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Temperature profile on a spherical sample that is heated by laser beams in various geometries while
processed in vacuum is analyzed. Sample heating by one or four laser beams was considered. An
analytical expression was derived for directional sample heating cases. It suggests an enhanced
temperature uniformity over the samples when heated with four diffuse laser beams arranged in a
tetrahedral geometry. This was experimentally verified by heating a spherical stainless steel sample
by laser beams. Both the calculated and experimentally determined temperature variations over the
sample suggest that use of diffuse four beams arranged in tetrahedral geometry would be effective
in reducing temperature variation to within 1 K. The enhancement in the temperature uniformity for
four diffuse beams arranged in a tetrahedral geometry by a factor of 50 over a single focused beam
is promising to accurately measure of thermophysical properties. This drastic improvement in
temperature uniformity might even enable atomic diffusion measurements in the undercooled liquid
states of the bulk glass forming alloys since Marangoni and gravity driven convection will be
substantially reduced. ©2004 American Institute of Physics.[DOI: 10.1063/1.1804351]

I. INTRODUCTION

Usefulness of the high temperature electrostatic levitator
and acoustic levitator for measurements of thermophysical
properties of molten materials and for studies of solidifica-
tion processes is being widely recognized in the materials
science community.1–9 Although many of these experiments
are temperature sensitive, they are usually performed assum-
ing the sample temperature is represented by a single value,
overlooking the temperature variance over the sample. A
temperature gradient across a liquid sample tends to create
density gradient as well as surface tension gradient that are
responsible for inducing convective flows in the sample.
Such convective flows will affect measurement results of
physical properties, particularly those transport properties
such as atomic diffusion, thermal conduction, and viscosity.
Convective mixing can completely obliterate the diffusion
profile making quantitative analysis difficult if not impos-
sible. In designing experiments to determine transport prop-
erties one ought to be especially careful about temperature
gradients if the sample is going to be heated by directional
heating sources.

In this article we analyze the temperature profile on a
spherical sample when it is heated by one or more laser
beams in search of the conditions that minimize the tempera-
ture variations over the sample. The Laplace equation, sub-
jected to boundary conditions appropriate for a sphere that is

heated by laser while it is radiating heat through the surface
to the surrounding vacuum, was solved. The analytical re-
sults suggests a substantial decrease in temperature varia-
tions over the sample when heating with four diffuse laser
beams arranged in a tetrahedral geometry. The calculations
were verified on a stainless steel ball using various laser
beam heating geometries that were set up in a high vacuum
chamber.

II. THEORETICAL CONSIDERATION

The magnitude of temperature variations in the spherical
droplets under conditions of heating with one or more laser
beams(or any other source) can be assessed by solving the
steady state(time-independent) Fourier heat flow equation.
This equation is subjected to boundary conditions appropri-
ate for a sphere heated by absorption of laser power at the
surface and radiating energy from the surface by Stephan–
Boltzmann radiation to a surrounding vacuum. We assume
that the sample is suspended in a high vacuum so that any
heat conduction through gaseous medium or any mechanical
contact is ruled out. The radiated power per unit area of
surface is given by

Prad= «sSBTs
4, s1d

where Ts is the local surface temperature,« is the hemi-
spherical total emissivity of the surface, andsSB the Stefan–
Boltzmann constant. The power input is determined by the
spectral emissivity of the surface(equal to the spectral ab-
sorption coefficient) at the laser wavelength and the incidenta)Electronic mail: schroers@caltech.edu
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power per unit area of the laser beam projected on the sphere
surface. The situation is illustrated in Fig. 1. To obtain the
exact steady state temperature distribution in the sphere, one
solves the steady state Fourier equation(essentially
Laplace’s equation) for the boundary condition

JrsR,u,wd = − kf1/rsr]T/]rdgr=R = «sSBTs
4 − Plasersu,wd,

s2d

whereJrsR,u ,wd is the net radial component of the heat flux
out of the sphere surface,k is the thermal conductivity of the
sample,R is the sample radius, andplaser is the laser power
input at the sphere surface, which depends on locationsu ,wd.
For small temperature gradients compared to the average
temperature,DT/Tav!1, where Tav is the average steady
state temperature of the sphere, one can neglect the higher
order effect of surface temperature variations on the local
radiated power loss and assume that power is radiated iso-
tropically.

