
Enhanced Target Collision Resistant Hash

Functions Revisited�

Mohammad Reza Reyhanitabar, Willy Susilo, and Yi Mu

Centre for Computer and Information Security Research,
School of Computer Science and Software Engineering

University of Wollongong, Australia
{rezar, wsusilo, ymu}@uow.edu.au

Abstract. Enhanced Target Collision Resistance (eTCR) property for
a hash function was put forth by Halevi and Krawczyk in Crypto 2006,
in conjunction with the randomized hashing mode that is used to re-
alize such a hash function family. eTCR is a strengthened variant of
the well-known TCR (or UOWHF) property for a hash function family
(i.e. a dedicated-key hash function). The contributions of this paper are
twofold. First, we compare the new eTCR property with the well-known
collision resistance (CR) property, where both properties are considered
for a dedicated-key hash function. We show there is a separation between
the two notions, that is in general, eTCR property cannot be claimed to
be weaker (or stronger) than CR property for any arbitrary dedicated-key
hash function. Second, we consider the problem of eTCR property pre-
serving domain extension. We study several domain extension methods
for this purpose, including (Plain, Strengthened, and Prefix-free) Merkle-
Damg̊ard, Randomized Hashing (considered in dedicated-key hash set-
ting), Shoup, Enveloped Shoup, XOR Linear Hash (XLH), and Linear
Hash (LH) methods. Interestingly, we show that the only eTCR preserv-
ing method is a nested variant of LH which has a drawback of having
high key expansion factor. Therefore, it is interesting to design a new
and efficient eTCR preserving domain extension in the standard model.

Keywords: Hash Functions, CR, TCR, eTCR, Domain Extension.

1 Introduction

Cryptographic hash functions are widely used in many cryptographic schemes,
most importantly as building blocks for digital signature schemes and message
authentication codes (MACs). Their application in signature schemes follow-
ing hash-and-sign paradigm, like DSA, requires the collision resistance (CR)
property. Contini and Yin [5] showed that breaking the CR property of a hash
function can also endanger security of the MAC schemes, which are based on
the hash function, such as HMAC. Despite being a very essential and widely-
desirable security property of a hash function, CR has been shown to be a very
� The full version of this paper is available from [18].

O. Dunkelman (Ed.): FSE 2009, LNCS 5665, pp. 327–344, 2009.
c© International Association for Cryptologic Research 2009



328 M.R. Reyhanitabar, W. Susilo, and Y. Mu

strong and demanding property for hash functions from theoretical viewpoint
[22, 4, 17] as well as being a practically endangered property by the recent ad-
vances in cryptanalysis of widely-used standard hash functions like MD5 and
SHA-1 [25, 24]. In response to these observations in regard to the strong CR
property for hash functions and its implication on the security of many applica-
tions, recently several ways out of this uneasy situation have been proposed.

The first approach is to avoid relying on the CR property in the design of
new applications and instead, just base the security on other weaker than CR
properties like Target Collision Resistance (“Ask less of a hash function and it
is less likely to disappoint! ” [4]). This is an attractive and wise methodology in
the design of new applications using hash functions, but unfortunately it might
be of limited use to secure an already implemented and in-use application, if
the required modifications are significant and hence prohibitive (and not cost
effective) in practice.

The second approach is to design new hash functions to replace current en-
dangered hash function standards like SHA-1. For achieving this goal, NIST has
started a public competition for selecting a new secure hash standard SHA-3 to
replace the current SHA-1 standard [15]. It is hoped that new hash standard will
be able to resist against all known cryptanalysis methods, especially powerful
statistical methods like differential cryptanalysis which have been successfully
used to attack MD5, SHA-1 and other hash functions [25, 24, 23].

Another methodology has also recently been considered as an intermedi-
ate step between the aforementioned two approaches in [10, 9]. This approach
aims at providing a “safety net” by fixing the current complete reliance on en-
dangered CR property without having to change the internals of an already
implemented hash function like SHA-1 and instead, just by using the hash func-
tion in some black-box modes of operation. Based on this idea, Randomized
Hashing mode was proposed in [10] and announced by NIST as Draft SP 800-
106 [16]. In a nutshell, Randomized Hashing construction converts a keyless
hash function H (e.g. SHA-1) to a dedicated-key hash function H̃ defined as
H̃K(M) = H(K||(M1 ⊕ K)|| · · · ||(ML ⊕ K)), where H is an iterated Merkle-
Damg̊ard hash function based on a compression function h. (M1|| · · · ||ML is the
padded message after applying strengthening padding.) Note that Randomized
Hashing keys the entire iterated hash function H at once, by using it as a black-
box function and just preprocessing the input message M with the key K (i.e.
the random salt).

Although the main motivation for the design of a randomized hashing mode
in [10] was to free reliance on collision resistance assumption on the underlying
hash function (by making off-line attacks ineffective by using a random key), in
parallel to this aim, a new security property was also introduced and defined for
hash functions, namely enhanced Target Collision Resistance (eTCR) property.
Having H̃ as the first example of a construction for eTCR hash functions in
hand, we also note that an eTCR hash function is an interesting and useful
new primitive. In [10], the security of the specific example function H̃ in eTCR
sense is based on some new assumptions (called c-SPR and e-SPR) about keyless



eTCR Hash Functions Revisited 329

compression function h. However, this example function H̃, may be threatened as
a result of future cryptanalysis results, but the notion of eTCR hashing will still
remain useful independently from this specific function. By using an eTCR hash
function family {HK} in a hash-and-sign digital signature scheme, one does not
need to sign the key K used for the hashing. It is only required to sign HK(M)
and the key K is sent in public to the verifier as part of the signed message [10].
This is an improvement compared to using a TCR (UOWHF) hash function
family where one needs to sign HK(M)||K [4].

Our Contributions
Our aim in this paper is to investigate the eTCR hashing as a new and inter-
esting notion. Following the previous background on the CR notion, the first
natural question that arises is whether eTCR is weaker than CR in general. It is
known that both CR and eTCR imply TCR property (i.e. are stronger notions
than TCR) [14, 20, 10], but the relation between CR and eTCR has not been
considered yet. As our first contribution in this paper, we compare the eTCR
property with the CR property, where both properties are considered formally
for a dedicated-key hash function. We show that there is a separation between
eTCR and CR notions, that is in general, eTCR property cannot be claimed to
be weaker (or stronger) than CR property for any arbitrary dedicated-key hash
function. Although our separation result does not rule out the possibility of de-
signing specific dedicated-key hash functions in which eTCR might be easier to
achieve compared to CR, it emphasizes the point that any such a construction
should explicitly show that this is indeed the case.

