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Abstract

Given a graph where vertices represent alter-
natives and pairwise comparison data, yij ,
is given on the edges, the statistical rank-
ing problem is to find a potential function,
defined on the vertices, such that the gra-
dient of the potential function agrees with
pairwise comparisons. We study the depen-
dence of the statistical ranking problem on
the available pairwise data, i.e., pairs (i, j)
for which the pairwise comparison data yij is
known, and propose a framework to identify
data which, when augmented with the cur-
rent dataset, maximally increases the Fisher
information of the ranking. Under certain
assumptions, the data collection problem de-
couples, reducing to a problem of finding an
edge set on the graph (with a fixed number
of edges) such that the second eigenvalue of
the graph Laplacian is maximal. This reduc-
tion of the data collection problem to a spec-
tral graph-theoretic question is one of the pri-
mary contributions of this work. As an ap-
plication, we study the Yahoo! Movie user
rating dataset and demonstrate that the ad-
dition of a small number of well-chosen pair-
wise comparisons can significantly increase
the Fisher informativeness of the ranking.

1. Introduction

In large-scale data analysis and information processing
problems, it is important to assess the amount of in-
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formation contained in a given dataset, since this will
influence the quality of the solution. It is then natural
to consider the data collection process and to ques-
tion whether more informative data may be collected
or how a given dataset can be augmented to improve
informativeness. In this paper, we investigate these
questions for the statistical ranking problem.1

The problem of statistical ranking arises in a variety
of applications, where a collection of alternatives is to
be ranked based on pairwise comparisons. Methods
for ranking must address a number of inherent diffi-
culties including (i) incomplete data, (ii) inconsisten-
cies in the data, and (iii) imbalanced data. Despite
and possibly as a consequence of these difficulties, al-
though ranking from pairwise comparison data is an
old problem (David, 1963), there have been several re-
cent contributions to the subject (Langville & Meyer,
2012; Osting et al., 2012b; Hirani et al., 2011; Jiang
et al., 2010; Callaghan et al., 2007) with broad ap-
plications, e.g., problems in social networking, game
theory, and e-commerce.

Let G = (V,E) denote the complete graph, consisting
of a set of n nodes, V = {j}nj=1, representing alter-

natives, and edges E = {k}Nk=1, where N :=
(

n

2

)

=
n(n−1)

2 . Pairwise comparison data consists of (1) a
vector w ∈ Z

N
+ which assigns to each edge k = ij ∈ E

the number of times item i and item j have been com-
pared and (2) a vector y ∈ R

N which assigns to each
edge ij ∈ E a quantitative (cardinal) preference of i
over j. If the two items, i and j have not been com-
pared, we simply set wij = yij = 0. When viewed
as a statistical inverse problem, the ranking problem
is to estimate the overdetermined parameter φ ∈ R

n

1To prevent confusion, we note that the term ranking
is used here to indicate a scalar measure of desirability for
each item in a collection, sometimes referred to as a rating.



Enhanced statistical rankings via targeted data collection

which describes the “desirability” of each alternative
given the pairwise comparison data (w, y). The least
squares estimator for the ranking problem is defined

φ̂w = argmin
φ

‖Bφ− y‖w, (1)

where B is the arc-incidence matrix for G (defined in
§2), ‖ · ‖w denotes the w-weighted ℓ2 norm, and the

dependence of the ranking, φ̂w, on the available data,
w, is emphasized by the subscript.

Generally speaking, the more pairwise comparisons
among a fixed number of alternatives, the more in-
formative we expect the ranking, φ̂w to be. In this
paper, we consider the following question:

Given a pairwise comparison dataset,
(w0, y0), and the opportunity to collect ξ
additional pairwise comparisons, which data
should be targeted to maximally improve the
informativeness of the least squares ranking?

We follow the methodology of the optimal design com-
munity (Pukelsheim, 2006; Haber et al., 2008), and
consider the Fisher information for the ranking es-
timate φ̂w, defined in (1). Since φ̂w is an unbiased

estimator, i.e., Eφ̂w = φ, the Fisher information is
the inverse of the covariance matrix, Var(φ̂w), and
thus maximizing the informativeness of the ranking
is equivalent to minimizing Var(φ̂w). We are thus led
to the following bi-level optimization problem:

min
w

‖Var(φ̂w)‖2 (2a)

such that φ̂w = argmin
φ

‖Bφ− y‖w (2b)

w ∈ Z
N
+ , w � w0, ‖w − w0‖1 ≤ ξ. (2c)

The constraint in (2c) specifies that only a limited
amount of additional data is collected. Choosing to
minimize the matrix norm of Var(φ̂w), is referred
to as the E-optimal design. Other scalar function
choices commonly used as optimal design criteria are
tr[Var(φ̂w)] and det[Var(φ̂w)] (respectively, A- and D-
optimal conditions).

