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Abstract— This study evaluated the effect of change
in background on steady state visually evoked poten-
tials (SSVEP) and steady state motion visually evoked
potentials (SSMVEP) based brain computer interfaces (BCI)
in a small-profile augmented reality (AR) headset. A four
target SSVEP and SSMVEP BCI was implemented using
the Cognixion AR headset prototype. An active (AB) and
a non-active background (NB) were evaluated. The signal
characteristics and classification performance of the two
BCI paradigms were studied.Offline analysiswas performed
using canonical correlation analysis (CCA) and complex-
spectrum based convolutional neural network (C-CNN).
Finally, the asynchronouspseudo-onlineperformance of the
SSMVEP BCI was evaluated. Signal analysis revealed that
the SSMVEP stimulus was more robust to change in back-
ground compared to SSVEP stimulus in AR. The decoding
performance revealed that the C-CNN method outperformed
CCA for both stimulus types and NB background, in agree-
ment with results in the literature. The average offline accu-
racies for W = 1s of C-CNN were (NB vs. AB): SSVEP: 82%
±15% vs. 60% ±21% and SSMVEP: 71.4% ± 22% vs. 63.5%
± 18%. Additionally, for W = 2s, the AR-SSMVEP BCI with
the C-CNN method was 83.3% ± 27% (NB) and 74.1% ±22%
(AB). The results suggest that with the C-CNN method, the
AR-SSMVEP BCI is both robust to change in background
conditions and provides high decoding accuracy compared
to the AR-SSVEP BCI. This study presents novel results
that highlight the robustness and practical application of
SSMVEP BCIs developed with a low-cost AR headset.

Index Terms— Electroencephalography, augmented
reality, brain computer interfaces, SSVEP, SSMVEP.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY based brain computer
interfaces (BCIs) enable humans to establish a direct
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communication pathway between the brain and the external
environment bypassing the peripheral nerves and muscles [1].
Steady state visually evoked potentials (SSVEP) based BCIs
are dependent or reactive BCIs that detect the EEG responses
to a repetitive visual stimuli with different characteristics (e.g.
different frequencies). The BCI can determine which stimulus
occupies the user’s visual attention by detecting the SSVEP
response at the targeted stimulus frequency from the EEG
recorded at the occipital and parieto-occipital cortex. This will
appear as a significant peak at the targeted stimulus frequency
and potentially at its higher order harmonics [2], [3]. The
SSVEP stimuli are most commonly designed as a monochro-
matic object whose intensity is modulated at a fixed frequency,
as a result, it appears as a flashing object to the user. This flash-
ing stimulus can induce visual fatigue and discomfort. As a
consequence, this decreases the overall signal-to-noise ratio
(SNR), decoding performance and interactivity of the BCI.
Recently, an extension of the SSVEP BCI known as steady-
state motion visually evoked potentials (SSMVEP) based BCI
was proposed to address the limitations of the original SSVEP
such as fatigue, visual discomfort and relatively low interactive
performance of the BCI [4], [5]. Different from the flashing
style of SSVEP stimuli, the SSMVEP stimuli are designed
as an equal-luminance black and white radial checkerboard.
The movement of the checkerboard is modulated at a fixed
frequency. Specifically, this movement pattern includes a radial
contraction and expansion of the stimulus. SSMVEP BCIs
share the advantages of SSVEP BCI such as high SNR, high
information transfer rate (ITR) and low participant training
time compared to other types of BCIs [6], [7] while minimiz-
ing SSVEP-related discomfort for operators.

Traditionally, these stimuli are mostly presented on a com-
puter screen and this limits the application scenario of the
system. Moreover, when applied in a real-world environment,
the users would need to shift their visual attention back and
forth between the stimulus presentation on a monitor and
their normal visual field. Recently, affordable virtual real-
ity (VR) and augmented reality (AR) head mounted displays
(HMDs), enable the integration of SSVEP BCIs with AR/VR
and has gained increased attention [8]–[11]. Furthermore, the
minimal setup time and portability of EEG systems make
the AR/VR-based BCIs a promising approach to move BCIs
out of research lab settings and realize practical real-world
applications. Particularly, AR devices allow users to view the
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repetitive visual stimuli and the external surroundings in the
same field of view providing an enhanced user experience.
Several studies have investigated the AR approach based on
using a video see-though (VST) based HMD combined with
SSVEP BCI [8]–[10]. These studies have applied AR-BCI
for applications such as gaming [8], navigation in a 3D
space [9], quadcopter control [10], etc. where the real-world
scene is acquired using a camera placed on top of the HMD
and displayed within the VR environment. The following
studies [12], [13] provide a list of other prior work applying
similar approaches for other types of BCIs. The VST based
HMDs offers only a limited field of view, largely restricted
by the camera. Therefore, optical see-through (OST) based
HMDs are likely an attractive alternative to the VST-HMDs.

