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Enhanced Static Response
of Sandwich Panels with
Honeycomb Cores
Through the Use of
Stepped Facings

CODY H NGUYEN
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VICTOR BIRMAN

3

Abstract
Sandwich panels have been developed to either produce lighter structures capable of
carrying prescribed loads or to increase the load-carrying capacity subject to limitations
on the weight. The major load-carrying elements of a sandwich structure are its facings,
while the core primarily serves to resist transverse shear loads, enhance local strength
and stability of the facings, and combine two facings into a single structural system. The
facings being subject to in-plane tensile/compressive loads and to in-plane shear, their
strength and stiffness are paramount to the sandwich structure. In this article we
elucidate potential advantages of so-called ‘stepped’ facings with geometry modified
to locally enhance the strength and stiffness at strategically important locations with
a minimum effect on the weight. Numerous examples presented in the article validate
our suggestion that a combination of a relatively simple manufacturing process and
improved structural response of sandwich panels with stepped facings may present a
designer with an attractive alternative to conventional sandwich structures.
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Introduction

Sandwich panels have to satisfy a number of requirements to their strength, stiff-
ness, stability, and dynamic properties. These requirements can be met by enhanc-
ing the stiffness of the facings. This stiffness can be improved using one of the
following methods:

1. Stiffer facing material with higher strength.
2. Functionally graded composite facings with variable in-plane or through the

thickness properties (e.g., review by Birman and Byrd [1]).
3. Facings with a variable nonconventional geometry that could be called ‘sculp-

tured’ facings.

Sculptured facings can be designed in a number of ways, but the goal is always to
increase the stiffness, either locally at the location of highest bending stress couples or
over the entire facing. Two possible designs are facings with a piece-wise thickness
distribution shown in Figure 1 and ribbed facings with spaced stringers either embed-
ded within the polymeric core or separating honeycomb sections placed in the space
between the facings and the stringers [2]. In this article, we concentrate on the former
design referred to as stepped facings. It should be noted that research on sandwich
structures with a variable thickness has been conducted since the eighties [3–10].
However, these studies were concerned with tapered structures with a variable thick-
ness of the core. Design considered here is concerned with the panel of a constant
overall thickness that may be more feasible in numerous applications.

The panel with stepped facings shown in Figure 1 can easily be manufactured using
honeycomb or polymeric core sections of various depths. In this article we concentrate
on the ‘global’ response of the panel. The analysis of local stresses at the junction
between sections of unequal face thickness that may affect local strength of the panel
is outside the scope of the article. Note that these stresses may become essential in the
case of polymeric cores, while the relevant effect for honeycomb core panels considered

X

Z

Y

Figure 1. Honeycomb sandwich panel with stepped facings. The central section of the panel
has thicker facings providing a higher local stiffness.
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in the numerical analysis in this article should be less prominent. Accordingly, the
present analysis and conclusions are relevant for honeycomb core panels, while their
applicability to polymeric core structures requires additional analysis.

The purpose of this article is to estimate potential advantages of sandwich
panels with stepped facings in static bending and stability problems. The approach
to the solution includes the analytical part based on the first-order shear deforma-
tion theory and a numerical finite element solution utilizing 3D finite elements to
model the core. The article elucidates improvements in strength and stiffness
achieved using stepped facings, while monitoring an associated detrimental
weight increase. This analysis results in conclusions on the desirability and feasi-
bility of stepped facings. It is also shown that the first-order theory may be suffi-
ciently accurate for the numerical analysis of sandwich panels with metallic
honeycomb cores if they are not subject to local loads.

Analysis: Analytical formulation

The formulation of the problem for sandwich panels with piece-wise facings is
based on the first-order shear deformation theory [11]. This is justified since aero-
space panels presently considered for the application of stepped facings are rela-
tively thin, so that the error produced by neglecting higher-order effects associated
with warping of cross sections during deformation is negligible. The first-order
theory was shown to yield accurate results for relatively slender sandwich panels
if used with correct values of the shear correction coefficients [12]. It is usually
accepted that the assumptions of the first-order shear deformation theory are suf-
ficiently accurate for sandwich structures with a relatively stiff core [13].

