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Enhanced Stiffness Modeling, Identification and
Characterization for Robot Manipulators

Gürsel Alici and Bijan Shirinzadeh

Abstract—This paper presents the enhanced stiffness modeling
and analysis of robot manipulators, and a methodology for their
stiffness identification and characterization. Assuming that the
manipulator links are infinitely stiff, the enhanced stiffness model
contains: 1) the passive and active stiffness of the joints and 2) the
active stiffness created by the change in the manipulator configu-
ration, and by external force vector acting upon the manipulator
end point. The stiffness formulation not accounting for the latter
is known as conventional stiffness formulation, which is obviously
not complete and is valid only when: 1) the manipulator is in
an unloaded quasistatic configuration and 2) the manipulator
Jacobian matrix is constant throughout the workspace. The
experimental system considered in this study is a Motoman SK
120 robot manipulator with a closed-chain mechanism. While the
deflection of the manipulator end point under a range of external
forces is provided by a high precision laser measurement system,
a wrist force/torque sensor measures the external forces. Based on
the experimental data and the enhanced stiffness model, the joint
stiffness values are first identified. These stiffness values are then
used to prove that conventional stiffness modeling is incomplete.
Finally, they are employed to characterize stiffness properties of
the robot manipulator. It has been found that although the compo-
nent of the stiffness matrix differentiating the enhanced stiffness
model from the conventional one is not always positive definite, the
resulting stiffness matrix can still be positive definite. This follows
that stability of the stiffness matrix is not influenced by this stiff-
ness component. This study contributes to the previously reported
work from the point of view of using the enhanced stiffness model
for stiffness identification, verification and characterization, and
of new experimental results proving that the conventional stiffness
matrix is not complete and is valid under certain assumptions.

Index Terms—Compliance/force control, manipulator kine-
matic, stiffness identification, stiffness modeling.

I. INTRODUCTION

KNOWING the stiffness or compliance of a robot manip-
ulator reflected at its end point is of prime importance

to successfully conduct contact and noncontact tasks. In fact,
the stiffness of robot manipulators generally represents the
accuracy required to satisfy the desired position and force
commands [1]–[3]. Further, it must be recalled that there is
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coupling among rotational and translational Cartesian move-
ments of a typical serially connected robot manipulator because
of the inconsistency between the task specification (Cartesian)
space and the actuation (joint) space. This coupling also shows
itself in the nondiagonal stiffness matrix seen at the end point
of the robot manipulator. As a result, the manipulator tool
frame rotates when an end point force is applied along one
of the degrees of freedom [1], [2]. If the stiffness seen at the
manipulator end point is modeled and identified accurately, it
would be possible to compensate for the coupling and posing
errors caused by the external forces. The model may also be
used to generate manipulator stiffness maps defining the ma-
nipulator end point stiffness as functions of the joint stiffness
and manipulator configurations. The minimum and maximum
stiffness values, which are the maximum and minimum eigen-
values of the stiffness matrix, and their directions, which are
the corresponding eigenvectors, can be known in advance.
Hence, the most appropriate configurations for certain tasks
can be selected. In this study, we, therefore, address enhanced
stiffness modeling, analysis, identification and characterization
for robot manipulators. The enhanced stiffness model differs
from the conventional stiffness model first derived by Mason
and Salisbury [4] such that it contains the stiffness component
due to the change in the manipulator configuration and the
external forces acting on the manipulator in addition to the
inherent stiffness of the system. The conventional stiffness
formulation is valid only when the manipulator is in a qua-
sistatic configuration with no loading, or when it has a constant
Jacobian matrix throughout its workspace such as a Cartesian
robot manipulator. Although the existence of the additional
stiffness component has been known for a long time [5], [6],
its importance for preserving the conservative and fundamental
properties of joint and Cartesian stiffness matrices has been
highlighted by Kao et al. [9] and others [7], [8], and [10]
recently.

Stiffness modeling, analysis, synthesis and control have
attracted the attention of many researchers. Ang and Andeen
[11] reported on how to generate variable passive compliance
through the topology of robot manipulators with backdrivable
actuators. It has been concluded that a nondiagonal stiffness
matrix can be effective in preventing jamming and contact in-
duced vibrations. Ang et al. [12] also introduced a methodology
to model the end-effector stiffness due to link flexibilities of
serially connected robot manipulators. They demonstrated that
the methodology could be applied to all possible serial manip-
ulator topologies: 1) to describe their end-effector stiffness as
a function of manipulator configurations, and 2) to choose the
most appropriate manipulator configuration compatible with
the compliance requirements of the task at hand. Kao et al.