Optical see-through (OST) AR devices consist of a semi-
transparent screen or an optical element, and the virtual
contents are directly displayed on the screen, overlaid on the
user’s normal field of view. In [14], the authors implemented
a P300 BCI using an OST-HMD based setup. Furthermore,
the study compared the results of the online P300 BCI
between a computer screen and AR HMD, and reported
similar performance in both settings. Recently, a few studies
have examined and evaluated the design of SSVEP BCIs in
OST-HMD setting [12], [13]. In [12], the authors evaluated
the feasibility of SSVEP BCI in an OST-HMD for a robot
control and navigation task in a three class SSVEP paradigm.
The study implemeted using the Microsoft HoloLens, and
assessed the influence of user movement and target display
strategies with reported BCI perfomance between 75% and
80%. However, no comparisons with baseline methods such
as canonical correlation analysis (CCA) were provided. Users
of the Microsoft HoloLens also stated that the HMD felt heavy
after a while and they could observe reflections which caused
visual discomfort [13].

Another recent study used the Microsoft HoloLens for
SSVEP BCI control of a robotic arm, and compared the
performance with the same on a computer screen [13]. The
study implemented a synchronous eight class SSVEP BCI and
reported a performance of 88% in AR compared to 98% on
a computer screen. One of the limitations discussed by the
authors was related to a dynamically changing surrounding
that affected the stability of the SSVEP responses. The authors
also observed temporal jitters of event triggers that could
impact the performance of synchronous BCI systems.

In a practical condition, it is desirable to enable users to
interact with the BCI in an asynchronous manner whenever
they want. This means the BCI is not dependent on the precise
stimulus timing or predefined time frames [15]. Compared
to a cue-paced or synchronous BCI, asynchronous operation
requires continuous decoding and analysis of the response.
This operation is technically more demanding, but offers a
more natural form of interaction. This consists of two states:
an intentional control (IC) and a no control (NC) state. For
SSVEP/SSMVEP BCIs, the time when the user gazes at the
stimulus is called an IC state. The NC state or rest state is
defined when the user does not gaze at the stimulus. Recently
convolutional neural networks (CNN) based methods are gain-
ing importance in asynchronous classification of SSVEP and

Fig. 1. Experimental setup: a prototype of the Cognixion AR headset
and a participant donning the EEG cap with the AR headset.

SSMVEP BCIs [16]–[18]. These studies have shown that the
CNN based methods significantly outperformed the traditional
classification methods used for SSVEP classification.

In the current study, a novel AR-OST based BCI system
was proposed and attempted to address some of the above
limitations and challenges of current SSVEP systems. A novel
low-cost, light weight AR headset was used in this study.
The SSVEP and SSMVEP paradigms were compared. Further-
more, a novel experiment methodology was designed that used
a stereo video in the background to systematically investigate
the effects of the background on the two types of stimuli
in an offline analysis. Two types of background conditions
were evaluated: an active background (AB) with a stereo
video and a non-active (NB) plain black background. A four
target SSVEP and SSMVEP BCI was designed. The offline
decoding performance of the BCI system was evaluated using
the C-CNN method and compared with the baseline CCA
method for the data processed in an asynchronous manner.
Finally, a pseudo-online analysis was performed to study the
asynchronous performance of the SSMVEP BCI.

The remainder of the paper is organized as follows:
Section II provides the methodological details of the aug-
mented reality interface, stimulus design, EEG setup, experi-
ment protocol, signal analysis and detection methods. Next, the
results of the study are presented in Section III and discussed
in Section IV. Finally, Section V concludes the paper and
provides directions for future work.

II. METHODOLOGY

A. Augmented Reality Interface and EEG Setup

In this study, Cognixion’s AR headset prototype was used
to display the visual stimuli. This is a light-weight optical
see-through shield which is partially reflective. The headset
is designed so that a smart phone can be securely inserted
into its frame and the screen of the phone are reflected on
the see-through shield (see Fig. 1). In this study, the visual
stimuli were implemented in the smartphone and presented
on the screen of the phone, which is in turn presented to the
subject through the AR reflective optical shield. All visual
stimuli were developed in Unity.

The EEG system consisted of g.USBamp and Gammabox
(g.tec Guger Technologies, Austria), and wet electrodes
(g.Scarabeo) were used to acquired EEG signal. The sampling
rate was 1200 Hz. Three active electrodes were placed over
the occipital region: O1, O2, and Oz of the International
10-20 system. FPz was used as the ground and right ear lobe
was used as the reference. The AR headset was carefully
mounted on the participant over the EEG cap. The experimen-
tal setup is illustrated in Figure 1. The details of the complete
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Fig. 2. Stimulus design – (a) SSVEP stimulus presented on a non-active background, (b) SSMVEP stimulus presented on a non-active background
and (c) SSMVEP stimulus presented on an active background (Stereo Video URL: https://youtu.be/2Lq86MKesG4).

experimental protocol will be detailed in subsequent sections.
The experimenter synchronized the stimulus presentation on
the smartphone and data collection on the PC manually by
simultaneously pressing buttons on the PC’s keyboard and a
remote to control the smartphone app. On the PC, the EEG
data was acquired using the OpenViBE software [19] and data
analysis was performed offline in Python.

B. Stimulus Design

Two types of repetitive visual stimuli were compared in
this study under two background conditions. These two stimuli
were the flashing SSVEP stimulus and the radial checkerboard
stimulus. A yellow circular emoji was used to design the
flashing SSVEP stimulus. This type of SSVEP stimulus was
used to provide more realistic and engaging stimulus compared
to the traditional monochromatic colored circular stimulus.
Four visual stimuli corresponding to four different flicker
frequencies were implemented: 8 Hz, 10 Hz, 12 Hz and 15 Hz.
The modulating signal for the stimulation were implemented
based on a sequence of alternating ones and zeros as per [20]
[21]. This stimulus type will be referred to as emoji or SSVEP
stimulus interchangeably in subsequent sections. The stimulus
layout is shown in Figure 2.