In §3, we show that for the least squares estimator,
the constraint (2b) in the optimization problem (2)
decouples, yielding a problem of finding edge weights
w for which the w-weighted graph Laplacian has max-
imal second eigenvalue. In §4, we apply our methods
to the Yahoo! Movie user rating dataset and demon-
strate that the addition of a small number of well-
chosen pairwise comparisons can significantly increase
the Fisher informativeness of the ranking.

Related work. Optimal experiment design
(Pukelsheim, 2006) is commonly used in inverse
problems, e.g., geophysical (Haber et al., 2008) and
biomedical imaging (Quinn & Keough, 2002; Seeger &
Nickisch, 2011; Chung & Haber, 2012), for the purpose
of reducing the amount of data that must be collected
(sparsity). In particular, for inverse problems in
imaging, Seeger & Nickisch (2011) connect the areas
of Bayesian active learning and optimal experimental
design, collectively referred to as Bayesian sequential
experimental design. The present work is most similar
to that found in Osting et al. (2012a), where the
methodology of optimal experimental design was
applied to the problem of sports scheduling. The
primary difference is that the present work focuses
on (adaptively) improving a pairwise comparison
dataset, whereas the focus of the work of Osting et al.
(2012a) is the (static) construction of a dataset. Also,
in sports scheduling, it is of interest to restrict to the
case w ∈ {0, 1}N , rather than the more general case
w ∈ Z

N
+ , considered here.

In Jamieson & Nowak (2011) and Ailon (2012), the
problem of optimally sampling preference labels is
studied for the minimum feedback arc-set in weighted
tournaments (MFAST) also known as Kemeny-Young
ranking. The dataset considered is ordinal, i.e., only
pairwise preference labels are specified, whereas in the
present work, the dataset is cardinal, i.e., the pref-
erences are represented as quantitative (real valued)
differences between items.

Our approach also differs from that of Glickman
(2005), where a Bayesian optimal design approach
is used to maximize the expected gain in Kullback-
Leibler information from the prior to posterior rank-
ing distributions. We do not assume a prior on the
statistical ranking.

We show in §3 that the bilevel optimization problem
in (2) is related to the problem of finding multigraphs
with large algebraic connectivity. There is a tremen-
dous amount of work on the algebraic connectivity of
graphs, originating with Fiedler (1973). The robust-
ness of a network to node/edge failures is highly depen-
dent on the algebraic connectivity of the graph. The
rate of convergence of a Markov process on a graph to
the uniform distribution is determined by the algebraic
connectivity (Sun et al., 2004). Finally, in the “chip-
firing game” of Björner, Lovász and Shor, the algebraic
connectivity dictates the length of a terminating game
(Björner et al., 1991). Consequently, algebraic connec-
tivity is a performance measure for the convergence
rate in sensor networks, data fusion, load balancing,
and consensus problems (Olfati-Saber et al., 2007).
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Outline. In §2, we review spectral properties of the
w-weighted graph Laplacian. In §3, the data collection
problem (2) is shown to be equivalent to a spectral
graph problem. In §4, the results from §3 are applied
to study the Yahoo! Movie user rating dataset. We
conclude in §5 with a discussion.

2. Eigenvalues of the w-weighted graph

Laplacian

In this section, we review properties of the eigenval-
ues of the w-weighted graph Laplacian; more extensive
treatments are given in (Mohar, 1991; Chung, 1997;
Biyikoglu et al., 2007).

Let G = (V,E) be the complete graph with |V | = n
nodes and let B ∈ R

N×n where N :=
(

n

2

)

be an arc-
vertex incidence matrix for G,

Bk,j =











1 j = head(k)

−1 j = tail(k)

0 otherwise,

(3)

where the orientation of the edges is chosen arbitrarily.
Given an edge-weight w ∈ Z

N
+ , the w-weighted graph

Laplacian is defined

∆w := BtWB where W = diag(w).