As our second contribution, we consider the problem of eTCR preserving do-
main extension. Assuming that one has been able to design a dedicated-key
compression function which possesses eTCR property, the next step will be how
to extend its domain to obtain a full-fledged hash function which also provably
possesses eTCR property and is capable of hashing any variable length mes-
sage. In the case of CR property the seminal works of Merkle [12] and Damg̊ard
[7] show that Merkle-Damg̊ard (MD) iteration with strengthening (length in-
dicating) padding is a CR preserving domain extender. Analysis and design of
(multi-)property preserving domain extenders for hash function has been re-
cently attracted new attention in several works considering several different se-
curity properties, such as [4, 3, 2, 1]. We investigate eight domain extension
transforms for this purpose; namely Plain MD [12, 7], Strengthened MD [12, 7],
Prefix-free MD [6, 11], Randomized Hashing [10] (considered in dedicated-key
hash setting), Shoup [21], Enveloped Shoup [2], XOR Linear Hash (XLH) [4],
and a variant of Linear Hash (LH) [4] methods. Interestingly, we show that the
only eTCR preserving method among these methods is a nested variant of LH
(defined based on a variant proposed in [4]) which has the drawback of hav-
ing high key expansion factor. The overview of constructions and the properties
they preserve are shown in Table 1. The symbol “�” means that the notion
is provably preserved by the construction; “×” means that it is not preserved.
Underlined entries related to eTCR property are the results shown in this paper.



330 M.R. Reyhanitabar, W. Susilo, and Y. Mu

Table 1. Overview of constructions and the properties they preserve

Scheme CR TCR eTCR

Plain MD × [12, 7] × [4] ×
Strengthened MD �[12, 7] × [4] ×
Prefix-free MD × [2] × [2] ×
Randomized Hashing �[1] × [1] ×
Shoup �[21] �[21] ×
Enveloped Shoup �[2] �[2] ×
XOR Linear Hash (XLH) �[1] �[4] ×
Nested Linear Hash (LH) �[4] �[4] �

2 Preliminaries

2.1 Notations

If A is a probabilistic algorithm then by y
$← A(x1, · · · , xn) it is meant that y is

a random variable which is defined from the experiment of running A with inputs
x1, · · · , xn and assigning the output to y. To show that an algorithm A is run
without any input (i.e. when the input is an empty string) we use the notation

y
$← A(). By time complexity of an algorithm we mean the running time, relative

to some fixed model of computation (e.g. RAM) plus the size of the description of

the algorithm using some fixed encoding method. If X is a finite set, by x
$← X it

is meant that x is chosen from X uniformly at random. Let x||y denote the string
obtained from concatenating string y to string x. Let 1m and 0m, respectively,
denote a string of m consecutive 1 and 0 bits. For a binary string M , let M1...n

denote the first n bits of M , |M | denote its length in bits and |M |b � �|M |/b�
denote its length in b-bit blocks. For a positive integer m, let 〈m〉b denotes binary
representation of m by a string of length exactly b bits. If S is a finite set we denote
size of S by |S|. The set of all binary strings of length n bits (for some positive
integer n) is denoted as {0, 1}n, the set of all binary strings whose lengths are
variable but upper-bounded by N is denoted by {0, 1}≤N and the set of all binary
strings of arbitrary length is denoted by {0, 1}∗.

2.2 Two Settings for Hash Functions

In a formal study of cryptographic hash functions and their security notions,
two different but related settings can be considered. The first setting is the tra-
ditional keyless hash function setting where a hash function refers to a single
function H (e.g. H=SHA-1) that maps variable length messages to fixed length
output hash value. In the second setting, by a hash function it is meant a family
of hash functions H : K ×M → {0, 1}n, also called a dedicated-key hash func-
tion [2], which is indexed by a key space K. A key K ∈ K acts as an index to
select a specific member function from the family and often the key argument
is denoted as a subscript, that is HK(M) = H(K, M), for all M ∈ M. In a



eTCR Hash Functions Revisited 331

formal treatment of hash functions and the study of relationships between dif-
ferent security properties, one should clarify the target setting, namely whether
keyless or dedicated-key setting is considered. This is worth emphasizing as some
security properties like TCR and eTCR are inherently defined and make sense
for a dedicated-key hash function [20, 10]. Regarding CR property there is a
well-known foundational dilemma, namely CR can only be formally defined for
a dedicated-key hash function, but it has also been used widely as a security as-
sumption in the case of keyless hash functions like SHA-1. We will briefly review
this formalization issue for CR in Subsection 2.3 and for a detailed discussion
we refer to [19].

2.3 Definition of Security Notions: CR, TCR and eTCR

In this section, we recall three security notions directly relevant to our discussions
in the rest of the paper; namely, CR, TCR, and eTCR, where these properties are
formally defined for a dedicated-key hash function. We also recall the well-known
definitional dilemma regarding CR assumption for a keyless hash function.

A dedicated-key hash function H : K ×M→ {0, 1}n is called (t, ε)-x secure,
where x ∈ {CR, TCR, eTCR} if the advantage of any adversary, having time
complexity at most t, is less than ε, where the advantage of an adversary A, de-
noted by Advx

H(A), is defined as the probability that a specific winning condition
is satisfied by A upon finishing the game (experiment) defining the property x.
The probability is taken over all randomness used in the defining game as well as
that of the adversary itself. The advantage functions for an adversary A against
the CR, TCR and eTCR properties of the hash function H are defined as fol-
lows, where in the case of TCR and eTCR, adversary is denoted by a two-stage
algorithm A = (A1, A2):

AdvCR
H (A) = Pr

{
K

$← K; (M, M ′) $← A(K) : M 
= M ′ ∧ HK(M) = HK(M ′)
}

AdvTCR
H (A) = Pr

⎧⎪⎨
⎪⎩

(M, State) $← A1();

K
$← K; : M 
= M ′ ∧ HK(M) = HK(M ′)

M ′ $← A2(K, State);