It is emphasized that the first-order theory is definitely unacceptable for studies of
problems involving local loads where 3D state of stress may be prevalent. For exam-
ple, this theory would lead to serious mistakes if applied to the local stress analysis in
the vicinity of bolts used to fasten the panel. In general, local stresses close to any
discontinuity in the sandwich structure should be investigated by a higher-order
theory or by a 3D theory of elasticity or plasticity (the latter theory may be needed
if the facings are manufactured from ductile metal matrix composites or metals). The
other situation where the first-order theory cannot be employed is found in sandwich
structures with a ‘soft’ core. While a detailed discussion of the subject of sandwich
structures with a soft core is outside the scope of this article, interested readers are
referred to a number of recent references on the subject [13–15].

As follows from the previous paragraph, limitations superimposed on the use of
the first-order theory are mostly irrelevant to problems considered in this article
that are concerned with a ‘global’ response of sandwich panels. Moreover, panels
considered in the present study have an aluminum honeycomb core that cannot be
characterized as ‘soft.’ The validity of the theory will further be proven through a
comparison of the results with those generated by FEA using 3D finite elements. In
addition to the assumptions of the first-order theory, the problem considered here
is geometrically linear. This simplification is justified since sandwich panels found
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in typical applications fail at deflections that are smaller than the values necessi-
tating the use of a geometrically nonlinear theory.

The solution of the static bending problem for a stepped panel simply supported
along the straight edges x=0, a, y=0, b and subjected to a lateral pressure q(x, y)
was obtained by the Rayleigh–Ritz method representing the potential energy as

! ¼ 1

2

X

i, j

Z xiþ1

xi

Z yjþ1

yj

Z h=2

#h=2
u x, y, zð Þdzdydx#

Z a

0

Z b

0
q x, yð Þw x, yð Þdydx ð1Þ

where u(x, y, z) is a strain energy density, w is a deflection of the panel, h is its
thickness, and xi & x & xiþ1, yj & y & yjþ1 identify the section with a constant
facing thickness. The overall thickness of the sandwich panel is constant, but the
local thickness of the facings and the section of the core between these facings vary
with in-plane coordinate as reflected in Figure 1. The sum in the first term in the
right side of Equation (1) includes all sections of the panel. The integration in
Equation (1) is conducted throughout the thickness accounting both for the con-
tribution of the strain energy associated with in-plane stresses in the facings as well
as for the transverse shear strain energy accumulated in the core.

The strain energy density of a material in the 3D state of stress in the Cartesian
coordinate system is

u ¼ 1

2
!x"x þ !y"y þ !z"z þ "xy#xy þ "xz#xz þ "yz#yz
! "

, ð2Þ

where !i and "ij denote axial and shear stresses, respectively, while "i and # ij are
axial and shear strains. The simplifications introduced in the strain energy density
of the facings and core modeled by the first-order shear deformation theory are
illustrated in the subsequent analysis.

The stress-strain relationships for a generally orthotropic material relate the
tensor of stresses to the tensor of strains [11]:

!x
!y
!z
"yz
"xz
"xy

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼

C11 C12 C13 0 0 C16
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0 0 0 C44 C45 0
0 0 0 C45 C55 0
C16 C26 C36 0 0 C66

2

6666664

3

7777775

"x
"y
"z
#yz
#xz
#xy

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

, ð3Þ

where [C] is a stiffness tensor.
According to the first-order theory approach to the analysis of sandwich struc-

tures [16], the facings are assumed in the state of plane stress, while the core is
subject to transverse shear stresses. Furthermore, the thickness of the panel remains
constant during deformation, that is, "z=0. These simplifications yield stress-
strain equations of the first-order theory for the facings and core, that is
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Although Equation (4) are not new, they require a certain clarification when applied
to honeycomb core panels. In such panels, the stress in the core should be determined
using the stiffness terms evaluated accounting for the fact that honeycomb includes
empty cells separated by thin material walls. Accordingly, the stiffness of the core is
evaluated as an effective stiffness, rather than the actual stiffness of the material [17].

Following standard assumptions of the first-order shear deformation theory the
strains are the following functions of displacements and rotations:

"x ¼
@u0
@x

þ z
@ x

@x
, "y ¼

@v0
@y

þ z
@ y

@y
, "z ¼ 0

#xy ¼
@u0
@y

þ @v0
@x

þ z
@ x

@y
þ @ y

@x

' (

#xz ¼
@w

@x
þ  x, #yz ¼

@w

@y
þ  y: ð5Þ

In Equations (5), u0, v0 are middle plane displacements in the x- and y-direc-
tions, respectively, and  x,  y represent rotations of the cross section in the xz-
and yz-planes, respectively.