The w-weighted degree vector d ∈ R
n is defined by

di =
∑

j wij . Let M := ‖w‖1 = 1
2‖d‖1 and d+ and d−

denote the maximum and minimum w-weighted de-
grees in the graph. Let λi(w) for i = 1, . . . , n denote
the eigenvalues of ∆w. The following are properties of
the spectrum of ∆w:

1. Since ∆w is symmetric and positive definite, the
eigenvalues are real and nonnegative. The spec-
trum is also bounded above, e.g., λn ≤ 2d+.

2. Let E be the edgeset corresponding to the indica-
tor function of w. The second eigenvalue,

λ2(w) = min
‖v‖=1
〈v,1〉=0

‖Bv‖2,w, (4)

is nonzero if and only if the graph (V,E) is con-
nected.

3. Let ∆wv = λv, λ > 0, w0 = mink wk and w′ =
w − w0. Then

∆w′v = (λ− w0n)v. (5)

This follows from the fact that BtB = n Id−1n1
t
n.

4. The first eigenvalue of ∆w, λ1, is zero with corre-
sponding eigenvector v1 = 1.

5. The function λ2(w) is non-decreasing in w, i.e., if
w1 ≤ w2, then λ2(w1) ≤ λ2(w2) .

6. For U ⊂ V , define C(U) :=
∑

i∈U,j∈Uc

wij . The

second eigenvalue is bounded above:

λ2(w) ≤ min
U⊆V

n C(U)

|U ||U c|
. (6)

In particular, if U = {v} where v ∈ V is the node
with smallest w-weighted degree, i.e., dv = d−,
then dv ≤ 2M

n
and from (6), we obtain

λ2(w) ≤
n d−
n− 1

≤
2M

n− 1
. (7)

7. Consider the weight w = w0 + δk where δk is the
indicator function for edge k. Then using Weyl’s
theorem (Horn & Johnson, 1990), we obtain

λ2(w) ≤ λ2(w0) + ‖Btdiag(δk)B‖

= λ2(w0) + 2. (8)

8. Let G be a weighted graph with weights w ∈ R
N

and let G′ be the graph with weights w′ = w +
δk, where δk is the indicator function for edge k.
Denote the eigenvalues of the w and w′-weighted
graph Laplacians by λj and λ′

j respectively. Then
the eigenvalues λ and λ′ interlace, i.e.,

0 = λ1 = λ′
1 ≤ λ2 ≤ λ′

2 ≤ λ3 ≤ . . . ≤ λn ≤ λ′
n.

Remark 2.1. If w ∈ {0, 1}N , then λ2 is referred to
as the algebraic connectivity for the graph defined by w
(Fiedler, 1973). In this case, M is the number of edges
present and C(U) can be interpreted as the number of
edges connecting U and U c. Rather than considering a
complete graph with edge weights w ∈ Z

N
+ , one may al-

ternatively view the structure (V,E,w) as a multigraph
where wij is the number of edges connecting nodes i
and j. In this case, λ2 can be interpreted as the alge-
braic connectivity of the multigraph and C(U) as the
number of edges connecting U and U c.

3. Targeted data collection for the least

squares ranking

Let (w0, y0) be a pairwise comparison dataset, as de-

fined in §1 and let φ̂w be the least squares ranking (1).
In this section, we consider the problem, formulated in
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(2), of collecting ξ additional pairwise comparisons to

optimally improve the Fisher informativeness of φ̂w.

Assume that each alternative j = 1, . . . , n has a
“ground truth” ranking, φj . We label each pair of
alternatives by k = 1, . . . ,

(

n

2

)

≡ N and denote by
B ∈ R

N×n the arc-vertex incidence matrix for the
complete graph, (3). We assume that there exists a
pairwise comparison measure, y, such that for each
pair of alternatives {i, j},

yij = (Bφ)ij + ǫij (9)

where ǫ ∈ R
N is a random vector with zero mean, i.e.,

Eǫ = 0. Let wk ∈ Z+ denote the number of com-
parisons between items i and j. We assume that the
variance of ǫk is given by σ2/wk for some constant σ
if wk 6= 0 and zero if wk = 0. The variance in the
observed comparison is reduced as the number pair-
wise comparisons increases. The following proposition
shows that the optimal data collection problem (2) is
equivalent to the problem of finding edge weights, w,
for which the w-weighted graph Laplacian has maxi-
mal second eigenvalue.