⎫⎪⎬
⎪⎭

AdveTCR
H (A) = Pr

⎧
⎪⎨
⎪⎩

(M, State) $← A1(); (K, M) 
= (K ′, M ′)

K
$← K; : ∧

(K ′, M ′) $← A2(K, State); HK(M) = HK′(M ′)

⎫
⎪⎬
⎪⎭

CR for a Keyless Hash Function. Collision resistance as a security property
cannot be formally defined for a keyless hash function H : M → {0, 1}n. In-
formally, one would say that it is “infeasible” to find two distinct messages M
and M ′ such that H(M) = H(M ′). But it is easy to see that if |M| > 2n (i.e.
if the function is compressing) then there are many colliding pairs and hence,
trivially there exists an efficient program that can always output a colliding
pair M and M ′, namely a simple one with M and M ′ included in its code. That
is, infeasibility cannot be formalized by an statement like “there exists no effi-
cient adversary with non-negligible advantage” as clearly there are many such



332 M.R. Reyhanitabar, W. Susilo, and Y. Mu

adversaries as mentioned before. The point is that no human being knows such
a program [19], but the latter concept cannot be formalized mathematically.
Therefore, in the context of keyless hash functions, CR can only be treated as
a strong assumption to be used in a constructive security reduction following
human-ignorance framework of [19]. We will call such a CR assumption about
a keyless hash function as keyless-CR assumption to distinguish it from for-
mally definable CR notion for a dedicated-key hash function. We note that as a
result of recent collision finding attacks, it is shown that keyless-CR assumption
is completely invalid for MD5 [25] and theoretically endangered assumption for
SHA-1 [24].

3 eTCR Property vs. CR Property

In this Section, we show that there is a separation between CR and eTCR,
that is none of these two properties can be claimed to be weaker or stronger
than the other in general in dedicated-key hash function setting. We emphasize
that we consider relation between CR and eTCR as formally defined properties
for a dedicated-key hash function following the methodology of [20]. The CR
property considered in this section should not be mixed with the strong keyless-
CR assumption for a keyless hash function.

3.1 CR � eTCR

We want to show that the CR property does not imply the eTCR property.
That is, eTCR as a security notion for a dedicated-key hash function is not
weaker than the CR property. This is done by showing as a counterexample, a
dedicated-key hash function which is secure in CR sense but completely insecure
in eTCR sense.

Lemma 1 (CR does not imply eTCR). Assume that there exists a dedicated-
key hash function H : {0, 1}k×{0, 1}m → {0, 1}n which is (t, ε)−CR. Select (and
fix) an arbitrary message M∗ ∈ {0, 1}m and an arbitrary key K∗ ∈ {0, 1}k (e.g.
M∗ = 1m and K∗ = 1k). The dedicated-key hash function G : {0, 1}k×{0, 1}m →
{0, 1}n shown in this lemma is (t′, ε′)−CR, where t′ = t−cTH and ε′ = ε+2−k,
but it is completely insecure in eTCR sense. TH denotes the time for one com-
putation of H and c is a small constant.

GK(M) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M∗
1···n if M = M∗ ∨

K = K∗ (1)

HK(M∗) if M 
= M∗ ∧
K 
= K∗ ∧

HK(M) = M∗
1···n (2)

HK(M) otherwise (3)

The proof is valid for any arbitrary selection of parameters M∗ ∈ {0, 1}m and
K∗ ∈ {0, 1}k, and hence, this construction actually shows 2m+k such counterex-
ample functions, which are CR but not eTCR.



eTCR Hash Functions Revisited 333

Proof. Let’s first demonstrate that G as a dedicated-key hash function is not
secure in eTCR sense. This can be easily shown by the following simple adversary
A = (A1, A2) playing eTCR game against G. In the first stage of eTCR attack,
A1 outputs the target message as M = M∗. In the second stage of the attack,
A2, after receiving the first randomly selected key K (where K

$← {0, 1}k),
outputs a different message M ′ 
= M∗ and selects the second key as K ′ = K∗.
It can be seen easily that the adversary A = (A1, A2) wins the eTCR game, as
M ′ 
= M∗ implies that (M∗, K) 
= (M ′, K∗) and by the construction of G we
have GK(M∗) = GK∗(M ′) = M∗

1···n; that is both of the conditions for winning
eTCR game are satisfied. Therefore, the hash function family G is completely
insecure in eTCR sense.

To complete the proof, we need to show that the hash function family G
inherits the CR property of H . This is done by reducing CR security of G to that
of H . Let A be an adversary that can win CR game against G with probability
ε′ using time complexity t′. We construct an adversary B against CR property
of H with success probability of at least ε = ε′−2−k (≈ ε′, for large k) and time
t = t′ + cTH as stated in the lemma. The construction of B and the complete
analysis can be found in the full version of this paper in [18]. �

3.2 eTCR � CR

We want to demonstrate that the eTCR property does not imply the CR prop-
erty. That is, the CR property as a security notion for a dedicated-key hash
function is not a weaker than the eTCR property. This is done by showing as
a counterexample, a dedicated-key hash function which is secure in eTCR sense
but completely insecure in CR sense.

Lemma 2 (eTCR does not imply CR). Assume that there exists a dedicated-
key hash function H : {0, 1}k × {0, 1}m → {0, 1}n, where m > k ≥ n, which is
(t, ε)− eTCR. The dedicated-key hash function G : {0, 1}k × {0, 1}m → {0, 1}n
shown in this lemma is (t′, ε′) − eTCR, where t′ = t − c, ε′ = ε + 2−k+1, but it
is completely insecure in CR sense. (c is a small constant.)

GK(M) =
{

HK(0m−k||K) if M = 1m−k||K
HK(M) otherwise

Proof. We firstly demonstrate that G as a dedicated-key hash function is not
secure in CR sense. This can be easily shown by the following simple adversary
A that plays CR game against G. On receiving the key K, the adversary A
outputs two different messages as M = 1m−k||K and M ′ = 0m−k||K and wins
the CR game as we have GK(1m−k||K) = HK(0m−k||K) = GK(0m−k||K).