Sandwich panels considered in this article have symmetric cross-ply or symmet-
ric multi-layered angle-ply facings. The honeycomb core is modeled using its equiv-
alent stiffness so that it behaves as a homogeneous orthotropic material.
Furthermore, the facings being symmetric about the middle plane of the panel,
in-plane displacements are uncoupled from deflections and rotations. Then inte-
grating the strain energy density of the sandwich panel throughout the thickness of
the facings and the core and using Equations (2), (3), and (5) we obtain
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where Aii and Dij are extensional and bending stiffnesses, respectively, and k is a
shear correction factor introduced to compensate for a difference between the
actual (warped) shape of the corresponding cross section as a result of defor-
mation and the first-order idealization assuming that the cross section remains
plane.

The solution can be obtained representing deflections and rotations in double
Fourier series that satisfy both kinematic and static boundary conditions, irrespec-
tively of the variations in the thickness of the facings:

w ¼
X

m

X

n

Wmn sin
m%x

a
sin

n%y

b

 x ¼
X

m

X

n

Fmn cos
m%x

a
sin

n%y

b

 y ¼
X

m

X

n

Pmn sin
m%x

a
cos

n%y

b

ð7Þ

Note that in the bending problem the fact that the stiffness of a sandwich
panel with stepped facings varies over the surface, does not reduce the accuracy
of the solution obtained using series (7) as long as they involve a sufficient
number of terms. However, in the linear buckling problem, harmonics in (7)
are decoupled and the solution may be inaccurate. This inaccuracy occurs
because the mode shape of buckling of a conventional panel that may be accu-
rately represented using one harmonics in (7) does not generally coincide with
the mode shape of an otherwise identical panel with stepped facings.
Accordingly, the analytical solution considered in the article is limited to bend-
ing problems.

The substitution of Equations (7) into (6) and integration yields
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where

A ijð Þ
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TheRayleigh–Ritz procedure implies that @!
@Wmn

¼ @!
@Fmn

¼ @!
@Pmn

¼ 0 yielding the follow-
ing system of algebraic equations for unknown amplitudes of harmonics in series (7):
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Upon solution of the systemof Equations (10), the strains throughout the panel can
be determined from Equations (5) and the stresses from Equations (4). If the maxi-
mum deflection of the panel exceeds its half-thickness, geometrically nonlinear terms
should be included into formulation (in such case, the analysis should be conducted
numerically). In the presence of local loads, such as pressure concentrated over a small
area of the loaded facing, the present solution may provide global deformations and
stresses. However, if the local load is large it is advisable to consider local deformations
of the loaded facing and the sections of the core and the opposite facing in the loaded
region. Besides, local geometrically nonlinear effects may result in an interaction
between global and local deformations and stresses. Accordingly, such problems are
better analyzed by numerical methods accounting for 3D and nonlinear effects.

The solution shown above is concerned with static pressure. In the case of eigen-
value problems, that is, buckling or free vibration, the approach is similar, but it is

Nguyen et al. 7

 at WASHINGTON UNIV LIBRARY on November 12, 2010jsm.sagepub.comDownloaded from 

http://jsm.sagepub.com/


necessary to account for the contribution of relevant energy terms. As indicated
above, the accuracy of the linear analysis that limits the mode shape of buckling
or vibration to one harmonics in series (7) may be insufficient. However, it is possible
to obtain an accurate solution for forced response of the panel subject to dynamic
pressure q(x, y, t) where t is time. In this case, the amplitudes of harmonics in series
(7) depend on time, and the kinetic energy should be added to the right side of (6):

K ¼ 1

2

X

i, j

Z xiþ1

xi

Z yjþ1

yj

m
@w

@t

' (2

þI
@ x

@t

' (2

þ @ y

@t

' (2
 !" #

dydx, ð11Þ

where

m ¼
Z

z
& x, y, zð Þdz I ¼

Z

z
& x, y, zð Þz2dz: ð12Þ

The Rayleigh–Ritz method applied to such problem of forced vibrations results
in a system of ordinary differential equations with respect to the amplitudes of
harmonics in Equation (7) that can be solved analytically or numerically dependent
on the load–time relationship.