1552-3098/$20.00 © 2005 IEEE
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[13] have pointed out that the linear 3 3 stiffness matrices for
grasping can be decomposed into symmetric and nonsymmetric
components such that they provide better physical insights into
stiffness control and grasping. The stiffness components are
calibrated using experimental data from some grasping tasks. It
has been concluded that the stiffness matrix has a significant ef-
fect on grasp stability and robustness against slipping. Hang and
Schimmels [14] demonstrated that spatial compliance behavior
could be accomplished using a number of springs connected in
parallel to a rigid body. In a study on global stiffness modeling
of compliant couplings, Griffis and Duffy [15] pointed out
that a 6 6 general stiffness matrix was not symmetric for a
conservative system. Ciblak and Lipkin [16] later demonstrated
that the skew-symmetric part of such a matrix was due to the
externally applied force/moment vectors. Ciblak and Lipkin
[17] also employed the spatial vector (screw) algebra to demon-
strate that the Cartesian stiffness of robotic systems could be
realized by a number of springs. Chen and Kao [7] have recently
reported that the conventional stiffness formulation derived by
Mason and Salisbury [4] is not valid and a new conservative
congruence transformation must be used as the generalized
relationship between the joint and Cartesian stiffness matrices
in order to preserve the fundamental properties of the stiffness
matrices. Based on this finding, a number of publications on
the use of this new transformation have been made available
by the same group of researchers [7]–[10], simulation results
for a planar revolute-jointed manipulator have been provided
to demonstrate its validity. With this in mind, it is believed that
the work presented in this paper is the first to verify enhanced
stiffness modeling through experimental results provided by a
high-resolution laser-based position sensing and measurement
system.

The sources of the stiffness of a typical robot manipulator
are the compliance of its joints, actuators and other transmis-
sion elements, geometric and material properties of the links,
base, and the active stiffness provided by its position control
system. For the purpose of this study, we assume that: 1) the
compliance in actuators and transmission elements is the dom-
inant source of the stiffness, and it can be represented by a
linear torsional spring for each joint; 2) the active compliance
in actuators due to a robot position control system provided by
the original equipment manufacturer does not vary with time
though an integral controller can increase the active compli-
ance, depending on the positioning error; and 3) the links are
infinitely stiff. The experimental system employed here in this
work is a Motoman SK 120 robot manipulator, which is not a
simple open chain robot manipulator, but rather contains a par-
allel five-bar mechanism to increase the structural stiffness of
the system [18]. In order to identify the joint stiffness values, a
number of manipulator configurations are heuristically selected
to acquire experimental position and force data, which are pro-
vided by a laser-based sensing and measurement system, and
a wrist force/torque (F/T) sensor, respectively. The laser-based
sensing system has an accuracy of ppm m/m , a coordi-
nate repeatability of ppm m/m and a distance resolution
of 1.26 m, and can measure the position of any target along the
three orthogonal axes. A classical nonlinear least square estima-
tion algorithm is used to estimate the joint stiffness values. The
estimated joint stiffness matrix is verified experimentally. Also,

the work done in Cartesian and joint spaces are computed for
both enhanced and conventional stiffness formulations. It has
been found that the conventional stiffness formulation does not
satisfy the principle of the conservation of energy. It has also
been demonstrated that this arises from the existence of the ad-
ditional stiffness component. Further, based on the estimated
joint stiffness constants, the limits and conditions of the posi-
tive definiteness (stability) of the Cartesian stiffness matrix are
evaluated. It has been found that although the additional stiff-
ness component differentiating the enhanced formulation from
the conventional formulation is not always positive definite, the
resulting Cartesian stiffness matrix can still be positive definite.
The main contribution of this study is the new theoretical and ex-
perimental results supporting the enhanced stiffness modeling
(or conservative congruence transformation) through stiffness
identification, verification, and characterization.