The second type of visual stimulus was a radial checker-
board SSMVEP stimulus with repetitive motion. The repet-
itive movement frequencies were: 8 Hz, 10 Hz, 12 Hz and
15 Hz. The checkerboard motion stimulus was implemented
as per [4]. This will be referred to as checkerboard/SSMVEP
stimulus interchangeably. The stimulus layout was consistent
between the SSVEP and SSMVEP stimulus.

Two scenarios were used to simulate active and non-active
background conditions. For the active background, a stereo
video of an urban setting playing at thirty frames per second
was used. The video consisted of a first person view wherein
the camera was mounted in the front of a car navigating
through the streets of a typical busy North American urban
area. The four SSVEP and SSMVEP stimuli were superim-
posed on the stereo video and presented in the foreground
with the video continuously playing in the background. The
video also consisted of navigating turns, stops at traffic lights,
background sound, and movements or pauses at different
points in the video. For both types of stimulus, the starting
frame and the ending frame of the background video was
kept consistent. For the non-active background, a plain black
background was used.

C. Experiments and Data Collection

Twenty six healthy participants (aged 19-41 years) with
normal vision took part in this study. The study received
ethics clearance from the University of Waterloo, Office of
Research Ethics (ORE: #31850). All participants signed a
written informed consent form prior to the start of the exper-
iment. All participants were seated in a comfortable chair
facing a plain dark screen throughout the entire duration of the
experiment. The experiment room was dimly lit with reduced
ambient light. Participants were instructed by the experimenter
to avoid any head movements, clenching of the teeth or eye
blinks during the experiment. At the start of every session, all
visual stimuli in the AR headset were aligned to the center of
the field of view of the participant.

This experimental protocol was designed to study the effect
of the active and non-active background on the performance
of SSVEP and SSMVEP BCI. At the beginning of each trial,
one of the four visual stimuli was highlighted in yellow as a
cue to direct the user’s gaze on the targeted stimulus. The cue
would last for 2 s. Next, the participant was asked to gaze at
the targeted stimulus for 6 s. Finally, 4 s of break period was
provided before the start of the next trial. During the break
period, the video would continue to play in the background
and the visual stimulus were kept still without movement or
flash. Each targeted stimulus was repeated eight times in a
pseudorandom order resulting in a total of 32 trials in one
session. Each participant performed four sessions, each for
one of the four combinations of the two stimulus types (emoji
and checkerboard) and two background conditions (active
and non-active). The background conditions and stimulus
type sequences were also randomized for each participant.
Furthermore, participants were provided a break of 2 minutes
between two sessions.

D. Signal Analysis and Detection

Signal analysis was performed offline to assess the effects of
the active and non-active backgrounds on the actual responses
of the two stimulus types. The data from two participants were
rejected due to poor recording quality which likely was a result
of mechanical stress from the AR-headset strap on the occipital
EEG electrodes. Additional signal quality analysis was per-
formed. The signal-to-noise ratio (SNR) for each participant’s
data was computed and averaged across trials, stimulus types
and background types. Next, those participants’ data whose
SNR was below the 20th percentile of the calculated values
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across all participants were rejected. Using this method, data
from five participants were removed from further analysis and
visual inspection of the spectrum indicated no clear SSVEP
or SSMVEP response in the data. The analysis presented in
the following sections was performed on data collected from
the remaining 19 participants. The influence of the change
in background conditions on the frequency responses of the
stimuli was assessed using the Fast Fourier Transform (FFT)
and SNR for the 6s trials. Canonical correlation analysis
(CCA) was used to analyze the strength of the response from
the multi-channel EEG data. Finally, the decoding perfor-
mance of the SSVEP/SSMVEP BCI was evaluated using CCA
and Complex-spectrum based Convolutional Neural Networks
(C-CNN) [18].

1) Magnitude Spectrum and Signal-to-Noise Ratio (SNR):
The magnitude spectrum was computed from the FFT of the
6s trials at a resolution of 0.1666 Hz. To compare between
stimulus types and background types, the average magnitude
spectrum of the four stimulus frequencies (8 Hz, 10 Hz, 12 Hz
and 15 Hz) were averaged across all participants, trials and
channels (O1, Oz, O2). Next, the SNR was calculated for the
fundamental target frequency of each stimulus type from the
magnitude spectrum. The SNR for each stimulus frequency
f was computed as the ratio of the maximum frequency
amplitude in the band [ f − 0.3 Hz, f + 0.3 Hz] to the mean
amplitude of the band [ f −2 Hz, f −0.3 Hz) and ( f +0.3 Hz,
f + 2 Hz], similar to the method used in [13].