The steady state heat flow equation in a sphere is a so-
lution to the Laplace equation and can be solved by expand-
ing temperatureT in spherical harmonicsYlm:

Tsr,u,wd = o
l=0

`

o
m=−l

+l

Alm
rl

Rl Ylmsu,wd ⇒ ¹2T = 0. s3d

The coefficientsAlm in the expansion are to be determined
from the boundary condition that the heat flow at the surface
equals the net radiated power densityp:

uk = T ·nusurface= Uko
l=0

`

o
m=−l

+l

Alm
lr l−1

Rl Ylmsu,wdU
r=R

= p ⇒ Alm =
1

k

R

l
T

4p

Ylm
* pdV. s4d

This net radiated power density includes laser heating and
radiative cooling. If the sample is nearly uniform in tempera-
ture (temperature variations are small compared to the aver-
age temperature) the Stefan–Boltzmann equation can be lin-

earized around the average temperature and substituted back
into the expression for the coefficients

p < plaser+ «sSBT0
4 + 4«sSBT0

3sT − T0d, s5d

Alm =
1

k

R

l ST4p

Ylm
* plaserdV + 4«sSBT0

3AlmD ⇒ Alm

=
1

k

R

l
S1 −

1

k

R

l
4«sSBT0

3D−1T
4p

Ylm
* plaserdV. s6d

The correction term for the nonuniformity in temperature is
smaller than 1% in the temperature region of interest, so the
radiative cooling term is unimportant in all but the zero order
spherical harmonic, which corresponds to the average tem-
perature. In other words, we can, to a very good approxima-
tion, ignore the third term in Eq.(5).

For one tightly focused beam hitting the sample at the
pole, the coefficients are given by

Alm =
1

k

R

l
Ylm

* s0,0d
P

R2 with P = 4pR2«sSBT0
4, s7d

which results in the same functional dependence on the
sample materials« ,kd, sizesRd, and temperature(T0, or total
laser powerP) for each of the coefficients

Alm ~
P

kR
~

«

k
RT0

4. s8d

This functional form is also maintained for other distribu-
tions of the incident power over the sphere surface; only the
numerical value of the proportionality factor changes with
changes in geometry. The case of a single laser beam focused
to a point is the worst possible case for temperature unifor-
mity. Uniformity can be improved by using a(preferably
symmetric) arrangement of multiple heating laser beams
and/or spreading the beam. In a symmetric arrangement any
spherical harmonics that do not have that symmetry(this
typically includes the lowest-order spherical harmonics) are
eliminated, while spreading the beam reduces the amplitude
of higher order spherical harmonics. For example, for a
single spread-out beam hitting the sample normal to the pole
the coefficients are

Al0 =
R

lk
E

0

2p E
0

1

Ylm
* sq,wdcossqdd cossqddw

P

pR2 . s9d

Note that the integral here runs only over a half sphere, this
is not the interval over which spherical harmonics are or-
thogonal. In practice, the beam may not be spread out com-
pletely uniformly and the absorption will depend on the
angle of incidence, but the principle for calculating the coef-
ficients is the same.

The coefficients of the leading term in Eq.(7) were com-
puted for single beam(polar) and tetrahedral four-beam case,
with the beam(s) focused to a point or uniformly spread over
an entire hemisphere, for sample sizes ofR=1 mm and
R=6.35 mm. A T302 stainless steel ball with a thermal
conductivity of k=16.7 W/m K (at 1000 K) and a hemi-
spherical total emissivity of«=0.3 was considered.10

For comparison, the bulk metallic glass forming alloy

FIG. 1. Schematic illustration of single beam heating by a laser beam and
radiation loss by the sphere producing a temperature gradient.
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Zr58Nb3Cu16Ni13Al10 (Vit106a) was chosen,11 with «=0.26
and k=25 W/m K (at 1000 K).12 Three different tempera-
tures were considered, representative of the entire under-
cooled liquid region: 960 K, above the nose of the TTT dia-
gram, 900 K, at the nose, and 740 K, below the nose. The
results are summarized in Table I. For the case of a single
point-focused beam, the leading term is the dipole term with
coefficient Al0=Îs3/4pdsP/kRd=Î12ps«sSB/kdRT0