Proposition 3.1. Let ǫ be a random vector with Eǫ =
0 and Var(ǫ) = σ2W † where W = diag(w) and w ∈

Z
N
+ . Let φ̂w be the least squares estimator given in (1)

for φ in (9). Then the problem of finding a dataset,
w ∈ Z

N
+ , with w � w0 and ‖w − w0‖1 ≤ ξ which

minimizes ‖Var(φ̂w)‖2 is equivalent to the eigenvalue
optimization problem

max
w

λ2(w) (10)

such that w ∈ Z
N
+ , w � w0, ‖w − w0‖1 ≤ ξ,

where λ2(w) is the second eigenvalue of the w-weighted
graph Laplacian, as defined in (4).

Proof. The least squares ranking, written

φ̂w = arg min
〈φ,1〉=0

‖Bφ− y‖2,w = (BtWB)†BtWy,

is a linear, unbiased (E[φ̂w] = φ) estimator. Here, the
dagger (†) is the Moore-Penrose pseudo-inverse. We
first compute

φ̂w = (BtWB)†BtWy = (BtWB)†BtW (Bφ+ ǫ)

= φ+ (BtWB)†BtWǫ.

Thus, the variance of φ̂w is given by

Var(φ̂w) = E

[

(φ̂w − φ)(φ̂w − φ)t
]

= (BtWB)†BtWE
[

ǫǫt
]

WB(BtWB)†.

λ2=0.83 λ2=2

λ2=1 λ2=1.59

λ2=1 λ2=1.59

λ2=1.38 λ2=2

λ2=2 λ2=2

Figure 1. Targeted data collection for small graphs. (left)
The five topologically distinct connected graphs with n = 5
nodes and m = 6 edges. (right) For each edgeset on the
left, we select one additional edge (blue dashes) so that λ2

for the enhanced graph is maximal. The algebraic connec-
tivity of each graph is indicated. By Prop. 3.1, a ranking
on a dataset represented by a graph on the right is more
informative than one from a graph on the left. See §3.

Assuming E [ǫǫt] = σ2W †, we obtain Var(φ̂w) =

σ2(BtWB)† ≡ σ2∆†
w. Since Var(φ̂w) doesn’t depend

on the pairwise comparison data, y, the constraint in
the optimal data collection problem (2b) decouples.

Furthermore, minimizing ‖Var(φ̂w)‖ is equivalent to
maximizing the smallest non-zero eigenvalue of the w-
weighted graph Laplacian, ∆ω = BtWB. Provided
each item has been compared to at least one other
item, the smallest non-zero eigenvalue of ∆ω is the
second one, λ2(w), as defined in (4).

In Fig. 1, we illustrate Prop. 3.1 by studying (10)
where ‖w0‖1 = 6 and ξ = 1. Although the graphs
in Fig. 1 are small in size, it is already nontrivial to
determine which edge should be added to maximally
increase the algebraic connectivity. We observe that
for graphs with low algebraic connectivity, a signifi-
cant gain can be achieved, while the results for graphs
with relatively high algebraic connectivity are modest.
In the lowermost panel in Fig. 1, the algebraic con-
nectivity remains constant as an edge is added. This
follows from the fact that the second eigenvalue for the
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Algorithm 1 A greedy heuristic for finding edge
weights w for which the w-weighted Laplacian has
large second eigenvalue (Ghosh & Boyd, 2006b; Wang
& Mieghem, 2008). See §2.

Input: An initial edge weight w0 ∈ R
N defined on

the complete graph of n nodes and an integer, ξ.

Output: An edge weight, w, such that
‖w−w0‖1 = ξ, and ∆w has large second eigenvalue.

Set w = w0 (current edge weight)
for ℓ = 1 to ξ, do
Compute the second eigenvector,

F = arg min
‖v‖=1
〈v,1〉=0

‖Bv‖w

Find the edge ij which maximizes (Fi − Fj)
2

Set w = w + δij
end for

graph on the left has multiplicity 2 and the interlacing
property described in §2.