Analysis: Finite element model and numerical results

The model of the panel was developed using Nastran-2005. The facings were
modeled by 2D shell elements, while the core consisted of 3D solid elements.
The material of the cross-ply symmetric facings was laminated carbon/epoxy
(T300/5208). The aluminum (AL-5056) honeycomb core was hexagonal with the
foil thickness equal to 0.001 inch. The equivalent moduli of elasticity of the hex-
agonal core in the L and W directions were equal to 70.0 and 28.0 ksi, respectively,
while the modulus in the direction perpendicular to the plane of the panel was
185 ksi (http://www.hexcel.com/Products/Core%2BMaterials/) Note that hereaf-
ter, the longer dimension of the panel is along the x-axis and the shorter edges
are oriented along the y-axis.

First, the analytical solution for various conventional panel geometries (facings
of constant thickness) was compared to the FEA result to verify the accuracy of the
model. The chosen values of the shear correction factor employed in this analysis
was 5/6 and 1.0 (the former value is typical in the first-order theory, while the latter
value was recommended for sandwich structures in [18]). The difference between
the results generated using these values of the shear correction factor was
negligible. The size of panels considered in this comparison is listed in Table 1.
The width-to-thickness ratio equal to 20 was maintained in all cases. The facings
were symmetric and cross-ply laminated [0'/90'/0'/90']s. The thickness of each layer
in the facings of panels considered in this study was equal to 0.127mm (0.00500).
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The panels were loaded by a uniform pressure of 50 psi. The fact that numerical and
analytical solutions were in close agreement, even for the width-to-thickness ratio of
20, can be attributed to the honeycomb core being relatively ‘stiff.’ Furthermore, the
stresses in the compressed facing of an eight-layer facing panel that is 254mm (1000)
long, 127mm (500) wide, and 25.4mm (100) thick and subject to a uniform pressure of
350 psi were calculated by the first-order theory and compared with the 3D
finite element solution (Table 2). As follows from this table, the error associated

Table 2. Maximum stresses in the layers of the compressed facing of a conventional panel
(1000 long, 500 wide and 100 deep) by the analytical first-order theory solution and 3D FEA.

Layer
(from
surface
to the
core)

Orientation
of layer
(deg.)

Analytical
!x, (ksi)

FEA
!x, (ksi)

Difference
between
analytical
and FEA
deflections
(%)

Analytical
!y, (ksi)

FEA
!y, (ksi)

Difference
between
analytical
and FEA
deflections
(%)

8 0 38.989 38.572 1.07 3.644 3.673 0.80

7 90 2.866 2.935 2.41 51.137 52.533 2.73

6 0 38.208 37.588 1.62 3.294 3.394 3.04

5 90 2.807 2.809 0.07 47.452 47.842 0.82

4 90 2.779 2.746 1.19 44.555 45.497 2.11

3 0 37.039 36.112 2.50 3.041 2.975 2.17

2 90 2.720 2.260 3.68 43.627 40.806 6.47

1 0 36.259 35.128 3.12 2.977 2.696 9.44

Note: The sign minus indicating compression is omitted. Layer 8 is on the outer surface of the panel, while
layer 1 is adjacent to the core.

Table 1. Maximum deflections in conventional panels with the width-to-thickness ratio equal
to 20 by the analytical first-order theory solution and 3D FEA.

Panel
No.

Length
in the
x-direction,
a (in.)

Length
in the
y-direction,
b (in.)

Thickness,
h (in.)

Depth of
honeycomb
core (in.)

Max
deflection
by first order
theory (in.)

Max
deflection
by 3D
FEA (in.)

1 20 10 0.50 0.42 0.176 0.169

2 24 12 0.60 0.52 0.232 0.224

3 28 14 0.70 0.62 0.296 0.287

4 32 16 0.80 0.72 0.368 0.358

5 36 18 0.90 0.82 0.447 0.436

6 40 20 1.00 0.92 0.535 0.522
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with the first-order theory increases in the layers that are close to the core.
However, even at the width-to-thickness ratio equal to 5, this error remains relatively
small. Thus, the analytical solution (for metallic honeycomb core panels with the
width-to-thickness ratio equal to or exceeding 20) probably does not have to rely on
theories accounting for a ‘soft’ core, with the exception of the case of high local
loads.