2) Canonical Correlation Analysis (CCA): CCA is most
widely used as a reference method in the analysis of
SSVEP/SSMVEP based BCIs, where the underlying correla-
tion between multi-channel EEG data and a set of reference
templates is estimated [4], [16], [22]–[24]. Consider X as
the multi-channel EEG signal and Y as the set of reference
signals of the same length. Based on the following linear
transformations: x = X T wx and y = Y T wy , CCA is used
to find the wx and wy vectors that maximize the correlation
between x and y by solving:

ρ (x, y)= maxwx ,wy
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where Yn ∈ R
2Nh×Ns are the reference signals, Nh denotes

the number of harmonics of the stimulus frequency fn , Ns

denotes the number of samples, and fs denotes EEG sampling
frequency. In this study, Nh = 2. Finally, the maximum
of ρ corresponding to wx and wy provides the maximum
correlation between the multi-channel EEG and the reference
signals. A high value of ρ indicates a strong SSVEP/SSMVEP
response present in the multi-channel EEG data. For classi-
fication, the canonical features ρ f i were extracted for each

Fig. 3. Convolutional neural network architecture.

segment of the EEG data, and the classification was assigned
as: C = argmax (ρ f i ), i = 1, 2, 3, 4.

In this study, the correlation coefficient was computed on
the multi-channel EEG signal to measure the strength of the
SSVEP/SSMVEP response. For every trial, the correlation
coefficient corresponding to the respective targeted stimulus
frequency was computed using the entire 6s duration of the
signal. As a result, from the data of each participant in
one session, 32 values corresponding to the 32 trials were
calculated.

CCA was also used as the benchmark method to evalu-
ate the decoding performance of the SSVEP/SSMVEP BCIs
compared in this study. Each trial was preprocessed in an
asynchronous manner with a fixed window length (W = [1s,
2s]) and a step size of 0.1 s. The classification accuracy was
determined as the stimulation frequency with the maximum
CCA correlation coefficient.

3) Complex Spectrum Features and Convolutional Neural
Network (C-CNN): A recently proposed method called C-CNN
outperformed a number of user-dependent training methods for
SSVEP BCI and provided higher accuracy for asynchronously
processed data than CCA and CNN using magnitude spectrum
as input [18], [25]. In this study, the C-CNN method was
trained on both the SSVEP and SSMVEP data for stimulus
detection.

All trials were processed in an asynchronous manner with
a fixed window length (W = [1s, 2s]) and a step size of
0.1 s. Window lengths greater than 2 s were not used as
this would considerably affect the speed of the overall BCI
system when applied in real-time. The C-CNN is based on
the concatenation of the real and imaginary parts of the
FFT signal provided as input to the CNN. The network
architecture is illustrated in Figure 3. Similar to the previous
study [18], [25], the complex FFT of the segmented EEG data
was calculated at a resolution of 0.2930 Hz. Next, the real
and imaginary frequency components were extracted along
each channel and concatenated into a single feature vector as:
I = Re(X)||Im(X). As a result, the feature vectors for each
channel were stacked one below the other to form the input
matrix IC−C N N with dimensions Nch × N f c, where Nch = 3
and N f c = 220.

IC−C N N =
⎡
⎢⎣

Re {F FT (xO1)} , Im {F FT (xO1)}
Re {F FT (xOz)} , Im {F FT (xOz)}
Re {F FT (xO2)} , Im {F FT (xO2)}

⎤
⎥⎦ (3)

This method was trained in a user-dependent scenario,
wherein the classifier was trained on data from a single
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participant and tested on the data of the same participant. The
preprocessing step also provided as a data augmentation strat-
egy to increase number of training examples to train the CNN.
An eight-fold stratified cross-validation was performed to
evaluate the performance of the classifier such that there were
no overlapping samples between the train and validation folds.
This is equivalent to a leave one-trial out cross validation. For
W = 1s, each fold consisted of 1456 and 208 segments in
the training and testing set, respectively. For W = 2s, there
were 1176 and 168 segments in the training and testing set,
respectively. Furthermore, the CNN was trained individually
for a single participant for each stimulus type, background
type and window length. The training procedure was similar
to the UD-C-CNN training method described in a previous
study [18]. The total number of trainable parameters were
5482. The CNN was trained on an Intel Core i5-7200 CPU @
2.50 GHz and 8 GB RAM. The categorical cross entropy loss
was used to train the network. The final parameters of the
network were chosen based on the values that provided the
highest classification accuracy across participants and were
chosen as: α = 0.001, momentum = 0.9, D = 0.25,
L = 0.0001, E = 50, and B = 64 where, α was the learning
rate, D was the dropout rate, L was the L2 regularization
constant, E was the number of epochs and B was the batch
size.

E. Statistical Analysis

Statistical analysis was performed to evaluate the strength
of the response measured by the correlation coefficient of
CCA for every stimulus frequency. Additional analysis was
performed to evaluate the effect of different backgrounds on
SSVEP/SSMVEP BCI, using the two decoding methods, CCA
and C-CNN.

First, to assess the influence of background conditions on
the strength of SSVEP/SSMVEP response, a mixed effects
model ANOVA was used. The response variable was the CCA
correlation coefficient computed for every trial for the respec-
tive targeted stimulus frequency. The participant was a random
factor and the following variables were the fixed factors: target
frequency with four levels, stimulus type with two levels and
background type with two levels. The significance level was
fixed as α = 0.05.