The problem of finding weights w ∈ R
N which max-

imize λ2(w) is a convex optimization problem and
can be formulated as a semidefinite program (SDP)
(Ghosh & Boyd, 2006a;b). However, for w ∈ Z

N
+ , as in

(10), this problem is NP-hard (Mosk-Aoyama, 2008).
Solutions to the integer constrained problem may be
approximated by solving the unconstrained problem
and rounding the solution. This is clearly a lower
bound on the optimal solution and, if the values w are
large, a reasonable approximation. Another approach,
advocated by Ghosh & Boyd (2006b) and Wang &
Mieghem (2008), is the greedy algorithm described in
Algorithm 1. This algorithm uses the second (Fiedler)
eigenvector to iteratively chose an edge for which to
increment the corresponding entry of w by one. So-
lutions generated using this heuristic are found to be
adequate for the present work.

Remark 3.2. From (5), it is tempting to think that
only edges with the smallest current weight must be
considered in Algorithm 1. However, graphs with n =
6 nodes can be generated such that w = 0 on some
edges and there exists an edge k such that (a) wk = 1,
(b) among all edges, λ2(w) increases most significantly
when edge k is incremented, and (c) the greedy heuris-
tic in Algorithm 1 selects edge k to increment.

4. Informativeness of the ranking for

the Yahoo! Movie user ratings

dataset

In this section, we apply the methodology formulated
in §3, to study the Fisher informativeness of the Ya-
hoo! Movie user rating dataset. We show that the
addition of targeted edges can significantly improve
the informativeness of the movie rating system.

The dataset. The Yahoo! Movie user rating dataset
consists of a 7, 642× 11, 915 user-movie matrix where
each of the 211, 197 nonzero entries (0.23% sparsity
density) is a 1 to 13 rating (yah)2. Each movie was
rated by between 1 and 4,238 users (the average num-
ber of reviews per movie is 17.7). Each user rated
between 10 and 1,632 movies (the average number
of reviews made by each reviewer is 27.6). Of the
70,977,655 (movie) pairs (i, j) where i > j, there are
5,742,557 for which a user has given a rating to both
movies i and j implying that the pairwise compar-
isons for the raw dataset are 8.1% complete. The ma-
jority of movies in the dataset received relatively few
reviews, as reported in Table 1. The movies which
received less than 10 rankings were discarded from
the dataset, leaving 2,367 movies, each of which were
reviewed by an average of 79.8 users. We then re-
moved 11 users who did not review any of the remain-
ing movies. The remaining 7,631 reviewers reviewed
between 1 and 1,220 movies (on average they reviewed
24.8 movies).

Construction of pairwise comparison data from

movie-user rating data. Let Σ be the set of Yahoo!
users, V be the set of all Yahoo! movies and rσi be the
rating given to movie i ∈ V by user σ ∈ Σ. For each
unordered movie pair {i, j} ∈ V 2, we define

Σij = {σ ∈ Σ who rated both movies i and j}.

For each movie pair {i, j} ∈ V 2, we define wij to be the
number of users who have viewed both movies i and
j, i.e., wij = |Σij | and yk to be the average difference
in movie reviews, written

yij =
1

|Σij |

∑

σ∈Σij

(rσj −rσi ), where {i, j} ∈ V 2 and i < j.

(11)
Note that the expression in parenthesis is anti-
symmetric in the indices i and j and lies in the in-
terval [−12, 12]. The choice i < j corresponds to
the choice in arc direction in (3). For the Yahoo!

234 entries reviewing Yahoo! movie id 0 were discarded
due to absence in movie content description file.
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Table 1. Frequency of reviews for items in the Yahoo! Movie user rating dataset.
# times movie reviewed 1 2 3 4 5 6 7 8 9 ≥ 10
occurrences 4,901 1,882 897 548 398 316 237 202 167 2,367

100 1000 10000 100000
0

50

100

150

200

250

300

degree distribution
−10 −5 0 5 10
0

4

8

x 10
4

residual

φ̂w Movie Name
4.46 It’s a Wonderful Life (1946)
4.45 Singin’ in the Rain (1952)
4.34 Rear Window (1954)
4.11 24: Season 1 (2002)
3.96 The Longest Day (1962)
3.94 The Man Who Shot Liberty Valance (1962)
3.92 Rebecca (1940)
3.87 Friends - The Complete Fourth Season (1997)
3.79 Lady and the Tramp (1955)
3.79 It Happened One Night (1934)

Figure 2. (top left) A log-histogram of the w-weighted
degree distribution for the graph representing the Yahoo!
movie pairwise comparison data. (top right) A histogram
of the residual, y−Bφ̂w, where φ̂w is the least squares rank-
ing. (bottom) Top 10 movies and ranking, φ̂w. See §4.

