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Abstract      

     The thermal conductivity, κ, of single layers of hexagonal boron nitride (h-BN), as well as 

that of bulk h-BN have been calculated utilizing an exact numerical solution of the phonon 

Boltzmann transport equation.  The stronger phonon-phonon scattering in h-BN is revealed as 

the cause for its lower κ compared to graphite.  A reduction in such scattering in the single 

layer arising mainly from a symmetry-based selection rule leads to a substantial increase in κ, 

with calculated room temperature values of over 600Wm-1K-1.  Isotopic enrichment further 

increases κ, with the calculated enhancement exhibiting a peak with temperature whose 

magnitude shows a dramatic sensitivity to crystallite size. 

 

PACS:  63.20.kg, 63.22.Rc, 66.70.-f, 65.80.Ck 
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I.  Introduction 

    Single-layer hexagonal boron nitride (SLBN) is structurally analogous to graphene but with 

carbon atoms replaced by alternating boron and nitrogen atoms.  In the shadow of graphene, 

SLBN and multilayer hexagonal boron nitride (MLBN) are now receiving increased attention  

because of their promise for a number of applications such as substrates for graphene 

electronics [1, 2]. 

     Understanding the lattice thermal conductivities, κL, of these materials will be important 

when coupling them to nanoscale electronics and will provide additional insight into the novel 

behavior of phonon transport in 2D layered structures [3-9].  The highest recorded room 

temperature thermal conductivity of bulk hexagonal boron nitride (h-BN) is around 400 Wm-

1K-1 [10], which is five times lower than that of pyrolytic graphite [11].  This is surprising 

given the similar crystal structures, lattice constants, unit cell masses and phonon dispersions 

shared by these materials.  One notable difference between the two is that h-BN has a 

significantly larger isotope mixture (19.9% 10B and 80.1% 11B) than graphite (98.9% 12C, 

1.1% 13C) causing stronger phonon-isotope scattering, as indicated by the large isotope effect 

recently observed in boron nitride nanotubes (BNNTs) [12].  At the same time, the observed 

decrease of κhBN with increasing temperature around 300K [10] is a signature that intrinsic 

phonon-phonon scattering due to lattice anharmonicity is the dominant scattering mechanism 

limiting κL, as is the case in most semiconductors and insulators. 

     These observations suggest that in order to understand the κL in SLBN as well as h-BN, a 

rigorous microscopic thermal transport theory is needed that simultaneously incorporates both 

phonon-phonon scattering and that by isotopes.  In this paper, we present such a theory, based 

on an exact numerical solution of the Boltzmann transport equation (BTE) for phonons [5, 7, 
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13], which is necessary to accurately treat the inelastic nature of the phonon-phonon 

scattering.  Our approach reveals that SLBN possesses unusual transport properties similar to 

those recently identified in graphene [5, 7].  In particular, the majority of heat is carried by 

acoustic phonons vibrating perpendicular to the layer plane (the so-called ZA phonons), a 

finding that contradicts early predictions [14, 15] but is consistent with recent thermal 

transport measurements on graphene structures [6, 16].  We find that around room 

temperature phonon-phonon scattering is stronger in SLBN (h-BN) than in graphene 

(graphite) explaining the observed difference in κL for these systems.  However, the κL of 

SLBN is found to be considerably larger than κhBN (bulk value), with room temperature values 

of over 600Wm-1K-1, one of the highest among non-carbon based materials.  This 

enhancement is connected to a symmetry-based selection rule that strongly suppresses 

phonon-phonon scattering in 2D crystals [5, 7].  Finally, we show that the interplay between 

phonon-phonon scattering and that by isotopes leads to a strongly temperature dependent 

isotope effect with peak enhancements in κL depending sensitively on crystallite sizes. 

     In Section II the lattice thermal conductivity and its constituents to be calculated are 

introduced.  Section III describes the empirical interatomic potential developed for h-BN 

systems, from which the harmonic and anharmonic interatomic force constants are obtained, 

and it demonstrates the accuracy of this potential in describing the acoustic phonon 

frequencies and velocities.  The scattering rates for phonon-phonon, isotope impurity and 

boundary scattering are presented in Section IV along with a summary of the approach to 

solve the phonon BTE.  Section V presents the our results and accompanying discussion, 

while section VI provides a summary and our conclusions. 

II.  Thermal Conductivity 
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     While significant progress has been made in the fabrication of SLBN and MLBN [17-19], 

there is currently no measured κL data for these systems.  In order to connect our theory to 

experiment, we have calculated κL not only for SLBN but also for MLBN.  As was found 

previously for multi-layer graphene [13], with increasing layer number, N, the calculated κL of 

MLBN saturates to an N-independent value after only five layers.  Thus, the κL for N=5 is 

taken as the calculated κhBN, which is compared directly to that determined experimentally 

[10]. 