Next, a mixed-effect model ANOVA was used to analyze
the effect of background type on the overall classification
accuracy. There were four fixed factors, each with two levels:
window length (W = [1s, 2s]), classification method (CCA,
C-CNN), stimulus type (SSVEP, SSMVEP), background type
(non-active, active). The participant was a random factor and
the classification accuracy was the response variable. The
null hypothesis was that the classification accuracy was same
for all background conditions for both stimulus types. The
significance level was fixed as α = 0.05.

F. Asynchronous SSMVEP IC Versus NC Detection

To evaluate the performance of an asynchronous BCI, the
data was categorized into two states: an intentional control (IC)
state and a no control (NC) state. The 6 s stimulation period

Fig. 4. Asynchronous classification–Intentional control and no control
state.

was considered as the IC state, and the NC state was defined
as the combined duration of the cue and rest period (6 s). This
is illustrated in Figure 4. The data was segmented with a fixed
window (W = [1s, 2s]) and a step size of 100 ms.

The final softmax layer of the C-CNN architecture was
modified to include a fifth NC class, resulting in a total of five
neurons: four IC = (C1, C2, C3, C4) states and one NC = C5
state. The convolutional layers and kernels were kept same as
the four-class architecture. An 8-fold cross-validation scheme
was used to evaluate the IC vs. NC detection. The network
was trained with the categorical cross-entropy loss. The final
parameters of the network were chosen as: α = 0.001,
momentum = 0.9, D = 0.25, L = 0.0001, E = 80,
and B = 40.

G. Pseudo-Online SSMVEP BCI Performance Evaluation

A two class classification result (IC vs. NC) was deduced
from the results of the five class C-CNN. The four target
stimuli predictions were combined into a single category IC
class, and the rest state/NC was the second class. From the
confusion matrices, a true positive (TP) was defined during
the IC state when the participant looked at the target and
the classifier predicted this segment correctly as an IC state.
A false positive (FP) was defined when the classifier predicted
a segment as IC when the true label was the NC state. If the
classifier misclassified an IC state as NC, this was defined
as a false negative (FN). The F1-score and false activation
rate (FAR) were calculated as:

F1 = T P

T P + 0.5 ∗ (F P + F N)
(4)

For practical applications, classifying an IC/active state into
a different active state usually has more negative effect than
classifying it as an inactive class. Therefore, the FAR was
defined as the rate of misclassifications within the different IC
states, i.e. misclassification between one IC state and another
IC state. Consider IC ∈ R

Nc+1×Nc+1 to be the resultant
confusion matrix of the five-class classification, where Nc =
4, is the number of IC states. After normalizing the IC
by the number of test examples in each class, the FAR
per class (Fj ) was defined as per (5). Finally, the average
FAR across all stimulus frequencies was calculated according
to (6):

Fj = 1 − IC j j∑Nc
i=1 IC j i

; j = {1, 2, . . . , Nc} (5)

FAR = 1

Nc

∑Nc

j=1
Fj , j = {1, 2, . . . , Nc} (6)

The trained five class C-CNN from one of the cross-
validation folds was applied in a pseudo-online manner on
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Fig. 5. Average magnitude spectrum of the SSVEP and SSMVEP responses for the four stimulus frequencies (8 Hz, 10 Hz, 12 Hz and 15 Hz) of
the 6s trials averaged across all participants, trials and channels (O1, Oz, O2); background– NB (blue) and AB (red).

the entire training session. Specifically, this was applied in
a continuous decoding scenario which included segments of
data containing the transition segments between IC and NC.
This step emulated an online asynchronous BCI.

III. RESULTS

A. SSVEP/SSMVEP Response Characteristics

Figure 5 illustrates the average magnitude spectrum of the
SSVEP and SSMVEP stimulus under the two background
conditions NB and AB. The inserts in the figure shows a
magnified version of the fundamental stimulus frequencies.
First, the average magnitude spectrum for the SSVEP stim-
ulus clearly indicated the peaks at the targeted fundamental
stimulus frequencies and its corresponding harmonics. Next,
for the SSMVEP stimulus, a prominent peak at the targeted
fundamental frequency was observed for all frequencies, and
no other prominent responses were observed. This is in line
with the results obtained in previous studies for stimuli pre-
sented on a computer screen [4], [26]. These results confirm
that the visual stimuli designed for the proposed optical see-
through AR system elicits the desired SSVEP and SSMVEP
responses.

It can also be observed that the presence of an active
background reduced the amplitude of the response at the fun-
damental frequencies and harmonics for the SSVEP stimulus.
The difference in the amplitudes computed between NB and
AB for each stimulus frequency were: 0.3 μV (8 Hz), 0.86 μV
(10 Hz), 0.44 μV (12 Hz) and 0.43 μV (15 Hz), respectively.
On the other hand, for the SSMVEP stimulus, the difference
in amplitudes of the fundamental frequencies between NB and
AB were: 0.05 μV (8 Hz), 0.19 μV (10 Hz), 0.13 μV (12 Hz)

Fig. 6. CCA coefficients computed across participants, for every trial,
and each targeted frequency. ST – stimulus type.

and 0.09 μV (15 Hz), respectively. The average reduction in
amplitude from NB to AB for all stimulus frequencies were:
28.2% and 8.3% for the SSVEP and SSMVEP responses,
respectively. The average SNR across all participants for the
SSVEP stimulus for NB vs. AB were (dB): 6.75 vs. 5.43
(8 Hz), 8.15 vs. 5.9 (10 Hz), 6.9 vs. 5.32 (12 Hz) and
8.82 vs. 6.7 (15 Hz). On the contrary, the SNR values for the
SSMVEP stimulus were (dB): 5.65 vs. 5.32 (8 Hz), 6.59 vs.
5.77 (10 Hz), 6.11 vs. 6.09 (12 Hz) and 6.02 vs. 6.17 (15 Hz).
The average reduction in SNR between NB and AB across
all frequencies for SSVEP and SSMVEP were 1.75 dB and
0.25 dB, respectively.