Movie user rating dataset, we have n := |V | = 2, 367,
N :=

(

n

2

)

= 2, 800, 161, m := ‖w‖0 = 1, 884, 504, and
M := ‖w‖1 = 8, 322, 538. Thus, there exists at least
one comparison for m/N = 67% of the movie pairs.
The mean w-weighted degree of each node is given by
2 · M/n = 3, 516. A log-histogram of the w-weighted
degree distribution of the graph representing the pair-
wise comparison data is given in Fig. 2 (top left).

The least squares ranking. A ranking is obtained
by solving the least squares problem, (1), using Mat-
lab’s lsqr function. The top ten movies found are
given in Figure 2. The relative residual norm of the

least squares estimator, φ̂w, is
‖Bφ̂w−y‖w

‖y‖w
= 0.53. In

Fig. 2 (top right), we plot a histogram of the residual,

y − Bφ̂w. For this pairwise comparison dataset, the
normality assumption in Prop. 3.1 is reasonable.

The informativeness of the ranking is λ2(w) =

[Var(φ̂w)]
−1 = 154.38. This value is small compared to

the upper bound given in (7), λ2(w) ≤
2M
n−1 = 7, 036.

We next demonstrate that the Fisher information can

be significantly improved by the addition of a small
number of targeted pairwise comparisons.

Targeted data collection. We apply the optimal
experimental design approach developed in §3 to im-
prove the Fisher information of the least squares rank-
ing. To approximate the solution of (10), we use the
greedy algorithm described in Algorithm 1. The sec-
ond eigenpair of the graph Laplacian is computed us-
ing Matlab’s eigs function, initialized using the eigen-
vector from the previous iteration. We choose a very
modest value of pairwise comparison edges to add,
ξ = .01%·M = 832 edges. The results are given in Fig.
3. The addition of the targeted pairwise comparisons
leads to an increase in the second eigenvalue of the
w-weighted graph Laplacian by a factor of 2.2. The
maximum increase for the addition of a single pair-
wise comparison is ≈ 1, less than the upper bound
given in (8). We observe in Fig. 3, that the rate of
information increase slows as more pairwise compar-
isons are added. For a comparison, we also consider
the addition of randomly chosen movie pairs. For this
modest value of additional edges, ξ, the effect of the
informativeness of the ranking is unappreciable.

Finally, we use graph visualization via spectral clus-
tering to illustrate the pairwise comparison and tar-
geted data. In Fig. 4(top) we plot the given pairwise
movie comparisons obtained from the Yahoo! user-
movie database. In Fig. 4(bottom) we plot the pro-
posed pairwise comparisons, targeted to improve the
informativeness of the rating system. To enhance the
readability of the graph representation, we plot only
15% randomly selected nodes (356 of n = 2367) and
the interconnecting edges (45, 327 of m = 1, 884, 504).
Figure 4(top) was generated as follows. First normal-
ized spectral clustering (based on k-means) was used
to detect clusters of movies. Next, the Fruchterman-
Reingold algorithm was used to generate reasonable
positions for the movie clusters and the Kamada-
Kawai algorithm was used to place movies within the
clusters (Traud et al., 2009). The node placement was
obtained using the full dataset. Finally, the weighted
graphs were plotted using wgPlot (Wu, 2009). Figure
4(bottom) was then generated using the same node
placements as in Figure 4(top).

A comparison of the top and bottom panels of Fig.
4 shows that the primary improvement to informa-
tiveness arises from the addition of edges which con-
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1 7

 

 

Figure 4. (top) A 15% randomly chosen subset of the pairwise comparison graph for the Yahoo! user-movie database.
Nodes represent movies, node size reflects weighted degree (i.e., number of comparisons with other movies), and node
color indicates genre (see legend). Edges represent weighted pairwise comparisons colored by edge weights (i.e., number of
comparisons). (bottom) Pairwise comparisons targeted for collection to improve the informativeness of the least squares
ranking. Targeted comparisons are colored by weight (multiplicity). See §4.

nects two relatively weakly connected components of
the graph (see Remark 2.1). With 4 exceptions, each
targeted movie pair is only incremented once; it isn’t
generally advantageous to add a pair multiple times
(see Remark 3.2).