II. KINEMATIC ANALYSES AND JACOBIAN MATRIX

The schematic of the robot manipulator and the coordinate
frames needed to generate a kinematic model based on De-
navit–Hartenberg parameters is depicted in Fig. 1. The manip-
ulator possesses a parallel five-bar mechanism. Therefore, the
kinematic model of the parallel five-bar mechanism is also de-
rived. The Denavit Hartenberg parameters for the manipulator
and the parallel mechanism are given in Table I.

An L-shaped apparatus with a longitudinal extension of
mm from the manipulator tool plate and a vertical offset

of mm from the longitudinal axis of the tool plate
is connected to the manipulator tool plate in order to secure
the retroreflector of the measurement system to the robot via
a 3-point-contact magnetic fixture. With reference to Fig. 1, it
must be noted that, for the five-bar mechanism, ,

, , , and . The homogeneous
transformation matrix between the frames 1 and 2 of the five bar
is described in terms of the coordinate frames fixed to the links
of the five-bar mechanism as

(1)

The overall transformation matrix between the base coordi-
nate frame and the frame fixed to the manipulator end point is
written as

(2)

where is the homogeneous transformation matrix be-
tween two consecutive coordinate frames j and based
on Denavit–Hartenberg convention [18]. From the first three
elements of the last column of , the generalized relationship
between the input velocity vector and the
output velocity vector is obtained as

(3)
where is the manipulator Jacobian matrix, see Appendix I for
analytical expressions of its elements.
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Fig. 1. Schematic representation of the robot manipulator with D-H convention and parameters. Note that the coordinate framesO andO , andO andO are
located at the same point.

TABLE I
RESULTS OF D-H PARAMETERS FOR MOTOMAN 120 SK MANIPULATOR AND

PARALLEL MECHANISM. SHADED ROWS ARE FOR PARALLEL MECHANISM

Using the duality between the generalized relationships for
motion and force transfer between the actuator and operation
spaces, the following force relationship is obtained:

(4)

where represents the 3 1 vector of external
forces acting at the manipulator end point, and
denotes the 3 1 vector of the actuator forces/torques needed
to balance the external forces, and denotes transposition.

III. STIFFNESS FORMULATION

The sources of stiffness for a typical serially connected robot
manipulator include the base stiffness, joints’ stiffness, link
stiffness, and active stiffness due to position feedback. It is
assumed that the primary source of the stiffness is the active
and passive joint stiffness in the axial direction of the actuation

torque, and it is lumped into a single constant stiffness value
for each joint. However, it must be noted that, depending

on positioning error and the integral gain that is usually much
smaller than the proportional gain in a typical proportional
integral derivative (PID) controller, the active stiffness due
to a robot position control system provided by the original
equipment manufacturer can vary with time. In this study, for
the sake of simplicity without loosing generality, it is assumed
that this variation is negligibly small. The actuator force/torque
needed to cause a change in the angular position of the
joints from an unloaded position is

(5)

where is the joint stiffness matrix,
and is the three-dimensional vector of
the change in the joints position. It must be noted that such a
matrix is positive definite and symmetric. Similarly, the force
needed to cause the manipulator end point to experience a small
change in its position is given by

(6)

where is a symmetric 3 3 matrix representing the Carte-
sian stiffness of the manipulator, and is the
vector of the change in the manipulator end point position. The
partial differentiation of (4) with respect to leads to the fol-
lowing relationship:

(7)
For the static case of unloaded manipulator configuration, the

first term on the right-hand side of (7) is zero, and the stiffness
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seen at the end point of the manipulator can be expressed
as

(8)

Equation (8) is the formulation of active stiffness control
[4], which regulates the apparent stiffness of a manipulator
end point in order to control the nominal position of the end
point. Stiffness values are changed in the software to satisfy
the desired position commands. It must be noted that
calculated from (8) is the Cartesian stiffness matrix based
on the conventional stiffness formulation, which neglects the
stiffness component due to external loading and change in
the manipulator configuration.