B. CCA Coefficients Analysis

The frequency-specific correlation coefficient for every
6s multi-channel EEG trial was computed based on CCA.
Figure 6 summarizes the distribution of the coefficients across
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Fig. 7. Four Class BCI Classification Performance - comparison of the classification accuracies across participants for two stimulus types
(ST – SSVEP vs. SSMVEP) and background types (NB vs. AB) and data lengths (W = [1s, 2s]).

all participants, target frequencies, stimulus types and back-
ground conditions. For the SSVEP/emoji stimulus, active
background resulted in consistently lower CCA coefficients
than the non-active background across all stimulus frequen-
cies. In contrast, for the SSMVEP/checkerboard stimulus,
the magnitude of the CCA coefficients were similar between
the two backgrounds across all stimulus frequencies. This
result is interesting and not expected, and it indicates that the
SSMVEP/checkerboard is less affected by the presence of the
active background. For both stimulus types, the response to
the 15 Hz stimulus was the lowest among the stimulus fre-
quencies selected for this study and is considerably impacted
by the presence of the active background for the SSVEP
stimulus.

Statistical analysis of the influence of background type
on the stimulus responses revealed that all main effects and
two-way interactions were significant (p ≤ 0.01) and no
higher order interaction was significant ( p = 0.107). Post-
hoc analysis with Bonferroni correction was performed to
identify pairwise comparisons between the interaction terms,
specifically the interaction between the stimulus type and
background on the CCA coefficients. For the SSVEP stimulus,
there was a significant influence of the change in active
versus non-active background ( p < 0.001). Whereas for the
SSMVEP stimulus, there was no significant influence of the
change in background on the response/magnitude of CCA
coefficients (p = 1). These results confirm the observation
above: SSMVEP/checkerboard stimulus is more robust and
less influenced by the change in background compared to the
SSVEP stimulus. Further, frequency specific analysis revealed
that, for SSVEP stimulus, the CCA coefficients from the
active background were significantly lower than non-active
background for 10 Hz, 12 Hz and 15 Hz (p < 0.001). Only
for the stimulus of 8 Hz, there was no significant difference
in CCA coefficients ( p = 0.158). For the SSMVEP stimulus,
on the contrary, no significant effect of background was found
for all frequencies (p = 1).

C. Offline 4-Target BCI Classification Results
Figure 7 presents the overall decoding performance of

the four target SSVEP/SSMVEP BCIs using the two detec-
tion methods. Evidently, the C-CNN outperformed the CCA
method for all conditions. For the case of W = 1s, the median

Fig. 8. IC vs. NC detection performance of asynchronous SSMVEP
BCI compared between offline (left) and pseudo-online (right) analysis
of F1-score (a-b) and False activation rate (c-d).

accuracies of SSVEP-C-CNN decreased 22% from the NB
condition to the AB condition (from 82% ± 15% to 60% ±
21%), indicating the performance of SSVEP is significantly
affected by the background stimuli. In contrast, the average
accuracies of SSMVEP-C-CNN changed less than 8% from
the NB condition to the AB condition (from 71.4% ± 22% to
63.5% ± 18%), 2/5 of the change observed in SSVEP. With a
wider processing window (W = 2s), the median accuracies
of SSVEP-C-CNN decreased approximately 19% from the
NB condition to the AB condition (from 86.9% ± 14% to
67.8% ± 24%), while the corresponding accuracy change of
SSMVEP-C-CNN was less than 9% (from 83.3% ± 27% to
74.1% ± 22%). The impact of change in background is higher
for SSVEP responses compared to SSMVEP. Moreover, the
C-CNN results for SSMVEP also illustrate the consistent inter-
subject variability compared to SSVEP.
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Fig. 9. Temporal evolution of the pseudo-online C-CNN classifier of IC and NC states on a single participant’s data for NB (top) and AB (bottom)
and W = [1s, 2s]. The average EEG spectrogram computed across channels O1, O2 and Oz; the true and predicted labels.

The above relative higher robustness of SSMVEP over
SSVEP is further confirmed by the statistical analysis. The
mixed-effects model ANOVA revealed that all main effects
were significant (p < 0.001). Two-way interactions between
stimulus type and background type (p < 0.001), and back-
ground type and algorithm (p = 0.032) was significant.
No other interactions were significant. Post-hoc simultaneous
comparisons of the interaction term with Bonferroni correction
revealed that for SSVEP stimulus type, the background has
a significant effect on the accuracy (p < 0.001); for the
SSMVEP stimulus type, the influence of the background type
was not significant (p = 1). Further, there was no significant
difference between the SSVEP-AB versus SSMVEP-NB (p =
1) and SSVEP-AB versus SSMVEP-AB (p = 1) across both
detection methods. The C-CNN as significantly higher than
CCA under NB condition for both SSVEP (p = 0.013) and
SSMVEP (p = 0.016). Again, these results confirmed that the
SSMVEP BCI is more robust to changes in background.