4 [Eq.
(7)]. At 960 K this evaluates to 3.1 K for a Vit106 sphere of
1 mm radius. Spreading the beam uniformly results in 2/3 of
that value, or 2.1 K. By using four heating laser beams in a
tetrahedral arrangement, the dipole and quadrupole terms are
eliminated by symmetry. In addition, spreading the beam re-
duces the higher-order moments of the temperature distribu-
tion much more effectively than the dipole and quadrupole
moments. By chance, the octupole term is reduced to zero
when the beam is spread uniformly. The leading term the
multipole expansion is then the 16-polesl =4d term, with an
amplitude of 0.055 K for a 1 mm radius sphere at 960 K.
Clearly, modifications to the geometry of the heating laser
beam arrangement should show remarkable effect in lower-
ing the magnitude of the temperature variation on the sphere.
These values are calculated for a steel sample and will be
lowered if sample rotation is considered. Sample rotation is
present in most levitation experiments and it smears out the
temperature distribution and thereby lowers temperature gra-
dients.

III. EXPERIMENTAL SETUP

The calculations suggest a dramatic enhancement in
temperature uniformity if the sample is heated by four dif-
fuse laser beams arranged in a tetrahedral geometry. In order
to verify the predicted reduction of temperature variations
over the sample, a T302 stainless steel ball, 6.35 mm in ra-
dius, with thermal conductivity of 16.7 W/m K was used.
The relatively large sample size enhanced temperature varia-
tions and facilitated attaching thin thermocouples. The
sample was suspended by four thin wires. A yttritium–
aluminum–garnet laser with a Gaussian beam profile was
used to heat the sample. Four beams of roughly equal inten-
sity were produced by splitting the main laser beam as
shown in Fig. 2. This setup consists of three 50/50 beam
splitters and three mirrors. The use of beam splitters to di-
vide the single laser beam into four beams eliminates the

uncorrelated fluctuations in power, which would arise if
separate lasers were used. With the present setup the laser
power drift will only affect the average temperature but will
not induce variations in temperature gradients(such as di-
pole, quadrupole, etc.).

In our setup this optical system was mounted on the top
flange of a vacuum chamber in such a way that three of the
four vertical beams went through the three windows that are
located at the apexes of a equilateral triangle and the fourth
beam went through an window that was located at the center
of the triangle. The electrode assembly was so positioned in
the chamber that the central beam irradiated the top of the
sample while the three side beams were directed to the
sample through mirrors. All the optical components are ar-
ranged in such a way that the four beams irradiate the sample
satisfying a tetrahedral geometry.

The power of the roughly divided four beams were made
equal by adjusting three attenuators that were inserted in the
three stronger beam paths so that after the adjustment they
had the same intensity(within experimental error) as the
weakest fourth beam. This power equalizing procedure was
done as follows: First, a reference temperature was estab-
lished by measuring steady state sample temperature that
was achieved when the sample was heated by the weakest
laser beam alone. The sample temperature was measured by
a fine thermocouple that was welded on the diametrically
opposite point of the laser heating spot. The similar proce-
dure was repeated one after another for three other beams,

TABLE I. Calculated coefficients of the leading term in the spherical harmonics expansion reflecting the
maximum temperature variations over the sample for Zr58Nb3Cu16Ni13Al10 samples of 1 mm in radius and a
stainless steel ball with a radius of 6.35 mm heated with different heating geometries.

Sample

Radius
of sphere
s10−3 md

Average
temperature

(K)

1 beam
focused

(K)

1 beam
spread out

(K)

4 beams
focused

(K)

4 beams
spread out

(K)

Vit106a 1 960 3.1 2.1 1.3 0.055
900 2.4 1.6 1 0.043
740 1.1 0.7 0.47 0.020

SST302 6.35 960 33.7 22.5 14.1 0.59
900 26 17.3 10.9 0.46
740 11.9 7.9 4.9 0.21

FIG. 2. Schematic illustration of the equalization of four laser beams origi-
nated from one laser. Three beam splitterss50/50d and three mirrors were
used to divide the main laser beam into four beams of roughly equal power.
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this time the sample temperature achieved by each beam was
lowered by adjusting the attenuator until the reference tem-
perature was achieved.

