissue were not reported by MSK-ACCESS. This
discordance could be the result of a very low tumor fraction in cfDNA, tumor heterogeneity, or differential
shedding into the plasma by different tumor sites. Therefore, we do not believe that plasma cfDNA
pro�ling can replace tissue testing in all situations. Studies are ongoing to better elucidate the clinical
and analytic factors that may lead to lack of mutation detection in the cfDNA of such discordant cases.
Additionally, 250 mutations were detected by MSK-ACCESS but not reported in the patient tissue, and 12%
of those were actionable. These MSK-ACCESS speci�c alterations are likely due in part to the inherent
spatial/temporal limitations of tissue pro�ling, though in some cases it represented acquired drug
resistance, such as the identi�cation of FGFR3 point mutations known to confer resistance to FGFR
inhibitor therapy in the FGFR3-TACC3 bladder cancers.

 

Taken together, our clinical experience has shown the importance of deep sequencing and the inclusion
of matched white blood cell to achieve high sensitivity and speci�city to detect mutations in cfDNA.
Additionally, it has also demonstrated that tissue and cfDNA based sequencing approaches are
complementary in certain cases and can be used to effectively and comprehensively detect all classes of
genomic alterations. Speci�cally, 91 out of the 1,697 mutations detected by MSK-ACCESS with a median
VAF of 0.08% were rescued by genotyping based on events called previously by MSK-IMPACT in the
matched tissue. Conversely, 26% of patients in this cohort harbored at least one actionable mutation not
previously known from tumor tissue pro�ling.

 

As the ability to detect ctDNA in the minimal residual disease setting is proportional to the number of
mutations interrogated, a uniform panel such as MSK-ACCESS will exhibit differential sensitivity across
patients with variable mutation burden. In most cases, MSK-ACCESS will not be as sensitive as patient-
speci�c bespoke panels customized to detect dozens or more mutations identi�ed from a tumor exome
or genome 32. However, the path to clinical validation and operationalization of a patient-speci�c
approach is uncertain and unattainable to most laboratories. Moreover, the design of MSK-ACCESS
incorporates the most frequently mutated genomic regions from a cohort of more than 25,000 solid
tumors clinically pro�led, thereby maximizing the number of mutations that may be genotyped and
monitored throughout treatment for a standardized assay.
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Correctly classifying mutations associated with CH represents a major challenge for all blood-based
liquid biopsy assays. Commercially reported CH mutations could be misconstrued as recurrence when in
fact no recurrence may be present or wrongfully considered as a tumor mutation and tracked across
multiple blood draws for monitoring of response to therapy. By incorporating the sequencing of a time-
matched WBC sample, we signi�cantly decrease the likelihood of calling and reporting CH alterations that
are frequently observed in commercial tests that do not include the normal DNA. CH 26,33mutations that
occur at very low allele frequencies may be incorrectly classi�ed as tumor-derived somatic mutations
when they are detected in individual cfDNA molecules but not in WBC DNA. Reassuringly, our analysis
suggests that our approach effectively eliminates a large number of CH events that exhibit fragment
length characteristic consistent with hematopoietic cell-derived rather than tumor cell-derived cfDNA.

 

In conclusion, MSK-ACCESS can be used to detect clinically relevant alterations through a less invasive
mechanism than tumor biopsies, better enabling treatment decisions. The use of WBCs from the same
blood draw limits the improper reporting of germline and CH alterations, which allows for more accurate
reporting of somatic alterations. By automatically integrating prior patient-speci�c results into the
analysis of plasma sequencing data, liquid biopsy pro�ling can provide a more sensitive and
comprehensive representation of the genomic makeup of a patient’s cancer, enabling improved patient
care. 