It remains to show that that G indeed is an eTCR secure hash function
family. Let A = (A1, A2) be an adversary which wins the eTCR game against
G with probability ε′ and using time complexity t′. We construct an adversary
B = (B1, B2) which uses A as a subroutine and wins eTCR game against H
with success probability of at least ε = ε′ − 2−k+1(≈ ε′, for large k) and having



334 M.R. Reyhanitabar, W. Susilo, and Y. Mu

time complexity t = t′ + c where small constant c can be determined from the
description of algorithm B. The description of the algorithm B and the complete
analysis can be found in the full version of this paper in [18]. �

3.3 The Case for Randomized Hashing

Randomized Hashing method is a simple method to obtain a dedicated-key hash
function H̃ : K ×M → {0, 1}n from an iterated (keyless) hash function H as
H̃(K, M) � H

(
K||(M1⊕K)|| · · · ||(ML⊕K)

)
, where K = {0, 1}b and H itself is

constructed by iterating a keyless compression function h : {0, 1}n+b → {0, 1}n
and using a fixed initial chaining value IV. The analysis in [10] reduces the
security of H̃ in eTCR sense to some assumptions, called c-SPR and e-SPR,
on the keyless compression function h which are weaker than the keyless-CR
assumption on h.

Here, we are interested in a somewhat different question, namely whether
(formally definable) CR for this specific design of dedicated-key hash function
H̃ implies that it is eTCR or not. Interestingly, we can gather a strong evidence
that CR for H̃ implies that it is also eTCR, by the following argument. First,
from the construction of H̃ it can be seen that CR for H̃ implies keyless-CR for
a hash function H∗ which is identical to the H except that its initial chaining
value is a random and known value IV ∗ = h(IV ||K) instead of the prefixed IV
(Note that K is selected at random and is provided to the adversary at the start
of CR game). This is easily proved, as any adversary that can find collisions for
H∗ (i.e. breaks it in keyless-CR sense) can be used to construct an adversary
that can break H̃ in CR sense. Second, from recent cryptanalysis methods which
use differential attacks to find collisions [25, 24], we have a strong evidence that
finding collisions for H∗ under known IV ∗ would not be harder than finding
collisions for H under IV , for a practical hash function like MD5 or SHA-1.
That is, we argue that if H∗ is keyless-CR then H is also keyless-CR. Finally,
we note that keyless-CR assumption on H in turn implies that H̃ is eTCR as
follows. Consider a successful eTCR attack against H̃ where on finishing the
attack we will have (K, M) 
= (K ′, M ′) and H̃(K, M) = H̃(K ′, M ′), where M =
M1|| · · · ||ML and M ′ = M ′

1|| · · · ||M ′
L. Referring to the construction of H̃ this is

translated to H
(
K||(M1 ⊕K)|| · · · ||(ML ⊕K)

)
= H

(
K||(M ′

1 ⊕K)|| · · · ||(M ′
L ⊕

K)
)

and from (K, M) 
= (K ′, M ′) we have that
(
K||(M1⊕K)|| · · · ||(ML⊕K)

) 
=(
K||(M ′

1⊕K)|| · · · ||(M ′
L⊕K)

)
. Hence, we have found a collision for H and this

contradicts the assumption that H is keyless-CR. Therefore, for the case of the
specific dedicated-key hash function H̃ obtained via Randomized Hashing mode,
it can be argued that CR implies eTCR.

4 Domain Extension and eTCR Property Preservation

In this section we investigate the eTCR preserving capability of eight domain
extension transforms, namely Plain MD [12, 7], Strengthened MD [12, 7], Prefix-
free MD [6, 11], Randomized Hashing [10], Shoup [21], Enveloped Shoup [2], XOR
Linear Hash (XLH)[4], and Linear Hash (LH) [4] methods.



eTCR Hash Functions Revisited 335

Assume that we have a compression function h : {0, 1}k×{0, 1}n+b → {0, 1}n
that can only hash messages of fixed length (n + b) bits. A domain extension
transform can use this compression function (as a black-box) to construct a
hash function H : K ×M→ {0, 1}n, where the message spaceM can be either
{0, 1}∗ or {0, 1}<2m

, for some positive integer m (e.g. m = 64). The key space K
is determined by the construction of a domain extender. Clearly log2(|K|) ≥ k,
as H involves at least one invocation of h. The difference between log2(|K|) (i.e.
the key length of H) and k (i.e. the key length of h) is called the ‘key expansion’
of domain extension transform and is a measure of its efficiency: the less key
expansion is, the more efficient the domain extension transform will be.

A domain extension transform comprises of two functions: an injective
padding function Pad and an iteration function fI . First, the padding func-
tion Pad : M → DI is applied to an input message M ∈ M to convert it
to the padded message Pad(M) in a domain DI . Then, the iteration function
fI : K×DI → {0, 1}n uses the compression function h as many times as required,
and outputs the final hash value. The full-fledged hash function H is obtained
by combining the two functions.

The padding functions used in the eight domain extension transforms that we
consider in this paper are defined as follows:

– Plain: pad : {0, 1}∗ → ⋃
L≥1 {0, 1}Lb, where pad(M) = M ||10p and p is the

minimum number of 0’s required to make the length of pad(M) a multiple
of block length.

– Strengthening: pads : {0, 1}<2m → ⋃
L≥1 {0, 1}Lb, where pads(M) =

M ||10p|| 〈|M |〉m and p is the minimum number of 0’s required to make the
length of pads(M) a multiple of block length.

– Prefix-free: padPF : {0, 1}∗ → ⋃
L≥1 {0, 1}Lb, where padPF transforms

the input message space {0, 1}∗ to a prefix-free message space,i.e.padPF (M)
is not a prefix of padPF (M ′) for any two distinct messages M and M ′. An
example of a Prefix-free padding function, which we consider in this paper,
is as follows. Append 10p to the message where p is the minimum number of
0’s required to make the length of the resulted message a multiple of b − 1
bits. Parse the resulted message into blocks of b − 1 bits and prepend a ‘0’
to all blocks but the final block where a ‘1’ must be prepended.

– Strengthened Chain Shift: padCSs : {0, 1}<2m → ⋃
L≥1 {0, 1}Lb+b−n,

where padCSs(M) = M ||10r|| 〈|M |〉m ||0p, and parameters p and r are de-
fined in two ways depending on the block length b. If b ≥ n + m then p = 0,
otherwise p = b−n. Then r is the minimum number of 0’s required to make
the padded message a member of {0, 1}Lb+b−n, for some positive integer L.