If any positive definite and symmetric matrix is subjected
to a transformation operation in the form of , the re-
sulting matrix will still be positive definite and symmetric, as
long as the transformation matrix is nonsingular [19]. This
means that the stiffness matrix evaluated from (8) is posi-
tive definite and symmetric. As provided in [7], [20], the matrix
resulting from the first part of (7) is symmetric, but depending
on the external forces/payloads and the configuration of the ma-
nipulator, it can be positive definite or not. With regard to the
second part of (7), the fundamental properties of such as
its definiteness and symmetry are preserved provided that the
Jacobian matrix J is not singular. With this in mind, (7) always
gives a symmetric stiffness matrix , but not necessarily a pos-
itive definite . However, as explained above, the joint stiff-
ness matrix is the natural entity of a robot manipulator and does
not change with the manipulator configuration. Further, it is a di-
agonal and positive definite matrix. Therefore, the fundamental
properties of the Cartesian stiffness matrix can be evaluated for
any existing robot manipulator.

IV. ESTIMATION OF JOINT STIFFNESS

The enhanced stiffness formulation given by (7) differs from
the conventional stiffness formulation in the sense that its first
part stands for the case when the manipulator is externally
loaded and/or the manipulator Jacobian changes with its con-
figuration. This part of (7) completes the conventional joint
stiffness matrix and therefore, we call it the complementary
stiffness matrix , and for a manipulator actuated through
three joints, it can be written as

(9)

where is a 3 1 column vector. From (7), the
complete stiffness matrix of the manipulator in Cartesian space
is obtained as

(10)

The force vector can be a dynamic force or a static force
such as a payload carried by the manipulator. In this study, it is
assumed that it is in the form of . Such a force
vector will generate a deflection of , which
is a positioning error. If the joint stiffness values are iden-
tified accurately using some experimental deflection and force
data, the stiffness can subsequently be calculated from (7)

for any external force vector without needing any other exper-
imental data. By substituting (10) into (6) and solving for
gives

(11)

For a given manipulator configuration where a force vector
causes the deflection vector , (11) is nonlinear with un-

known joint stiffness values, which can be estimated using
a least squares estimation algorithm. Since the stiffness of a
joint is a local property, and the topology of a revolute joint
does not change with the movement of the manipulator, it is
assumed that the stiffness matrix is constant for revolute
jointed manipulators.

A. Nonlinear Least Square

Based on the nonlinear deflection model of the ma-
nipulator expressed with (11), the joint stiffness values are
estimated by minimizing the summed square of the error vector
associated with number of measurements

(12)

where is the error vector given by

(13)

is the measured (true) end point deflection vector under
a range of payloads, and is the deflection vector cal-
culated from (11) for the same payload. This is basically
a nonlinear least square optimization problem that can be
solved using either the interior-reflective Newton method or
Levenburg–Marquardt algorithm. These are two efficient op-
timization algorithms for large-scale nonlinear problems. The
former, which is based on the method of preconditioned con-
jugate gradients, can solve difficult nonlinear problems more
efficiently than the latter [21]. In this study, both algorithms
are implemented for the nonlinear least square estimation of
the parameters. The solutions converged to the same numerical
values. The procedure was realized iteratively until the deflec-
tion error was small enough to meet a termination condition of

.

B. Experimental Setup and Results

The key elements of the experimental setup depicted in
Fig. 2 are the laser tracker, retroreflector, the robot (Motoman
SK120), and a fixture connected to the manipulator end point in
order to exert forces (loads) along the three orthogonal axes of
the manipulator end point. As shown in Fig. 3, a cable-pulley
system was used to generate the needed force vector. The
deadweights in the range of 0–50 kg with 10-kg increments
were suspended to the free end of the cable. The three resulting
force components were measured via a wrist force/torque
sensor. The laser-based dynamic measurement system was
calibrated to measure the manipulator end point with respect to
the manipulator base frame. The manipulator was commanded
to 20 different well-spaced configurations within the manip-
ulator workvolume, which had been determined heuristically
to cover the range of motion of all the active joints of the



558 IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 4, AUGUST 2005

Fig. 2. Experimental setup.

Fig. 3. Schematic of loading setup.

manipulator. The position of the manipulator joints responsible
for the orientation were such that the manipulator end point
was always perpendicular to the ground during the course of
this research. The manipulator position controller is the one
provided by the original equipment manufacturer. In order to
minimize the effects of measurement noise, the PC-based data
measurement and recording system of the laser tracker takes
100 measurements for the same configuration and provides
the average of these measurements as the measurand. For each
selected configuration, first of all, the Cartesian position of the
manipulator end point without payload was recorded by the
laser tracker, and followed by measurements of the Cartesian
position of the manipulator for each level of payload, and finally
the difference between the unloaded and loaded measurements
were taken to obtain the deflection data for that particular force
vector.