D. Asynchronous IC Vs. NC SSMVEP BCI Results
Figure 8a and 8c illustrate the average offline F1-score and

FAR calculated based on the eight-fold cross-validation proce-
dure for the SSMVEP BCI. On the other hand, Figure 8b and
8d illustrate the pseudo-online performance of the SSMVEP
BCI calculated on the entire session. The average F1 scores
for offline vs. pseudo-online for W = 1s were [NB, AB]:
[0.68±0.15, 0.66±0.13] vs. [0.78±0.09, 0.74±0.13], respec-
tively. For W = 2s, offline vs. pseudo-online was [NB,
AB]: [0.71±0.17, 0.7±0.16] vs. [0.82±0.07, 0.79±0.07],

respectively. As observed previously, the change in back-
ground does not influence the F1 score. An average increase
of 5% in F1-score can be observed for W = 2s compared
to W = 1s. The average FAR for offline vs. pseudo-online
for W = 1s were [NB, AB]: [0.36±0.22, 0.37±0.13] vs.
[0.24±0.21, 0.23±0.18], respectively. For W = 2s, offline
vs. pseudo-online was [NB, AB]: [0.31± 0.27, 0.3±0.22] vs.
[0.17±0.2, 0.17±0.2], respectively. An average reduction of
6% in FAR can be achieved for W = 2s compared to W =
1s. The pseudo-online performance was analyzed further.

Figure 9 presents an example of the temporal evolution of
the pseudo-online C-CNN predictions on the sessions between
2.5 and 4 minutes from the start of the session. The true
and predicted labels are shown along with the average EEG
spectrogram calculated across O1, O2 and Oz channels. A high
similarity can be observed between the true and predicted
labels for both background conditions. For W = 2s, reduced
number of false positives and false activations are observed.
The misclassifications are mostly observed in the transition
regions i.e. at the onset and offset of the stimulation period.

Further investigation was performed to quantify these errors.
Two regions were defined: a steady-state (SS) and a transition
state (TS) region. The time period between 0.5 s and 5.5 s from
the onset and offset of the stimulation period was identified
as SS. TS was defined as a 1 s window centered at the onset
and offset of the stimulation period. Figure 10 presents the
F1-score and FAR calculated in the SS and TS regions. It can
be observed that the average FAR is higher in the TS (0.37)
compared to the SS (0.18) for all cases. Besides, the average
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Fig. 10. Pseudo-online transition state (TS) and steady-state (SS): false
activation rate (top) and F1-score (bottom).

F1-score was higher in the SS (0.82) compared to the TS (0.6)
for W = [1s, 2s] and background conditions.

IV. DISCUSSIONS AND CONCLUSION

To the authors’ best knowledge, this is the first study to use
a novel optical see-through reflective AR headset to present the
SSVEP and SSMVEP stimulus. The visual stimuli were pre-
sented on the screen of the phone, which was in turn presented
to the user through the AR reflective optical shield. It was
important to understand and evaluate the EEG responses to the
visual stimulus presented in this manner. Evidently, for both
SSVEP and SSMVEP stimulus, the spectral analysis revealed
the presence of a prominent peak at the fundamental frequency
and its harmonics (see Figure 5). Therefore, the proposed
AR-OST system is a good candidate for the implementation
of SSVEP/SSMVEP BCIs in AR.

The current study investigated the SSVEP/SSMVEP
AR-BCI in a complex and dynamically changing background,
similar to the operational environment of real-world applica-
tions. The results indicated that the presence of the active
background in AR, acting as competing stimuli with BCI
stimuli, significantly influenced the subjects’ responses to both
paradigms of visual stimuli, consequently the overall decoding
performance of both BCIs. However, it is evident that the
SSMVEP stimulus was significantly less affected by the active
background than the SSVEP stimulus.

A. SSVEP/SSMVEP Spectral Analysis
The spectral analysis and CCA coefficient analysis revealed

that the reduction in amplitude due to the active background
was higher for the SSVEP stimulus (28.2%) compared to
the SSMVEP stimulus (8.3%). One of the reasons for the
reduction in the amplitude due to the active background
could be attributed to the presence of competing stimuli
in the background. Previous studies have shown that when
multiple flickering visual stimuli are placed in the same

visual field, they compete for neural representations. This
is called the effect of competing stimuli [27]–[29]. In the
current study, we presented a complex and dynamically chang-
ing stereo video simultaneously in the background of the
SSVEP/SSMVEP stimulus. Therefore, it is possible that vari-
ous visual elements in the background video interfere or com-
pete for neural representations leading to the decrease in the
overall robustness of the SSVEP stimulus. In a recent study,
the authors reported a reduction in amplitude of the SSVEP
response due to visual distractors compared to no distractors
when stimuli were presented on a computer screen [30]. Our
analysis provided a similar result for SSVEP stimuli presented
on an AR device. On the other hand, there was no reduction in
the magnitude of the response for the SSMVEP/checkerboard
stimulus when the active background was introduced. This is
a particularly interesting result as it shows that the SSMVEP
stimulus is more robust even in the presence of competing
stimuli in the background.