The iteration functions for MD, Randomized Hashing, Shoup, Enveloped Shoup,
XLH and LH are shown in Fig. 1.

4.1 Merkle-Damg̊ard Does Not Preserve eTCR

MD iteration function as shown in Fig. 1 can be used together with Plain
(pad), Strengthening(pads), or Prefix-free(padPF ) padding function to construct



336 M.R. Reyhanitabar, W. Susilo, and Y. Mu

MDh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k

Algorithm MDh
IV (K, M):

C0 = IV
for i = 1 to L do

Ci = hK(Ci−1||Mi)
return CL

IV hh h

M3 MLM1 M2

C2 C3 CL−1 CLC1 h

K KK K

IV hh h

M3 MLM1 M2

CLh

K3 KLK1 K2

IV hh h

M2 MLM1

CL+1h

K KK K

K′
K′K′

K′

LHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}Lk

Algorithm LHh
IV (K1||K2|| · · · ||KL, M):

C0 = IV
for i = 1 to L do

Ci = hKi
(Ci−1||Mi)

return CL

XLHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+Ln

Algorithm XLHh
IV (K||K0||K1|| · · · ||KL−1, M):

C0 = IV
for i = 1 to L do

Ci = hK((Ci−1 ⊕Ki−1)||Mi)
return CL

Shh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+tn

t = �log2(L)� , ν(i) = max {x : 2x|i}

Algorithm Shh
IV (K||K0||K1|| · · · ||Kt−1, M):

C0 = IV
for i = 1 to L do

Ci = hK((Ci−1 ⊕Kν(i))||Mi)
return CL

RHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+b

Algorithm RHh
IV (K||K ′, M):

C0 = IV
C1 = hK(C0||K ′)
for i = 2 to L + 1 do

Ci = hK(Ci−1||(Mi−1 ⊕K ′))
return CL+1

EShh
IV1,IV2

: K × {0, 1}(L−1)b+b−n → {0, 1}n, where K = {0, 1}k+tn

t = �log2(L− 1)�+ 1, ν(i) = max {x : 2x|i}

Algorithm EShh
IV1,IV2

(K||K0||K1|| · · · ||Kt−1, M):
C0 = IV1; Kμ = Kt−1

for i = 1 to L− 1 do
Ci = hK((Ci−1 ⊕Kν(i))||Mi)

return hK((IV2 ⊕K0)||(CL−1 ⊕Kμ)||ML)

IV hh h

M3 MLM1 M2

CLh

K K2K K K0K1K0 KKv(L)

IV hh h

M3 MLM1 M2

CLh

K K3K K K2K1K0 KKL−1

IV1 h h

M1 M2

K KK1K0

h

ML−1

K KμKν(L−1)

b − n

ML

CLh

KK0

IV2

Fig. 1. Iteration functions used in domain extension transforms: Merkle-Damg̊ard
(MD), Randomized Hashing (RH), Shoup (Sh), Enveloped Shoup (ESh), XLH and
LH. The iteration functions are ordered top-down based on their efficiency in terms of
key expansion, MD iteration does not expand the key length of underlying compression
function and is the most efficient transform and LH is the least efficient transform.

a domain extension transform, which is called Plain MD, Strengthened MD,
or Prefix-free MD, respectively. In this section we show that none of these
three domain extension transforms can be used as an eTCR preserving domain
extender.



eTCR Hash Functions Revisited 337

Theorem 1 (Negative Result). Plain MD, Strengthened MD, and Prefix-free
MD do not preserve eTCR.

Proof. We borrow the construction of the following counterexample from [4]
where it was used in the context of TCR property. Assume that there is a
dedicated-key compression function g : {0, 1}k × {0, 1}n+b → {0, 1}n with b > k
which is (t, ε)-eTCR secure. Set b = k + b′ where b′ > 0 by the assumption that
b > k. Consider the following dedicated-key compression function h : {0, 1}k ×
{0, 1}(n+k)+b′ → {0, 1}n+k:

h(K, X ||Y ||Z) = hK(X ||Y ||Z) =
{

gK(X ||Y ||Z)||K if K 
= Y
1n+k if K = Y

where K ∈ {0, 1}k , X ∈ {0, 1}n , Y ∈ {0, 1}k , Z ∈ {0, 1}b′ (n + k is chaining
variable length and b′ is block length for h).

To complete the proof, we first show in Lemma 3 that hK inherits the eTCR
property from gK . Note that this cannot be directly inferred from the proof in
[4] that hK inherits the weaker notion TCR from gK . Then, we show a sim-
ple attack in each case to show that the hash function obtained via either of
Plain, Strengthened, or Prefix-free MD transform by extending domain of hK is
completely insecure in eTCR sense.

Lemma 3. The dedicated-key compression function h is (t′, ε′)-eTCR secure,
where ε′ = ε + 2−k+1 ≈ ε and t′ = t− c, for a small constant c.

Proof. Let A = (A1, A2) be an adversary which wins the eTCR game against
hK with probability ε′ and using time complexity t′. We construct an adversary
B = (B1, B2) which uses A as a subroutine and wins eTCR game against gK

with success probability of at least ε = ε′−2−k+1(≈ ε′, for large k) and spending
time complexity t = t′ + c where small constant c can be determined from the
description of algorithm B. Algorithm B is as follows:

Algorithm B1() Algorithm B2(K1, M1, State)

(M1 = X1||Y1||Z1, State) $← A1(); Parse M1 as M1 = X1||Y1||Z1

return (M1, State); if
[
K1 = Y1

∨
K1 = 1k

]
return ‘Fail’;

(M2=X2||Y2||Z2, K2) $←A2(K1, M1, State);
return (M2, K2);

At the first stage of eTCR attack, B1 just merely runs A1 and returns whatever
it returns as the first message (i.e. M1 = X1||Y1||Z1) and any possible state
information to be passed to the second stage algorithm. At the second stage of
the attack, let Bad be the event that [K1 = Y1

∨
K1 = 1k]. If Bad happens

then algorithm B2 (and hence B) will fail in eTCR attack; otherwise (i.e. if Bad
happens) we show that B will be successful in eTCR attack against g whenever
A succeeds in eTCR attack against h.