Methods
Panel Design

Probes (120bp long) were designed to cover the entire length of 826 exons and 40 introns of 129 genes,
targeting approximately 400 kilobases of the human genome. Probes were divided into 2 pools: Pool A
included regions covering protein-coding exons for the detection of single nucleotide variants and indels,
as well as 171 microsatellite regions for the detection of microsatellite instability (MSI).  Pool B included
regions covering introns for the detection of gene fusion breakpoints in 10 genes and SNPs for quality
control and improved detection of copy number alterations. Pool A and Pool B were combined in a 50:1
ratio to e�ciently distribute sequence reads such that, in a single capture reaction, we achieved ultra-deep
raw sequencing coverage (12,000-25,000x) for Pool A targets and standard raw sequencing coverage
(500-1500x) for Pool B targets. For matched white blood cell (WBC) samples, a 1:1 ratio of Pool A to Pool
B was used.

 

cfDNA extraction, library construction, and capture

For each patient, with appropriate informed consent, both cfDNA and WBC DNA were extracted from
plasma (MagMAX cfDNA isolation kit) and buffy coat (Chemagen magnetic bead technology). Whenever
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possible, 20ng of plasma cfDNA was used, but analyses were attempted for samples with as little as 3ng
plasma cfDNA. Unique Molecular Indexes (UMIs) and xGen Duplex Seq Adapters with dual index
barcodes from IDT (Integrated DNA Technologies) were introduced during library construction. Libraries
were pooled in equimolar concentrations and captured using the above described custom IDT xGen
Lockdown probes. Captured DNA fragments were then sequenced on an Illumina sequencer (HiSeq 2500
or NovaSeq 6000) as paired-end reads as described above for plasma cfDNA samples and to a target
depth of approximately 1500X of raw sequencing coverage for WBCs.

 

Analysis Pipeline

Sequencing data were demultiplexed with BCL2FASTQv2.1.9 (Illumina), UMIs were trimmed with Trim
Galore (v0.2.5) and Marianas (https://github.com/mskcc/Marianas), and read pairs underwent alignment
to the human GRCh37 reference genome with further post-processing using BWA MEM (v0.7.5a), ABRA2
(v2.17), and GATK (v3.3) to generate a “standard” BAM �le. All pipeline work�ows were built using the
common work�ow language (CWL) speci�cation (https://www.commonwl.org/) and toil work�ow engine
34.  Aligned PCR duplicates were collapsed into error-suppressed consensus reads based on UMI and
position by Marianas. An additional 3 bases were trimmed from the ends of the collapsed reads due to
increased sequencing errors at these positions. Collapsed and trimmed, reads were then re-aligned using
the above standard pipeline. Collapsed BAM �les include the “duplex” BAM with consensus reads
generated from both strands of the original cfDNA template molecule, the “simplex” BAM with consensus
reads generated from at least 3 reads of only one strand of the original template molecule, and the “all
unique” BAM representing all sequenced template molecules: duplex consensus reads, simplex
consensus reads, as well as sub-simplex consensus reads and singleton reads from 2 or 1 reads of one
strand.

 

Variant calling was performed in a matched tumor-informed manner (“genotyping”) using
GetBaseCountsMultiSample (GBCM v.1.2.2, https://github.com/mskcc/GetBaseCountsMultiSample)
when prior molecular pro�ling results were available for an individual. This genotyping method required
at least 1 duplex or 2 simplex consensus reads, comprised of both Read1 and Read2, to call a single
nucleotide variant (SNV) or indel at a site known to be mutated in a previous sample from that patient. De
novo mutation calling by VarDict (v1.5.1) or MuTect (v1.1.5) required a minimum of 3 duplex consensus
reads for a known cancer hotspot mutation or 5 for a non-hotspot mutation. Unless otherwise noted,
reported variant allele depths (AD), total depth (DP), and allele frequencies (VAFs) represent the combined
counts from simplex and duplex consensus reads. Copy number alterations were identi�ed from the “all
unique” BAM using a described previously method [22]. Structural variants (SV) were called in the
“standard” BAM �les using Manta (v1.5.0) [23] and required a minimum of 3 fusion-spanning reads for a
de novo SV or 1 fusion-spanning read for an SV previously identi�ed in that patient.

https://github.com/mskcc/Marianas
https://www.commonwl.org/
https://github.com/mskcc/GetBaseCountsMultiSample
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Quality control metrics were calculated for all samples. Coverage, insert size, and background error rate
were calculated using Waltz (https://github.com/mskcc/Waltz). Base quality metrics per cycle were
collected by Picard (v2.8.1). Plasma – normal matches were con�rmed using a set of �ngerprint SNPs.