5. Discussion and future directions

We have applied methods from optimal experiment de-
sign to provide a new framework for targeted data col-
lection for more informative rankings. At the heart

of this framework is a bi-level optimization problem
(2) where the inner problem is to determine the least-
squares estimate for the ranking and the outer problem
is to identify the data which minimizes the variance of
the ranking. We show that for a Gaussian error model
(9), the outer and inner problems decouple, yielding
a problem of finding an edgeweight w ∈ Z

N
+ , such

that the w-weighted graph Laplacian has small second
eigenvalue (10). This can be interpreted as finding a
multigraph with large algebraic connectivity.
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200 400 600 800

150

200

250

300

350

additional comparisons

λ 2

additional comparisons
method of original .005% M .01% M

data collection ξ = 0 ξ = 416 ξ = 832
random 154.38 154.38 154.38
optimal 154.38 298.44 332.78

upper bound (7) 7,035 7,035 7,036

Figure 3. (top) The informativeness of the ranking, λ2(w),
as a small number (.01% ·M) of targeted pairwise compar-
isons (black) and randomly selected pairwise comparisons
(blue) are added. (bottom) The value of λ2(w) for this
augmented dataset and the upper bound on λ2 given in (7).
The change in informativeness for randomly added data is
unappreciable compared to a 2.2 fold increase for targeted
data. See §4.

There are several applications in, e.g., social network-
ing, game theory, and e-commerce, where improved
data collection could potentially benefit ranking. In
particular, for the Yahoo! Movie user ratings dataset
(considered in §4), we have shown that the informa-
tiveness of ranking can be increased by a factor of 2.2
if just .01% of additional, optimally-targeted data is
added to the dataset. In contrast, if the same amount
of random data is added, there is only a very small
effect on the informativeness of the ranking.

In this paper, we have focused on targeted data collec-
tion for improved rankings, neglecting several impor-
tant factors including the cost of data collection and
potential constraints on what data may be collected.
There are two simple extensions to our method which
may be employed to accommodate these additional
factors. The cost of data collection could be incor-
porated by either adding a penalization term in (10)
or by incorporating additional weights into the norm
used to compute λ2 in (10). Data collection constraints
may be handled by explicitly forbidding certain edge
weights to be incremented in the greedy Algorithm 1
for targeting data collection.

The least-squares ranking estimate (1) is referred to
as HodgeRank by some authors (Jiang et al., 2010;
Xu et al., 2011), since the Hodge decomposition im-

plies that the residual in (1), r = Bφ − y, can be
further decomposed into two orthogonal components:
(1) a divergence-free component which consists of 3-
cycles and (2) a harmonic component which consists
of longer cycles (Jiang et al., 2010; Hirani et al., 2011).
In fact, Jiang et al. (2010) argues that a dataset which
has a large harmonic component is inherently incon-
sistent and does not have a reasonable ranking. The
harmonic component lies in the kernel of the graph
Helmholtzian with dimension given by the first Betti
number of the associated simplical complex. Optimal
reduction of the first Betti number may provide an al-
ternative approach to improving the informativeness
of the least squares ranking.

Finally, we mention two extensions of the present
work. It would be interesting to consider optimal data
collection for nonlinear ranking methods, including ro-
bust estimators (Osting et al., 2012b), random walker
methods (Callaghan et al., 2007), Perron-Frobenius
eigenvalue methods (Keener, 1993; Langville & Meyer,
2012), and Elo methods (Elo, 1978; Glickman, 1995;
Langville & Meyer, 2012). Secondly, the implementa-
tion of a data collection method should be more care-
fully modeled for particular applications. For instance,
for the Yahoo! Movie user rating dataset, the pairwise
comparison data is constructed from user rating data
and thus any targeted pairwise comparison addition
must be solicited from a user. Since the number of
pairwise comparisons for which a particular reviewer
adds when a new movie is reviewed is equal to the
number of previous reviews that user has contributed,
it may make sense to solicit additional reviews from
users with many previous reviews. That is, one must
consider the propagation of information from the user
reviews to the pairwise comparison data in (11).
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