Assume that the event Bad happens; that is, [K1 
= Y1

∧
K1 
= 1k]. We claim

that in this case if A succeeds then B also succeeds. Referring to the construction



338 M.R. Reyhanitabar, W. Susilo, and Y. Mu

of (counterexample) compression function h in this lemma, it can be seen that if
A succeeds, i.e., whenever (M1, K1) 
= (M2, K2)

∧
hK1(M1) = hK2(M2), it must

be the case that gK1(M1)||K1 = gK2(M2)||K2 which implies that gK1(M1) =
gK2(M2) (and also K1 = K2). That is, (M1, K1) and (M2, K2) are also valid a
colliding pair for the eTCR attack against g. (Remember that M1 = X1||Y1||Z1

and M2 = X2||Y2||Z2.)
Now note that Pr[Bad] ≤ Pr[K1 = Y1] + Pr[K1 = 1k] = 2−k + 2−k = 2−k+1,

as K1 is selected uniformly at random just after the message M1 is fixed in the
eTCR game. Therefore, we have ε = Pr[B succeeds] = Pr[A succeeds ∧Bad] ≥
Pr[A succeeds]− Pr[Bad] ≥ ε′ − 2−k+1.

To complete the proof of Theorem 1, we need to show that MD transforms cannot
preserve eTCR while extending the domain of this specific compression function
hK . For this part, the same attacks that used in [4, 2] against TCR property
also work for our purpose here as clearly breaking TCR implies breaking its
strengthened variant eTCR. The eTCR attacks are as follows:

The Case of Plain MD and Strengthened MD:
Let’s denote the Plain MD and Strengthened MD domain extension transforms,
respectively, by pMD and sMD. The following adversary A = (A1, A2) can
break the hash function obtained using either of pMD or sMD transforms, in
the eTCR sense. A1 outputs M1 = 0b′ ||0b′ and A2, on receiving the first key K,
outputs a different message as M2 = 1b′ ||0b′ together with the same key K as the
second key. Considering that the initial value IV = IV1||IV2 ∈ {0, 1}n+k is fixed
before adversary starts the attack game and K is chosen at random afterward in
the second stage of the game, we have Pr [K = IV2] = 2−k. If K 
= IV2 which is
the case with probability 1− 2−k then adversary becomes successful as we have:

MDh
IV (K, 0b′ ||0b′)=hK(hK(IV1||IV2||0b′)||0b′) = hK(gK(IV1||IV2||0b′)||K||0b′)

= 1n+k

MDh
IV (K, 1b′ ||0b′)=hK(hK(IV1||IV2||1b′)||0b′) = hK(gK(IV1||IV2||1b′)||K||0b′)

= 1n+k

pMD :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MDh
IV (K, pad(0b′ ||0b′)) = hK(MDh

IV (K, 0b′ ||0b′)||10b′−1)
= hK(1n+k||10b′−1)

MDh
IV (K, pad(1b′ ||0b′)) = hK(MDh

IV (K, 1b′ ||0b′)||10b′−1)
= hK(1n+k||10b′−1)

sMD :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MDh
IV (K, pads(0b′ ||0b′)) = hK(MDh

IV (K, 0b′ ||0b′)||10b′−m−1|| 〈2b′〉m)
= hK(1n+k||10b′−m−1|| 〈2b′〉m)

MDh
IV (K, pads(1b′ ||0b′)) = hK(MDh

IV (K, 1b′ ||0b′)||10b′−m−1|| 〈2b′〉m)
= hK(1n+k||10b′−m−1|| 〈2b′〉m)



eTCR Hash Functions Revisited 339

The Case of Prefix-free MD: Denote Prefix-free MD domain extension trans-
form by preMD. The full-fledged hash function H : {0, 1}k ×M → {0, 1}n+k

will be defined as H(K, M) = preMDh
IV (K, M) = MDh

IV (K, padPF (M)).
Note that we have M = {0, 1}∗ due to the application of padPF function.
The following adversary A = (A1, A2) which is used for TCR attack against
Prefix-free MD in [2], can also break H in eTCR sense, as clearly any TCR at-
tacker against H is an eTCR attacker as well. Here, we provide the description
of the attack for eTCR, for completeness. A1 outputs M1 = 0b′−1||0b′−2 and A2

on receiving the first key K outputs a different message as M2 = 1b′−1||0b′−2

together with the same key K as the second key. Considering that the initial
value IV = IV1||IV2 ∈ {0, 1}n+k is fixed before the adversary starts the attack
game and K is chosen at random afterward, we have Pr [K = IV2] = 2−k. If
K 
= IV2 which is the case with probability 1− 2−k then the adversary becomes
successful as we have:

MDh
IV (K, padPF (0b′−1||0b′−2)) = MDh

IV (K, 0b′ ||10b′−21)
= hK(hK(IV1||IV2||0b′)||10b′−21)
= hK(gK(IV1||IV2||0b′)||K||10b′−21)
= 1n+k

MDh
IV (K, padPF (1b′−1||0b′−2)) = MDh

IV (K, 01b′−1||10b′−21)
= hK(hK(IV1||IV2||01b′−1)||10b′−21)
= hK(gK(IV1||IV2||01b′−1)||K||10b′−21)
= 1n+k

4.2 Randomized Hashing Does Not Preserve eTCR

Our aim in this section is to show that Randomized Hashing (RH) construction,
if considered as a domain extension for a dedicated-key compression function,
does not preserve eTCR property. Note that (this dedicated-key variant of) RH
method as shown in Fig. 1 expands the key length of the underlying compression
function by only a constant additive factor of b bits, that is log2(|K|) = k + b.
This characteristic, i.e. a small and message-length-independent key expansion
could have been considered a stunning advantage from efficiency viewpoint, if
RH had been able to preserve eTCR. Nevertheless, unfortunately we shall show
that randomized hashing does not preserve eTCR.

Following the specification of the original scheme for Randomized Hashing in
[10], we assume that the padding function is the strengthening padding pads.
The full-fledged hash function H : {0, 1}k ×M → {0, 1}n+k will be defined as
H(K||K ′, M) = RHh

IV (K||K ′, pads(M)). Note that we have M = {0, 1}<2m

due to the application of pads function.

Theorem 2 (Negative Result). The Randomized Hashing transform does not
preserve eTCR.

Proof. We use the same counterexample as used in the proof of Theorem 1 to
show that Randomized Hashing transform does not preserve eTCR property.