The following results were generated using FEA for simply supported panels
that were 254mm (1000) long, 127mm (500) wide, and 25.4mm (100) thick. Each
facing of a ‘conventional’ panel referred to below included eight cross-ply layers.
The facings of three-stepped panels included the central 12-layer 7.500 ( 2.300 sec-
tion, adjacent eight-layer section with the outer dimensions 8.500 ( 3.500, and the
outer six-layer section (Figure 2). The weight of the stepped panel was only 5.7%
larger than that of the conventional counterpart. The bending load applied to the
panel in the examples, except for the buckling analysis discussed below, was rep-
resented by a uniform static pressure equal to 2.413MPa (350 psi).

The shapes of the conventional and stepped panels undergoing a uniform static
pressure are shown in Figure 3. The contours of bent panels are depicted in
Figures 4 and 5. As follows from these figures, the mode shapes of panels subject
to static pressure are little affected by the stepped facing design.

The distribution of strains throughout the thickness of the panel with stepped
facings is shown in Figure 6. In this and following figures and tables the strains and
stresses are shown at the center of the panel where they are maximum, unless
indicated otherwise. As follows from this figure, the axial strains in the x-direction

Outer 6-layer
Adjacent 8-layer

Central 12-layer

A A

t1

Core

Section A-A

Middle surface

Z

t2 t3 h3 h2 h1

Figure 2. Schematic illustration of a sandwich panel with three-stepped facings.
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uniform pressure.
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("x) are nearly linearly distributed throughout the thickness. However, their coun-
terparts in the y-direction ("y) deviate from the linear distribution, reflecting a small
width-to-thickness ratio equal to 5. Evidently, the panels with such width-to-thick-
ness ratio should be investigated using a higher-order theory or numerical FEA 3D
models. It is interesting to note that while the strain in the y-direction is a nonlinear
function of the thickness coordinate, a popular third-order theory would probably
be insufficient to accurately represent its through-the-thickness distribution.

The effect of the stepped facing design on the strains and stresses in the panel
compared to those in the conventional counterpart is depicted in Figures 7 and 8.
As shown in Figure 7, the axial strains in the facings in both x- and y-directions are
significantly reduced using stepped facings. Axial stresses in the facings are also
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Figure 4. Mode shape of deflections of the conventional panel subject to a uniform pressure
(the horizontal axes show nondimensional x- and y-coordinates normalized with respect to
the corresponding dimension).
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noticeably reduced by redistributing the material as follows from Figure 8. Note
that while the strains are continuous functions of the thickness coordinate, the
stresses in the facings change abruptly from layer to layer (this is evident in
Figure 8). This reflects a much higher stiffness of layers of cross-ply facings in
the fiber direction as compared to the stiffness of the same layers in the direction
perpendicular to the fibers. The effect of stepped facing design on transverse shear
stresses in the core is not shown since these stresses remained relatively small in all
examples and they did not represent the mode of failure.

The comparison between the compressive stresses and strains at the center of the
conventional (eight-layer facings) and stepped panels is also shown in Tables 3 and 4.
This comparison is limited to the top facing that experiences compression as a result
of bending. Note that while the tensile strains in the opposite facings have the
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Figure 5. Mode shape of deflections of the stepped panel subject to a uniform pressure
(the horizontal axes show nondimensional x- and y-coordinates normalized with respect to
the corresponding dimension).
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same absolute value as those in the corresponding layers in the top facing, the
stresses in the facings differ, reflecting a difference in the tensile and compressive
moduli of the facing material. As follows from Figure 7 and 8 and from Table 3 and
4, a reduction inmaximum stresses in the 0'-layers oriented in the x-direction reaches
12.9% in the fiber direction and 20.2% in the direction perpendicular to the fibers.
For 90'-layers oriented in the y-direction the corresponding improvements in the
maximum stress are 22.3% and 15.5%, respectively. The axial strains in the
x-direction are also reduced by almost 13%. These improvements achieved at the
cost of a small weight increase (5.7%) indicate that the use of stepped facings may
be an attractive option in designs where the strength of the panel is the dominant
factor.
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Figure 6. Distribution of axial strains throughout the thickness of stepped panels obtained by
FEA: (a) strains in the x-direction, (b) strains in the y-direction.
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Buckling resistance of sandwich panels can also be improved by the stepped
facing design. This was demonstrated analyzing the panel subject to a uniform
compression along the x-axis. The same stepped design as that described above
resulted in an increase of the buckling load by 11.7% (from 3690 lbs to 4120 lbs).
Note that the shape of the buckled panel was dominated by the first mode shape of
deformation, i.e. one half-wave of deformation in both x- and y-directions. This
mode shape was not noticeably different from the mode shape of buckling of the
otherwise identical conventional panel.