Next, the reason for the reduction in the amplitude of
the response for both stimulus types can be attributed to an
increase in visual and mental load in the presence of an active
background. A previous study reported that the mental load
induced by the flickering stimulus was significantly higher
than the checkerboard stimulus [31]. Moreover, the results pre-
sented in the current study showed that there was reduction in
the SSMVEP amplitude response, but this was not significantly
different in the presence of an active competing background.
This is likely due to the reduction in attentional demands
by the SSMVEP stimulus in general, therefore, leading to
higher performance compared to SSVEP stimuli. Another
recent study using an optical-see-through HMD, reported a
similar result of reduction in the SNR of SSVEP amplitudes
in a robotic arm control task and speculated the reason to
be due to attention drift in a dynamic background environ-
ment[13]. This observation was systematically analyzed and
evaluated in our current study. Additionally, we show that the
SSMVEP stimulus provides robust offline performance and is
less susceptible to change of background conditions.

B. Four-Class Offline BCI Decoding Performance
The offline decoding performance for the asynchronous

four-class AR-SSVEP BCI under the non-active background
and 1 second window length was 82% ± 15% with the
C-CNN method. This is similar to the previously reported
synchronous SSVEP BCI with see-through AR (87.68% ±
7.67%) [13]. In the prior study [13], the dynamic background
was a robotic arm control tasks, and the authors’ reported an
accuracy of 75.55% ± 5.9% with such a dynamic background.
In comparison, the accuracy was 67.8% ± 4.8%. Although
there are differences such as AR interface, stimulus design,
number of stimuli, synchronous versus asynchronous process-
ing and detection methods, the drop in SSVEP performance
in the current study was in agreement with the prior study on
SSVEP with see-through AR system, confirming the relevance
of the current study with respect to the state-of-the-art in the
literature. Furthermore, the reduction in performance can be
attributed to a lower SNR of the responses when transitioning
from a computer screen (CS) to AR interface. A 10% drop
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in SSVEP accuracy was reported by a prior study between
CS and AR displays[13]. Besides, we observe that including
an AB in AR further reduces the overall performance of the
SSVEP BCI. This is likely due to the effect of competing
stimuli from the AB as explained previous section. Moreover,
to the authors’ best knowledge, this is the first study to evaluate
the SSMVEP BCI performance in AR under changing back-
ground conditions. The AR-SSMVEP BCI achieved offline
decoding performances of (NB): 71.4% ± 22% and (AB):
63.5% ± 18% for W = 1 s, 83.3% ± 27% (NB) and 74.1%
± 22% (AB) for W = 2 s with the C-CNN method.

C. Pseudo-Online Asynchronous
SSMVEP BCI Performance

The asynchronous pseudo-online SSMVEP BCI using the
C-CNN approach can provide high decoding performance that
does not require to be precisely synchronized to the onset of
the stimulus. Additionally, it was shown to be robust to the
change in background conditions. A difference in the perfor-
mance between the SS and TS was observed which can be
attributed to the method of segmentation and training. As these
transition windows (TS) were not seen by the classifier at the
training phase, these regions were misclassified in the pseudo-
online testing phase. The windows in the TS contain a mixture
of the SS and TS data, therefore making it a challenge to label
such windows. This scenario closely resembles the errors that
would likely occur in an online system. One simple solution
can be to increase the detection window length, as shown,
it can reduce the errors and enhance the overall performance.
Future studies can investigate other methods to enhance the
TS performance.

D. Practical Considerations

This study evaluated the AR-SSVEP/SSMVEP BCI system
based on practical considerations. The stereo video or dynam-
ically changing environment, which was presented with the
optical see-through HMD, was selected to simulate real-life
environmental conditions as much as possible, given a labora-
tory setting. Furthermore, the novel optical-see through HMD
used in this study was the AR headset prototype by Cognixion
which is relatively low-cost and easy to use compared to other
AR HMD devices [13]. A stimulus such as the SSMVEP
stimuli, which causes less visual fatigue, is shown to be
robust against active backgrounds. The minimal BCI system
design with only three EEG channels O1, O2, Oz, and short
experimental protocol offers a fast and simple setup and
calibration. Future studies can also explore the performance
of the presented system in an online SSMVEP BCI setting
under different dynamic background conditions.

E. Conclusion

In this study, in-depth analysis and comparisons of SSVEP
and SSMVEP responses in AR were performed under two
types of background conditions: a non-active plain black
background (NB) and an active background (AB). The results
of the analysis clearly demonstrated that the SSMVEP is more

robust than SSVEP in the presence of dynamic background
stimuli. This feature of SSMVEP is a key advantage when
considering practical application of BCIs, and can provide
a high and consistent decoding performance when deployed
with an affordable OST-AR headset. The simple design, small
profile, low setup complexity, short calibration time, and high
decoding performance positions the proposed system as an
attractive reactive BCI for practical applications. In conclusion,
this study serves as a key extension to the current literature
on SSVEP and SSMVEP BCIs in AR, and provide novel
approaches to support prospective BCI paradigms and system
designs.
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