340 M.R. Reyhanitabar, W. Susilo, and Y. Mu

As we have previously shown in Lemma 3 that the constructed hK inherits
the eTCR property of gK , it just remains to show that RHh

IV cannot extend
the domain of hK while preserving its eTCR property. Consider an adversary
A = (A1, A2) that plays the eTCR game against the hash function H , obtained
via Randomized Hashing, as follows. A1 outputs a one-block long target message
M1 = 0b′ (note that for the counterexample compression function hK , b′ is the
block length and n + k is the chaining variable length). A2 on getting the first
key K||K ′ for H (in the second stage of eTCR attack), outputs the second
message as M2 = 1b′ and puts the second key the same as the first key. As
M2 
= M1, we just need to show that these two messages collide under the same
key, i.e. K||K ′. Considering that the initial value IV = IV1||IV2 ∈ {0, 1}n+k

for RHh
IV is (selected and) fixed before the adversary starts the attack game

and K||K ′ is chosen at random latter in the second stage of the game, we have
Pr [K = IV2] = 2−k. If K 
= IV2 (which is the case with probability 1 − 2−k)
then the adversary A = (A1, A2) becomes successful as we have:

RHh
IV (K||K ′, pads(0b′)) = RHh

IV (K||K ′, 0b′ ||10b′−1−m 〈b′〉m)
= hK

(
hK

(
hK(IV1||IV2||K ′)||(K ′ ⊕ 0b′)

)||(K ′ ⊕ 10b′−1−m 〈b′〉m)
)

= hK

(
hK

(
gK(IV1||IV2||K ′)||K||(K ′ ⊕ 0b′)

)||(K ′ ⊕ 10b′−1−m 〈b′〉m)
)

= hK(1n+k||(K ′ ⊕ 10b′−1−m 〈b′〉m))

RHh
IV (K||K ′, pads(1b′)) = RHh

IV (K||K ′, 1b′ ||10b′−1−m 〈b′〉m)
= hK

(
hK

(
hK(IV1||IV2||K ′)||(K ′ ⊕ 1b′)

)||(K ′ ⊕ 10b′−1−m 〈b′〉m)
)

= hK

(
hK

(
gK(IV1||IV2||K ′)||K||(K ′ ⊕ 1b′)

)||(K ′ ⊕ 10b′−1−m 〈b′〉m)
)

= hK(1n+k||(K ′ ⊕ 10b′−1−m 〈b′〉m)) �

4.3 Shoup, Enveloped Shoup and XLH Do Not Preserve eTCR

In previous subsections, we have shown that neither MD nor RH are eTCR pre-
serving transforms. The next three most efficient candidates from key expansion
viewpoint that we consider are Shoup (Sh), Enveloped Shoup (ESh) and XLH
transforms.

Theorem 3 (Negative Results). Sh, ESh, and XLH transforms do not
preserve eTCR.

Proof. The proof is quite simple but the results are stronger than previous coun-
terexample based proofs, as here the negative results hold for any arbitrary
compression function (irrespective of how secure the compression function h is),
and not only for some specific counterexamples. That is, these XOR masking
based domain extension transforms are structurally insecure in eTCR sense. In-
tuitively, the inability if these domain extenders to preserve eTCR is due to
the fact that they use XOR operation to add the key to the internal state



eTCR Hash Functions Revisited 341

(i.e. chaining variable), and hence an eTCR adversary will be able to cancel
internal differences by taking advantage of its ability to select the value of the
second key in the second stage of eTCR attack. (We note that this is also the
case for the XTH scheme of [4].)

For the formal proof, we provide the following simple eTCR attack against
Shoup construction. The attacks for the cases of ESh and XLH are quite similar
and can be found in the full version of this paper in [18].

Consider the hash function obtained via Shoup domain extension transform,
i.e. pads padding function followed by Shh

IV iteration method. The following
simple adversary A = (A1, A2) can break it in the eTCR sense. At the first
stage of the eTCR attack, A1 outputs a two-block message M = M1||M2

as the target message which after applying pads will become a three-block
message M1||M2||(10b−1−m 〈2b〉m) to be input to the three-round Shh

IV iter-
ation. In the second stage of eTCR game, A2, after receiving the first key as
K||K0||K1||K0 from the challenger, chooses the second two-block message as
M ′ = M ′

1||M2 which after padding becomes M ′
1||M2||(10b−1−m 〈2b〉m). A2 also

puts the second key as K||K0||K ′
1||K0, where the value of K ′

1 is computed as
K ′

1 = K1⊕hK

(
(IV ⊕K0)||M1

)⊕hK

(
(IV ⊕K0)||M ′

1

)
. It is easy to see (referring

to Fig. 1) that this value for K ′ cancel the introduced difference in chaining
variable which was created due to the different message blocks M1 and M ′

1.
So, (K||K0||K1, M) and (K||K0||K ′

1, M
′) constitute a colliding pair for H in

eTCR sense. (Note that the key sequence used for iteration function Shh
IV is

K||K0||K1||K0 because padded message pads(M) has an extra third block con-
taining the length information.) �

4.4 LH Transform and Its Nested Variant

Up to know we have shown that neither of MD, RH, Sh, or XLH transforms can
preserve eTCR property. Henceforth, we have lost all efficient methods from key
expansion viewpoint and now we have reached to the same starting-point (and
the least efficient) transform for TCR preserving scenario as in [4], i.e. the LH
method whose key expansion is linear in the message length. We now consider
whether at least (but hopefully not the last) this LH transform or its variants can
be used for eTCR preserving domain extension or not. Fortunately, we gather
a positive answer for this. The proof for this positive result is a straightforward
extension of the methodology used in [4] for the case of TCR, but with some
necessary adaptations required for considering eTCR attack scenario where ad-
versary has more power in second stage by getting to choose a different key as
well as a different message. Firstly, in Theorem 4 we show that if the compression
function h is eTCR secure then the hash function LHh

IV will be secure against a
restricted class of eTCR adversaries which only find equal-length colliding pairs.
Let’s denote this equal-length eTCR notion by eTCR∗. Secondly, it is shown in
Theorem 5 that a nested variant of LH can be made eTCR secure, i.e. against
any arbitrary adversary. The proofs for these two theorems can be found in the
full version of this paper in [18].