Some typical experimental force-deflection curves are de-
picted in Figs. 4–6. It must be noted that the Cartesian stiffness
of the manipulator changes significantly from one configuration
to the other.

The 3 1 error vector in (12) is obtained for each se-
lected configuration, and the resulting is stacked at the end
of the previous ones such that it becomes a vector of

after 20 measurements. This procedure is repeated for each
nonzero loading condition to test the linearity of the manipulator
stiffness matrices and . A good initial guess helps a least

Fig. 4. Force-deflection curve for the configuration of � = �89:3803 ,
� = �62:9809 , � = 21:2489 , � = 0 , � = �111:2492 , � =

�90 .

Fig. 5. Force-deflection curve for the configuration of � = 98:1065 , � =

23:2088 , � = �20:7957 , � = 0 , � = �69:2041 , � = 90 .

square estimation algorithm to converge quickly without expe-
riencing any numerical singularities. Typical stiffness values of

N.mm/rad are chosen as the initial
values. The estimated values of the joint stiffness matrix are
found to be

N.mm/rad, with a residual norm of 2.2106 described by
(12). Different initial values of led to the same joint stiff-
ness values, which are the global solutions. This supports our
assumption that the joint stiffness values are constant and do
not change with the manipulator configuration. The identified
stiffness values have been utilized in evaluating the maximum
and minimum limits of the manipulator stiffness for robotic fiber
placement [22].

C. Stiffness Verification

For three manipulator configurations where a number of ex-
ternal force vectors act at the manipulator end point, the Carte-
sian stiffness matrix is calculated from (10) and subsequently is
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TABLE II
STIFFNESS VERIFICATION RESULTS FOR THREE MANIPULATOR CONFIGURATIONS

Fig. 6. Force-deflection curve for the configuration of � = �13:6727 ,
� = �10:9660 , � = �37:4489 , � = 0 , � = �52:5514 , � =

�90 .

substituted into (6) to obtain the resulting deflection of the ma-
nipulator end point. These deflection data are compared to the
deflection data obtained using the laser-based tracking system.
These results are shown in Table II. It must be noted that the dif-
ference between the calculated and measured data is negligibly
small. This follows that the model utilized for stiffness identi-
fication is valid and effective in estimating the manipulator end
point deflection under an external force vector. It must be noted
that the results given in Table II are to verify the estimated joint
stiffness values, not to compare how accurately both methods
of stiffness formulation predict the deflection of the manipu-
lator end point under an external force vector. Of course, this
criterion could have been used to demonstrate the enhancement
of “enhanced stiffness formulation” over “conventional stiffness
formulation”. This requires that the accuracy and resolution of
the measurement system must be ultrahigh in order to provide
credible results in this respect.

To further verify the experimental results and demonstrate
that the enhanced stiffness formulation is valid, the net work
done in Cartesian space and joint space are calculated for a range
of external forces acting at the manipulator end point for the
same configuration of the manipulator. Based on the conserva-
tion of energy, the external work done by applied loads on an
elastic system in equilibrium is equivalent to the increase in the
internal strain (elastic) energy stored in the system [23]. The
Taylor series expansion of the stored energy leads to the fol-
lowing expression of the net work done by an external force
vector in Cartesian space

(14)

The corresponding work done in joint space can be obtained
by substituting the force and motion relationships, i.e., (3) and
(4), between the Cartesian and joint spaces into (14). is
described by (10). These give the net work done in joint space
as

(15)

For the conventional stiffness formulation, the complimen-
tary stiffness matrix is zero. For a conservative system,
the works done in Cartesian and joint spaces must be equiva-
lent. With this in mind, the resulting works for enhanced and
conventional stiffness formulations are calculated for a number
of manipulator configurations and loading conditions. It has
been found that while the works in Cartesian and joint spaces
are equivalent for the enhanced formulation,1 they are different
for the conventional formulation. The numerical results for the
conventional formulation are depicted in Table III. It must be
noted that depending on the configuration and the magnitude of
loading, the works done in Cartesian and joint spaces are not
equivalent. This obviously demonstrates that the conventional