Four thermocouples were connected to the sample’s sur-
face as shown in Fig. 3. They were positioned in such a way
that they detected the maximum temperature variations in the
sample. Thermocouples Tc1 and Tc3 were utilized to mea-
sure the maximum temperature variations for the one beam
case and Tc2 and Tc4 for the maximal temperature variation
in the four beam case. Tc2 is located in the middle of the
triangle formed by the laser spot 1, 2, and 3. K-type thermo-
couples of 76mm in diameter were used and similar wires
were used to support the sample. The temperature gradients
were measured after the sample was allowed to equilibrate at
each temperature. For calibration purpose, the characteristics
of different thermocouples were tested in a uniform 1100 K
temperature field established by a resistant furnace. Their
temperature readings varied less than 0.7 K.

IV. EXPERIMENTAL RESULTS

Figure 4(a) shows the measured maximum temperature
variations over the sample for a sample that was heated by a
single laser beam. When the beam was focused on the
sample to a spot of about 1.6 mm in diameter, the tempera-
ture variation on the sample was as much as 35 K for an
average sample temperature of 980 K. If the beam was
spread out to about 10 mm in diameter(diffuse beam) the
temperature variation went down to 10.4 K at the average
temperature 943 K. When the sample was heated by four
focused laser beams in a tetrahedral geometry as shown in
Fig. 4(b), the temperature variation still was as high as 22 K
at an average temperature of 1003 K. However, as soon as
the four beams in the tetrahedral geometry were spread out,
the temperature variation was dramatically decreased to less
than 0.5 K at an average sample temperature of 1003 K. This

temperature variation was in the range of the experimental
error of 0.7 K. Also shown in Fig. 4 is the amplitude of the
temperature variations calculated according to Eq.(7) in
which only the leading term was considered. An emissivity
of 0.3 was used for the calculations.10 Since the maximum
temperature variations scales linearly with the samples ra-
dius, Fig. 4 can be used to extrapolate the temperature varia-
tions for different sample sizes.

The measurements of temperature uniformity confirm
the main features of the calculations. The temperature varia-
tions scale with temperature to the fourth power, and spread-
ing the beam as well as going to a tetrahedral four beam
arrangement drastically reduce the temperature gradients.
The calculated temperature variations show reasonable
agreement with the experimental results. A source of quanti-
tative discrepancy between the calculations and the experi-
mental results may be explained by the position of the ther-
mocouple which might not be exactly positioned at the
largest temperature variations. General trends and scaling re-
lations, however, would not be affected by such systematic
errors. Further possible sources of error include imperfect
alignment of the laser beams with the sample and/or with
each other, and the unavoidable disturbance of the laser
beams and the temperature profile by the thermocouple leads
and support wires. According to a numerical integration of
the heat flow through thin wire radiating heat from its sur-
face the heat loss through the thermocouple and support

FIG. 3. Schematic illustration of the positions where the thermocouples
were attached(shown by circle) and the spots where the laser beams im-
pinged on the sample(→). For the one beam case,L1 was used and the
maximum temperature variations for this case were measured by Tc3 and
Tc1.

FIG. 4. Temperature variations within the sample for 1 beam heating geom-
etry (a) [focused beam(solid circle) diffusive beam(solid square)] and 4
beam heating geometry(b) [focused (solid triangle) and diffuse (solid
circle)]. The solid curves resulted from the calculations according to Eq.(7).
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wires is less than 3310−3 W for temperatures below
1100 K. This is 0.25% of the total power input to the sphere
at that temperature, resulting in a temperature variation
0.25% of that for the one beam focused case, i.e., less than
0.5 K. In addition, the temperature variations from thermo-
couple and support wires on opposite sides of the sphere
largely cancel one another, so even with four thermocouples
and four support wires, the temperature variation caused by
heat loss through the wires is less than 1 K and therefore
have a minor influence on the experimental error.
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