A further insight into potential advantages of stepped facings is illustrated on
the example of the panel with three-stepped facings (Figure 2) that was even more
efficient than the previously considered panel. The overall dimensions of the sand-
wich panel and the materials of the facings and the honeycomb core were identical
to those considered in the previous examples. The outer region of the panel
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Figure 7. Distribution of axial strains throughout the thickness of conventional & stepped
panels obtained by FEA: (a) strains in the x-direction, (b) strains in the y-direction.
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(see the region with thickness tf1 in Figure 2) was constructed of the facings with
five cross-ply layers [0'/90'/0'/90'/0']. The facings of the adjacent region (thickness
tf2) included seven layers, that is, [0'/90'/0'/90'/0'/90'/0']. The facings in the thick-
est central region (thickness tf3) consisted of 11 layers: [0'/90'/0'/90'/0'/90'0'/90'/
0'/90'/0']. The size of the central thicker facing region was 8.000 ( 3.500, while the
outer dimensions of the region with 7-layer facings were equal to 9.000 ( 4.000. The
weight of this stepped panel was only 3.1% more than that of the conventional
counterpart with eight-layer facings. The conventional panel was cross-ply lami-
nated with layer sequence symmetric about the middle plane of the corresponding
facing, that is, [0'/90'/0'/90']s.
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panels obtained by FEA. (a) stresses in the x-direction, (b) stresses in the y-direction.
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The results generated for the stepped and conventional panels described above
were compared using the Tsai-Hill criterion to estimate the strength of the facings.
According to this criterion, the stresses at every point in every layer of the facings
should remain within the limitation:

Table 4. Stresses and strains at the center of the upper (compressed) facing of the conven-
tional sandwich panel.

Layer
Orientation of
layer (deg.) Z (in.) !x (ksi) !y (ksi) ex (10#3) ey (10#3)

12 0 1.000 33.615 2.930 1.250 1.610

11 90 0.995 2.480 40.821 1.230 1.530

10 0 0.900 32.658 2.668 1.210 1.440

9 90 0.985 2.361 36.415 1.200 1.360

8 90 0.980 31.701 2.405 1.180 1.280

7 0 0.975 2.241 32.010 1.160 1.190

6 90 0.970 2.181 29.807 1.150 1.110

5 0 0.965 30.266 2.010 1.130 1.030

4 90 0.96 2.061 25.402 1.110 0.944

3 0 0.955 29.309 1.748 1.100 0.861

2 90 0.95 1.941 20.997 1.080 0.778

1 0 0.945 28.353 1.485 1.060 0.965

Notes: The sign minus indicating compression is omitted. The coordinate of the upper surface of the
corresponding layer is shown in the third column.

Table 3. Stresses and strains at the center of the upper (compressed) facing of the conven-
tional sandwich panel.

Layer
Orientation of
layer (deg.) Z (in.) !x (ksi) !y (ksi) ex (10#3) ey (10#3)