1Their numerical values are the same as the Cartesian work given in the third
column of Table III. For the sake of brevity, they are not provided.
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TABLE III
WORKS CALCULATED FOR CONVENTIONAL STIFFNESS FORMULATION

stiffness formulation violates the conservation of energy. How-
ever, when the Cartesian stiffness matrix is calculated from (8)
and substituted into (14), the net works in Cartesian and joint
spaces are found to be equivalent. This can be possible only
when either there is no force acting on the manipulator or the Ja-
cobian matrix does not vary with the manipulator configuration.

Please note that the same experimental deflection and force
data are used in calculating the works in Cartesian and joint
spaces using enhanced and conventional formulations. While
the works (Cartesian and joint space) calculated using enhanced
stiffness formulation are precisely equal to each other, the same
works calculated using ‘conventional stiffness modeling’ are
different. It does not matter how small the difference is. The
difference between the Cartesian and joint space works is due
to the formulation, not due to the accuracy/resolution of the
measurement systems used. The difference arises from the com-
plementary stiffness matrix . Obviously, while the enhanced
stiffness modeling satisfies the principle of conservation of
energy, the conventional stiffness does not. This demonstrates
that the conventional stiffness formulation is incomplete and
is valid under certain assumptions.

V. STIFFNESS CHARACTERIZATION

It has been reported [7], [11] that a conservative stiffness ma-
trix in the linear Euclidean space must (i) be symmetric,
and (ii) satisfy the complete differential condition. What we call
the complementary stiffness matrix in this study satisfies these
two criteria—it is a conservative matrix. However, depending
on the configuration of the manipulator and the external force,
its positive definiteness cannot be guaranteed. In this section, we

present a thorough investigation into the properties of the com-
plementary stiffness matrix in order to evaluate under what
conditions the difference matrix is positive definite
or not. is always positive definite as it is a diagonal matrix
with positive elements. As presented in Appendix II, the posi-
tive definiteness of determines that of the Cartesian
stiffness matrix of the manipulator because of a congruence
transformation between and .

There are a number of ways to test the definiteness of a sym-
metric matrix [19]. We adopt the one based on the quadratic
form of a matrix to search the definiteness of the difference
matrix . If the difference matrix is not positive def-
inite (PD), we mean that it is negative definite (ND), negative
semi-definite (NSD), positive semi-definite (PSD), or indefinite
(ID). In such a case, the resulting Cartesian stiffness matrix
is not positive definite, and it leads to an unstable contact or
grip depending on what task the robot manipulator is performing
[24], [25].

Corollary 1: If is negative definite or negative semi-def-
inite, will always be positive definite. From definition
of positive definiteness, is always

for an arbitrary nonzero vector .
Corollary 2: If is positive definite, positive semi-defi-

nite, and indefinite, the positive definiteness of will
depend on the relative values of corresponding elements of
and . The can be positive definite or not.

Assume that both and are 3 3 matrices given by

and
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TABLE IV
RESULTS OF DEFINITENESS TEST FOR MATRIX K FOR EIGHT DIFFERENT LOADING CASES

For a positive definite , the following three condi-
tions (the determinants of the primary minors) have to be satis-
fied simultaneously as follows.

i) .
ii) .
iii)

.

If any of these conditions is not satisfied, will not
be positive definite. This method of testing the definiteness of
a matrix is deliberately followed to quantify the order of the
external forces needed to generate a nonpositive definite

, as numerically demonstrated in Section VI.

VI. COMPUTATIONAL ANALYSIS

The definiteness of the matrix depends on the ma-
nipulator configuration and the magnitude and direction of
the external force vector. For the identified joint stiffness
matrix

N.mm/rad, and a range of external forces acting on the
manipulator, the definiteness of is evaluated numerically.
The manipulator has the motion ranges of ,

, and for its first three
joints. These motion ranges are implemented with a step size
of 0.2 radian or 11.46 . It is assumed that the magnitude of
each component of the force vector is 100 Newton with the
following directions.