 

Clinical actionability and treatment implications of speci�c cancer gene alterations were annotated using
OncoKB (v2.2.0) 22.

 

Fragment size analysis

Fragment size calculations were performed using the pysam module (https://github.com/pysam-
developers/pysam). Read pairs, identi�ed using SAM �ags, mapping to all ACCESS targets were used to
determine sample level fragment size distribution. Read pairs overlapping mutated loci that support either
reference allele or variant allele were used to determine size distribution of reference DNA fragments and
mutated fragments, respectively. Analysis was restricted to fragments of size 500bp or lower, which
accounted for at least 95% of all fragments in a duplex plasma bam (supplemental �gure 8). Mutations
with allele frequency lower that 0.05% in plasma samples were also excluded. Non-parametric bootstrap
hypothesis testing was used to test the null hypothesis that the mean fragment sizes of reference and
variant alleles are same.

 

H0  :  µREF = µALT

Δ = µREF - µALT

where, µREF, is the mean fragment size of reference allele fragments, µALT, is the mean size of variant
allele fragments, and, Δ, is the test statistic. The null hypothesis was modelled using the data and the test
statistic was calculated for 10,000 null datasets simulated using bootstrapping. Bootstrapped p values
were estimated based on the fraction of the time that the simulated dataset gave a statistic equal to or
greater than the observed statistic in the original dataset.

 

Performance statistic calculations

Error assessment was calculated using plasma and matched WBCs collected from a cohort of 47 healthy
donors (median age 29, range 21-48). The mean duplex consensus coverage for the normal plasmas was

https://github.com/mskcc/Waltz
https://github.com/pysam-developers/pysam
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1,103X (sd = 181X). The error rate was calculated by averaging across all targeted genomic positions at
non-SNP and in non-repetitive regions where the non-reference variant frequency was less than 2%.

 

The reference set for the analytical validation was generated from time-matched plasma samples or its
extracted cfDNA tested with a validated droplet digital PCR (ddPCR) test or a commercial NGS assay.
Seventy unique cell-free DNA (cfDNA) samples from patient plasma, as well as SeraCare and AccuRef
control samples, were used for assay validation. All calculations were performed for both genotyping of
known variants as well as de novo calling thresholds. Sensitivity was calculated on patient samples as
true positive (TP, called by both MSK-ACCESS and the orthogonal test) divided by all calls made
orthogonally.

 

To calculate speci�city, positive predictive agreement (PPA), and negative predictive agreement (NPA), we
selected the 36 samples orthogonally sequenced by a commercial NGS assay and considered the 45
sites that had been called positive by at least one sample orthogonally, yielding 1620 total sites. A true
negative (TN) was one called by neither MSK-ACCESS nor the orthogonal assay, a false positive (FP) was
one called positive by MSK-ACCESS but negative by the orthogonal assay, and a false negative (FN) as
negative by MSK-ACCESS but called orthogonally. Speci�city was calculated as TN/(TN+FP). PPA was
calculated as TP/(TP+FP), and NPA was calculated as TN/(TN+FN). For each, we also calculated
Pearson exact con�dence intervals at 95% power.

 

To calculate precision and reproducibility, the cfDNA from 4 patient samples, AccuRef 1% control,
SeraCare 1%, and SeraCare 2.5% control samples were tested in triplicate within the same library
preparation and sequencing run and in triplicate across multiple days of library construction and
sequencing runs, each with a different barcode. To assess the limit of detection of the assay, 19 known
mutations in SeraCare control samples at 5%, 2.5%, 1%, 0.5%, 0.1% allele frequencies and wild type were
used.