342 M.R. Reyhanitabar, W. Susilo, and Y. Mu

Assume that the input messages have length a multiple of block length and the
maximum length in blocks is some positive integer N , i.e. |M | ≤ Nb where b is
the length of one block in bits. This restriction of message space to a domain with
messages of variable but multiple-block length can be easily removed by using
any proper injective padding function like plain padding function pad. LHh

IV

iteration function can be used to define a hash function as H(K1|| · · · ||KN , M) �
LHh

IV (K1|| · · · ||Km, M), where m is the length of M in blocks.

Theorem 4 (Positive Result: eTCR∗). Assume that the compression func-
tion h : {0, 1}k × {0, 1}n+b → {0, 1}n is (t, ε)-eTCR. Then the hash function
H : {0, 1}Nk × {0, 1}≤Nb → {0, 1}n obtained using LHh

IV iteration of h, will be
(t′, ε′)-eTCR∗, where ε′ = Nε, t′ = t − Θ(N)

(
Th + n + b + k

)
, where Th is the

time for one computation of the compression function h.

Theorem 5 (From eTCR∗ to eTCR). Assume that H1 : {0, 1}k1 ×M →
{0, 1}n is (t1, ε1)-eTCR∗ hash function and h : {0, 1}k2 × {0, 1}n+b → {0, 1}n
is (t2, ε2)-eTCR compression function, where b ≥ �log2(|M |)�, for any M ∈
M. Then the composition function H : {0, 1}k1+k2 ×M → {0, 1}n, defined as
H(K1||K2, M) = h(K2, H1(K1, M)|| 〈|M |〉b), will be (t, ε)-eTCR; where ε =
ε1 + 2ε2, and t = min {t1 − k2, t2 − k1 − 2TH1 − 2b}.

Nested Linear Hash: Let H1 be the equal-length eTCR hash function ob-
tained via LH transform as stated in Theorem 4. From Theorem 5 we can obtain
a variant of LH which is eTCR secure. This variant which we call it Nested LH is
obtained by the composition of H1 with an eTCR compression function h, that
is, LH nested by this final application of the compression function in the way
stated in Theorem 5 (i.e. final block is just 〈|M |〉b). Theorem 5 and Theorem 4
show that this Nested LH will be eTCR if the compression function is eTCR. Al-
ternatively, this Nested LH construction can be seen as obtained using a variant
of strengthening padding followed by LH iteration on the compression function
h. This variant of strengthening padding, which can be called full-final-block
strengthening, acts as follows. On input a message M , append the message by
10r to make its length a multiple of block length and then append another full
block which only contains the representation of length of M in an exactly b-bit
string, i.e. 〈|M |〉b.

5 Conclusion

The introduction of the eTCR property by Halevi and Krawczyk [10] has been
proven to be very useful to enrich the notions of hash functions, in particular
with its application to construct the Randomized Hashing mode which has been
announced by NIST as Draft SP 800-106. Nonetheless, the relationships between
eTCR with the existing properties of hash functions need to be further studied. In
this paper, we showed that there is a separation between the new eTCR property
with the well-known collision resistance (CR) property, where both properties



eTCR Hash Functions Revisited 343

are considered for a dedicated-key hash function. Furthermore, when considering
the problem of eTCR property preserving domain extension, we found that the
only eTCR preserving method is a nested variant of LH which has a drawback
of having high key expansion factor. Therefore, it is interesting to design a new
eTCR preserving domain extension in the standard model, which is efficient. We
left this as an open problem in this paper.

Acknowledgments. We would like to thank the anonymous reviewers of FSE
2009 for their insightful comments and suggestions.

References

1. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-Property-Preserving It-
erated Hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 130–146. Springer, Heidelberg (2007)

2. Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: Design
Choices and MPP Transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007)

3. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

4. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs
Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

5. Contini, S., Yin, Y.L.: Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC using Hash Collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

6. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

7. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

8. den Boer, B., Bosselaers, A.: Collisions for the Compressin Function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1993)

9. Dodis, Y., Puniya, P.: Getting the Best Out of Existing Hash Functions; or What if
We Are Stuck with SHA? In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung,
M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 156–173. Springer, Heidelberg (2008)

10. Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006)

11. Maurer, U.M., Sjödin, J.: Single-Key AIL-MACs from Any FIL-MAC. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 472–484. Springer, Heidelberg (2005)

12. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

13. Mironov, I.: Hash Functions: From Merkle-Damg̊ard to Shoup. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 166–181. Springer, Heidelberg
(2001)



344 M.R. Reyhanitabar, W. Susilo, and Y. Mu

14. Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic
Applications. In: STOC 1989, pp. 33–43. ACM, New York (1989)

15. National Institute of Standards and Technology. Cryptographic Hash Algorithm
Competition, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

16. National Institute of Standards and Technology. Draft NIST SP 800-106: Random-
ized Hashing for Digital Signatures (August 2008),
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-106

17. Preneel, B.: The State of Cryptographic Hash Functions. In: Damg̊ard, I.B. (ed.)
EEF School 1998. LNCS, vol. 1561, pp. 158–182. Springer, Heidelberg (1998)

18. Reyhanitabar, M.R., Susilo, W., Mu, Y.: Enhanced Target Collision Resis-
tant Hash Functions Revisited. IACR ePrint Archive, Report 2009/051 (2009),
http://eprint.iacr.org/2009/051

19. Rogaway, P.: Formalizing Human Ignorance: Collision-Resistant Hashing without
the Keys. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 211–228.
Springer, Heidelberg (2006)

20. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Im-
plications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

21. Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer,
Heidelberg (2000)

22. Simon, D.R.: Finding Collisions on a One-Way Street: Can Secure Hash Func-
tions be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

23. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

24. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

25. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-106
http://eprint.iacr.org/2009/051

	Enhanced Target Collision Resistant Hash Functions Revisited 
	Introduction
	Preliminaries
	Notations
	Two Settings for Hash Functions
	Definition of Security Notions: CR, TCR and eTCR

	eTCR Property $vs$. CR Property
	CR $\nRightarrow$ eTCR
	eTCR $\nRightarrow$ CR 
	The Case for Randomized Hashing

	Domain Extension and eTCR Property Preservation
	Merkle-Damgård Does Not Preserve eTCR
	Randomized Hashing Does Not Preserve eTCR
	Shoup, Enveloped Shoup and XLH Do Not Preserve eTCR
	LH Transform and Its Nested Variant

	Conclusion