8 0 1.000 38.572 3.67 1.430 1.280

7 90 0.995 2.935 52.53 1.410 1.190

6 0 0.900 37.588 3.39 1.390 1.110

5 90 0.985 2.809 47.84 1.380 1.030

4 90 0.980 2.746 45.50 1.360 0.944

3 0 0.975 36.112 2.98 1.340 0.861

2 90 0.970 2.620 40.81 1.320 0.778

1 0 0.965 35.128 2.70 1.310 0.695

Notes: The sign minus indicating compression is omitted. The coordinate of the upper surface of the
corresponding layer is shown in the third column.
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where the stresses in directions 1 and 2 refer to the stresses transformed in the
material coordinate system, that is, the 1-direction is oriented along the fibers,
while the 2-direction is identified with the in-plane axis that is perpendicular to
the fibers. The longitudinal and transverse strengths, sL and sT, correspond to
either tension or compression, dependent on the sign of the stress in the corre-
sponding term in Equation (13). For example, if !1> 0, sL in the first term in the
left side of Equation (13) corresponds to the tensile longitudinal strength of the
material. The last term in the left side of Equation (13) involves the in-plane shear
strength "LT. In the following discussion, the left side of Equation (13) is
called ‘Tsai-Hill coefficient’. If this factor reaches the value of one in at least one
of the layers, the panel is considered to fail. The efficiency of the design is
improved if the Tsai-Hill coefficient in all layers of the facings is reduced. In addi-
tion to the strength of the facings discussed below, the strength of the honeycomb
was checked for both conventional and stepped designs but it did not present a
problem.

The conventional and stepped panels were simply supported and subjected to a
uniform pressure of 470 psi chosen so that it induced failure in the outer layer of the
bottom facing (see Figure 9 and layer #1 in Table 5). The largest stresses occur at
the center of both conventional as well as stepped panels. The maximum stress
in the sandwich plate was reduced by 10.2% as a result of stepped construction.
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Figure 9. Tsai-Hill coefficient for conventional and three-stepped sandwich panels.
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Table 5. Tsai-Hill coefficient (failure criterion) for the stresses at the center of conventional
vs. stepwise panels.

Conventional panel

Ply #
Stress monitor
at center

Stress monitor
at center

In-plane
shear

Tsai-Hill failure
criterion

Ply
orient

!1 (psi) !2 (psi) "6 (psi) f< 1

8 #51,764 #5823 4233 0.26 0

7 #3939 #83,273 4080 0.32 90

6 #50,442 #5380 3927 0.23 0

5 #3770 #75,831 3774 0.27 90

4 #3685 #72,110 3621 0.25 90

3 #48,460 #4715 3468 0.18 0

2 #3516 #64,668 3315 0.21 90

1 #47,139 #4272 3163 0.16 0

Honeycomb
core

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

8 47,397 3757 3181 0.57 0

7 3538 57,090 3335 0.55 90

6 48,811 4131 3488 0.68 0

5 3709 63,378 3642 0.62 90

4 3794 66,522 3795 0.66 90

3 50,930 4693 3943 0.86 0

2 3964 72,810 4102 0.74 90

1 52,343 5067 4256 1.00 0

Stepwise panel

Ply #
Stress monitor
at center

Stress monitor
at center

In-plane
shear

Tsai-Hill failure
criterion check

Ply
orient

!1 (psi) !2 (psi) "6 (ksi) f< 1

11 #46,557 #4444 #3001 0.15 0

10 #3544 #63,562 #2825 0.17 90

9 #45,347 #4104 #2669 0.13 0

8 #3390 #57,849 #2534 0.14 90

7 #44,138 #3763 #3555 0.18 0

(continued)
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Even more remarkable, the left side of inequality (13) called in Table 1 and
Figure 9, the Tsai-Hill coefficient was reduced by 20%. These improvements
achieved at the expense of a small weight increase (3.1%) confirm potential benefits
of stepped panels.

Even in the case of a uniform pressure applied to a sandwich panel with
stepped facings, the location of failure may be ‘shifted’ from the center of the
panel to the region of an abrupt transition in the facing thickness. The stresses at
two critical locations in the transition region are shown in Table 6 and Figure 10.
As follows from the comparison with Table 5 and Figure 9, the failure of the
panels analyzed in these examples occurs at the center, rather than at the

Table 5. Continued

Stepwise panel

Ply #
Stress monitor
at center

Stress monitor
at center

In-plane
shear

Tsai-Hill failure
criterion check

Ply
orient

6 #3236 #52,136 #3348 0.18 90

5 #42,928 #3423 #3502 0.17 0

4 #3083 #46,423 #3307 0.16 90

3 #41,718 #3082 #3132 0.14 0

2 #2929 #40,710 #2969 0.13 90

1 #40,508 #2742 #2841 0.12 0

Honeycomb
core

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

11 40,962 2860 1805 0.31 0

10 2984 42,671 1887 0.34 90

9 42,172 3200 1968 0.38 0

8 3137 48,376 2074 0.38 90

7 43,382 3540 2601 0.48 0

6 3291 54,081 2729 0.46 90

5 44,592 3879 2955 0.57 0

4 3445 59,787 3084 0.52 90

3 45,801 4219 3257 0.68 0

2 3598 65,492 3455 0.59 90

1 47,011 4559 3655 0.80 0

Note: f is function of Tsai-Hill failure criterion.
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Table 6. Tsai-Hill coefficient at point 1 and 2 of stepwise panel (see Figure 10).