 

Clinical experience and concordance analysis

Clinical sequencing data from patients who were enrolled in an IRB approved research protocol (MSKCC;
NCT01775072) were used. For MSK-ACCESS/MSK-IMPACT concordance analysis, only the clinically
reported mutation calls from �rst MSK-ACCESS sample per patient was used when multiple samples
were sequenced. The union of clinically reported mutation calls from all samples sequenced on MSK-
IMPACT for each patient was used given that MSK-ACCESS could potentially overcome tumor
heterogeneity. This combined mutation list was re-genotyped as fragments, or overlapping reads, using
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GBCM, and the genotyped values were used for downstream analyses. Where mutations were reported in
multiple IMPACT samples, the maximum genotyped VAF was used. Calls labelled as sub-threshold had at
least two supporting fragments. 

 

For comparisons of the prevalence of alterations across patients, we used mutation data from 47,116
solid tumor samples sequenced with MSK-IMPACT and considered only mutations that intersected with
the MSK-ACCESS target exons. Comparisons were performed for select genes and cancer types where the
alteration rate was greater than 3% by both MSK-ACCESS and MSK-IMPACT.

 

Tumor content in tissues and clonality of mutations on MSK-IMPACT were estimated using FACETS35

(v0.5.14, https://github.com/mskcc/facets). Since a union of clinically reported mutation calls from all
MSK-IMPACT samples per patient was used for the concordance analysis, tumor content of all MSK-
IMPACT samples for these patients were used to assess the impact of tumor purity on mutation
concordance. Mutations for which purity and clonality were indeterminate by FACETS, were excluded
from analyses evaluating the impact of purity and clonality, respectively, on mutation concordance
between MSK-IMPACT and MSK-ACCESS.

 

To assess the impact of time between sample collection for MSK-IMPACT and MSK-ACCESS on mutation
concordance, we determined for each patient the absolute time difference between �rst blood collection
for MSK-ACCESS and the tissue collection for MSK-IMPACT (ΔDOP) corresponding to a particular
mutation.

 

 

Data Availability

All clinical genomic data obtained for all samples from 617 patients, including MSK-ACCESS and MSK-
IMPACT, where applicable, will be made publicly available on a cBioPortal for Genomics study at the time
of publication.

 

Code Availability

Analysis code for in-house developed pipeline modules are made available on Github and addresses are
indicated in methods where applicable.

https://github.com/mskcc/facets
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Figure 1

Design, characterization, and validation of MSK-ACCESS. (a) The MSK-ACCESS panel was designed
using data from 25,000 tumors analyzed using MSK-IMPACT tumor sequencing assay to identify at least
one mutation in 94% of lung cancers, 91% of breast, and 84% of all cancers. (b) The laboratory work�ow
includes the extraction of cfDNA from plasma and genomic DNA from WBC originating from the same
tube of blood. The addition of UMIs during library construction enables the identi�cation of original
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cfDNA molecules during analysis and error suppression. (c) The analysis pipeline is modi�ed from the
standard MSK-IMPACT pipeline to incorporate UMI clipping and the generation of simplex and duplex
consensus reads. (d) The sequencing of healthy donors to a mean raw coverage of 18,818X yielded a
mean duplex coverage of 1,103X across 47 samples. (e) The background error rate of non-reference sites
demonstrates the reduction of overall and substitution speci�c errors via consensus read generation. (f) A
heatmap of error rate at all positions demonstrates how effective consensus read generation is at
decreasing the error to zero at over 92% of sites. (g) Comparison of orthogonal and validated testing
(expected VAF) to MSK-ACCESS (observed VAF) in the accuracy analysis showed high concordance
(R2=0.98).
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Figure 2