1) All of the components , , are positive.
2) All of the components , , are negative.
3) is negative, and are positive.
4) is negative, and are positive.
5) is negative, and are positive.
6) is positive, and are negative.
7) is positive, and are negative.
8) is positive, and are negative.
For the specified conditions and numerical values, the defi-

niteness of and are determined. The definiteness
test results for are shown in Table IV in terms of the
number of positive definite (PD) and nonpositive definite con-
figurations for the eight loading conditions (force application
directions) outlined above. It must be noted that is not

Fig. 7. Variation of the partial derivatives forming C .

always positive definite. However, it has been found that the
difference matrix is always positive definite and
so is for the manipulator considered in this study. This
follows that the energy stored in the system can be released
in a stable manner.

It must be noted from Corollary 2 that when the nonnega-
tive magnitudes of the diagonal elements ( , , ) of

become larger than the corresponding elements of , it is
obvious that can no longer be positive definite, and
neither can . In order to evaluate the limits of the external
forces leading to such a scenario, the components of the partial
derivatives forming the diagonal elements are calculated for the
ranges of motion specified above and are shown in Figs. 7–9 for
the diagonal elements , and , respectively. It must be
noted that the top, middle and bottom plots in these figures cor-
respond to the “Part 1,” “Part 2,” and “Part 3” of the right-hand
side of (16), respectively. This follows that the sum of these parts
represents the magnitude of the diagonal elements ( , ,

) of for a unit force vector

for and (16)
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Fig. 8. Variation of the partial derivatives forming C .

Fig. 9. Variation of the partial derivatives forming C .

With reference to Figs. 7–9 and (16), the forces as large as
10 kN are needed in order to reach and pass the order of the
joint stiffness values identified in Section IV-B. Hence, the con-
straints given in Corollary 2 for a positive definite will
be violated. No robot manipulator can withstand such a force
level. However, it can be argued that an elastic-jointed manip-
ulator will most probably have a nonpositive definite Cartesian
stiffness matrix.

VII. CONCLUSION

We have presented the results and implications of our study
into the enhanced stiffness modeling, identification, and char-
acterization of robot manipulators based on the experimental
data provided by a wrist F/T sensor and a high precision

Cartesian position sensor (laser tracker). The estimated joint
stiffness matrix is verified through a set of experimental de-
flection data. Also, the net work done in Cartesian and joint
spaces by an external force vector are computed for enhanced
and conventional stiffness formulations. It has been proven
that the conventional stiffness formulation does not obey the
principle of conservation of energy. This further demonstrates
that the conventional stiffness formulation is incomplete. Based
on the estimated joint stiffness constants, the limits and con-
ditions of the positive definiteness (stability) of the Cartesian
stiffness matrix are also evaluated. It has been shown that
although the component of the stiffness matrix differentiating
the enhanced stiffness model from the conventional one is not
always positive definite, the resulting stiffness matrix can still
be positive definite. The principal contribution of this study is
that new experimental results supporting the enhanced stiffness
formulation through stiffness identification, verification, and
characterization.

APPENDIX I

With reference to (3), the 3 3 Jacobian matrix of the ma-
nipulator is derived as

(17)

where
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APPENDIX II

Consider pre- and post-multiplying both sides of (10) by a
nonzero arbitrary vector and , respectively

(18)

where , a linear change of variables. If is positive
definite, and so is . This
requires that the difference matrix is also positive
definite. Clearly, the definiteness of determines that
of the Cartesian stiffness matrix , and vice versa.

Alternatively, the positive definiteness of can be
characterized by the difference of two quadratic forms. As is
a diagonal matrix with positive elements on the main diagonal,
its quadratic form is already in a canonical form. If the quadratic
form of the matrix is brought to a canonical form with a
linear change of variables , the definiteness of

can be characterized with the difference of two canonical forms.
This follows that

(19)

It is needed to determine the matrix such that is
diagonal, and hence the quadratic form from (19) will be canon-
ical with new variable . As it is well known [19], if the columns
of are the normalized eigenvectors of , will be
a diagonal matrix such that its diagonal elements are the corre-
sponding eigenvalues of . Hence, the definiteness of the two
canonical forms can be determined from

(20)

where and are the eigenvalues of and , respec-
tively. The reverse transformation can be accomplished from

. The numerical value obtained from (20) using the
eigenvalues of and will indicate whether the difference
matrix is positive definite or not.
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