Stepwise panel

Ply #
Stress monitor
at point 1

Stress monitor
at point 1

In-plane
shear

Tsai-Hill failure
criterion

Ply
orient

!1 (psi) !2 (psi) "6 (ksi) f< 1

7 #32,576 #2131 #3555 0.15 0

6 #2213 #28,399 #3348 0.13 90

5 #30,806 #2022 #3502 0.15 0

4 #2091 #26,928 #3307 0.13 90

3 #29,035 #1912 #3132 0.12 0

2 #1969 #25,457 #2969 0.11 90

1 #27,265 #1803 #2841 0.10 0

Honeycomb
core

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

7 27,834 1977 2601 0.20 0

6 2046 28,393 2729 0.22 90

5 29,642 2087 2955 0.24 0

4 2170 29,855 3084 0.25 90

3 31,450 2196 3257 0.27 0

2 2294 31,317 3455 0.30 90

1 33,258 2306 3655 0.32 0

Stepwise panel

Ply #
Stress monitor
at point 2

Stress monitor
at point 2

In-plane
shear

Tsai-Hill failure
criterion

Ply
orient

!1 (psi) !2 (psi) "6 (ksi) f< 1

7 #26,237 #3039 #3555 0.15 0

6 #2125 #43,870 #3348 0.16 90

5 #23,739 #2545 #3502 0.14 0

4 #1881 #36,816 #3307 0.14 90

3 #23,413 #2315 #3132 0.11 0

2 #1803 #32,833 #2969 0.11 90

1 #23,087 #2086 #2841 0.10 0

0 0 N/A N/A AL5056

(continued)
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Table 6. Continued

Stepwise panel

Ply #
Stress monitor
at point 2

Stress monitor
at point 2

In-plane
shear

Tsai-Hill failure
criterion

Ply
orient

Honeycomb
core

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

0 0 N/A N/A AL5056

7 25,285 2038 2601 0.20 0

6 1939 33,394 2729 0.21 90

5 23,687 2509 2955 0.29 0

4 1948 40,249 3084 0.24 90

3 24,015 2746 3257 0.34 0

2 2028 44,356 3455 0.28 90

1 24,343 2983 3655 0.41 0

Note: f is function of Tsai-Hill failure criterion.
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Figure 10. Tsai-Hill coefficient for points 1 and 2 of the three-stepped sandwich panel points
are identified in the figure.
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transition region. However, the situation can change, dependent on the design of
transition and the overall dimensions of the stepped regions of the panel.

Conclusions

A potential for design of sandwich panels with stepped facings has been investi-
gated. It appears that stepped facings may provide a significant benefit reducing
bending stresses in the facings and increasing the load-carrying capacity of sand-
wich panels. Such design may also prove advantageous in sandwich structures
where the mode of failure is buckling. These advantages are further reinforced
by the observation that the manufacture of such panels does not involve significant
complications compared to conventional sandwich structures. A further research
might concentrate on the optimization of the stepped design aiming at achieving
desirable strength or stiffness subject to prescribed weight limitations.

In addition, the feasibility of using solutions based on the first-order theory for
the analysis of sandwich panels with a commercially available aluminum honey-
comb core was considered. As was shown through the comparison of deflections
and stresses generated by the analytical first-order theory solution with finite ele-
ment results accounting for 3D effects, the theory remains sufficiently accurate,
even at the width-to-thickness ratio of 20. Therefore, it is concluded that commer-
cially available honeycomb cores will often be ‘stiff enough’ to justify the applica-
tion of the first-order theory to the analysis of typical sandwich structures. This
observation may become invalid in the case of panels with a ‘softer’ polymeric core
or in the case of concentrated loads resulting in local 3D effects.
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