Clinical experience with MSK-ACCESS. (a) Distribution of cancer types amongst the �rst 617 patients
sequenced with MSK-ACCESS. Colors indicate the highest OncoKB level ascribed to each patient’s
genomic �ndings. (b) Distribution of all alterations found in each ctDNA sample (n = 681). (c) Variant
allele frequencies (VAF) of all mutations found in ctDNA samples from MSK-ACCESS. Samples were
sorted by the median VAF and each mutation was colored based on whether prior evidence was found for
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the mutation. De novo: mutations were called in ctDNA and were not reported in tissue testing or tissue
testing was not performed; De novo and prior evidence: mutations were called in ctDNA and also were
present in tissue testing; Genotyped from prior evidence: mutations were not detected in ctDNA by
genotyping based on tissue results. (d) Same mutations in c showing the distribution of total collapsed
coverage and VAF. Dotted line indicates the theoretical limits of calling threshold. (e) Oncoprint of
genomic alterations found in lung, biliary, bladder, breast, prostate and pancreatic cancer samples with
reported alterations. Colors indicate the OncoKB levels as in a. (f) Comparison of cohort alteration rate of
tumor types in e for genes where the alteration rate was greater than 3% by both MSK-ACCESS and MSK-
IMPACT
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Comparison of mutation calls between ctDNA and tissue (a) Venn diagrams indicating the number of
samples with concurrent cfDNA and tissue testing (n = 383) and the number of mutation calls identi�ed
in each (total n = 1,212). (b) VAF distribution of mutations identi�ed by MSK-ACCESS-only, shared by both
MSK-ACCESS and MSK-IMPACT, and by MSK-IMPACT only. The p value was obtained from pairwise
comparisons using two-sided Mann-Whitney U-tests and adjusted for multiple testing using the
Bonferroni method. (c) Comparison of VAF distributions of mutations identi�ed in both the ctDNA and
tissue from both MSK-ACCESS and MSK-IMPACT. (d) Tumor purity distribution of MSK-IMPACT tissue
samples of i.) all patients in the concordance analysis, ii.) samples belonging to patients presenting
actionable mutations on both assays, iii.) samples belonging to patients with actionable mutations
detected in MSK-IMPACT only, and iv) samples belonging to patients with actionable mutations detected
in MSK-ACCESS only. (e) Clonality of all and actionable mutations detected in MSK-IMPACT only and in
both assays. The p values were obtained from two-by-two Fisher’s exact tests and adjusted for multiple
testing using the Bonferroni method. (f) Absolute time difference (ΔDOP) between MSK-IMPACT tissue
sample and MSK-ACCESS blood sample collection for patients with actionable mutations in MSK-
IMPACT only, in both assays, and in MSK-ACCESS only. The p values were obtained from pairwise
comparisons using two-sided Mann-Whitney U-tests and adjusted for multiple testing using the
Bonferroni method.  
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in MSK-ACCESS only. (e) Clonality of all and actionable mutations detected in MSK-IMPACT only and in
both assays. The p values were obtained from two-by-two Fisher’s exact tests and adjusted for multiple
testing using the Bonferroni method. (f) Absolute time difference (ΔDOP) between MSK-IMPACT tissue
sample and MSK-ACCESS blood sample collection for patients with actionable mutations in MSK-
IMPACT only, in both assays, and in MSK-ACCESS only. The p values were obtained from pairwise
comparisons using two-sided Mann-Whitney U-tests and adjusted for multiple testing using the
Bonferroni method.  
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Figure 4

Use of WBC sequencing data to classify variants found in cfDNA (a) VAF distribution of all mutations
called in plasma from cfDNA and WBCs. Colors indicate the origin of mutations. Boxes indicate different
populations of mutations: I: Variants only present in cfDNA, II: Variants present in cfDNA at high VAF but
also present in WBC at lower VAF, III: Variants present in both cfDNA and WBCs with VAFs in the
presumed germline range (35-65%), IV: Variants present in both cfDNA and WBCs with VAFs lower than
10% in both. (b) Insert size distribution of sequencing reads (fragment size) in healthy donors with
characteristic peaks at 161 bp and 317 bp (c) Fragment size distribution for reads encompassing the
variants highlighted by the boxes and labels in a for both reference and alternate alleles. Clear differences
are observed for reads originating from ctDNA vs normal tissue.
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