     We consider the h-BN layers to be parallel to the x-y plane with thermal reservoirs at 

slightly different temperature taken to be separated along the x-direction, chosen to be along 

Γ → M  of the 2D hexagonal Brillouin zone.  The κL for SLBN and MLBN is given by: 

                                 

∑∫ ∂∂=
j

xL dvTn
N

qλλλλ τω
δπ

κ 20
2 )/(

)()2(
1               (1) 

In Eq. 1, δ is the interlayer spacing, λω  is the frequency of a phonon in mode ),( jq=λ  with 

wavevector, q=(qx, qy), in branch, j, 0
λn  is the Bose distribution function, xx dqdv /λλ ω=  is the 

component of the phonon velocity along the direction of thermal transport and τλ  is the 

phonon lifetime in this mode. 

     Note that we have taken the thermal conductivity to be a scalar reflecting that the in-plane 

transport is isotropic.  This is indeed the case for an infinite 2D hexagonal lattice.  For finite 

systems, in principle the thermal conductivity would exhibit a directional ansiotropy.  

However, for the relatively large size systems here, this anisotropy is small (< 5%), and we 

ignore it in the present work. 

III. Interatomic Force Constants 
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     In order to calculate the phonon frequencies, velocities and lifetimes in Eq. 1, a description 

of the harmonic and anharmonic interatomic forces is required.  Here we use a Tersoff 

empirical interatomic potential [20] to describe the in-plane bonding between atoms.  A new 

set of Tersoff potential parameters for h-BN was determined using a least squares fitting 

procedure so as to best fit the measured in-plane acoustic phonon dispersion data of bulk h-

BN [21], as well as the in-plane bond length [22] and cohesive energy [23].  The approach is 

identical to that used previously for graphene [24].  Unlike graphene, which has purely 

covalent bonding between carbon atoms, the h-BN bonding is also partly ionic.  However, the 

resulting interatomic Coulomb interaction affects primarily the optic phonon frequencies near 

the zone center [25].  Since our interest is in the acoustic phonon branches, which are most 

important for thermal transport, we ignore this Coulomb term.  For the weak interlayer 

bonding a Lennard-Jones (L-J) potential is used:  VLJ (rij ) = 4ε[(σ /rij )
12 − (σ /rij )

6], where rij is 

the distance between atoms i and j in adjacent layers, and ε and σ were adjusted to match the 

measured interplanar distance of δ=0.333nm [22] and to best fit the z-axis phonon dispersion.  

We have used an AA' stacking of h-BN layers, which is consistent with that found in recent 

ab initio calculations [26].  The optimized Tersoff and L-J potential parameters are listed in 

Table 1. 

     The phonon frequencies and velocities for MLBN with N layers are calculated by 

diagonalizing 6Nx6N dynamical matrices using harmonic interatomic force constants obtained 

from the Tersoff and L-J potentials.  The Tersoff potential includes up to second nearest-

neighbor interactions, while we include up to third-nearest-neighbor interactions between 

atoms in adjacent planes.  The calculated phonon dispersion for bulk h-BN is shown in Fig. 1 

(black curves) compared to the measured values from Ref. 21.  A very good fit is obtained for 
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the low frequency portion of the phonon spectrum.  In particular, the quadratic ZA phonon 

branch, the transverse acoustic (TA) and longitudinal acoustic (LA) branches are accurately 

represented.  Table 2 shows that the lattice constants, cohesive energy, and acoustic velocities 

are in close agreement with measured values.  In particular, the TA and LA velocities are 

within 5% of those obtained from the measured dispersions [21]. 

IV.  Thermal Transport Theory 

     The phonon lifetimes, τλ , are calculated from an exact numerical solution to the phonon 

BTE [5, 7, 13].  They are limited by phonon-phonon, isotopic impurity, and boundary 

scattering.   The dominant phonon-phonon scattering processes are those between three 

phonons.  Higher-order processes have been estimated to be much weaker even up to much 

higher temperatures than considered here [27].  Therefore, in this work we consider the lowest 

order three-phonon scattering only.  The three-phonon scattering rates can be expressed as: 

1/τλ
anh ≡ Γλλ 'λ ''

(+)
(+)

∑ +1/2 Γλλ 'λ ''
(−)

(−)
∑        (2) 

where the sums are over the phase space of all three-phonon processes satisfying the 

conservation of energy and momentum: ω j q( )± ω j ' q'( )= ω j '' q' '( ) and q ± q'= q' '+K , where 

K  is a reciprocal lattice vector of the 2D hexagonal lattice. This phase space is calculated on a 

fine grid in q space, including both Normal (K=0) and Umklapp (K≠0) processes.  In Eq. 2, 
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where N0 is the number of unit cells in the crystal, and the three-phonon scattering matrix 

elements are [5, 7, 13]: 
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Φλλ 'λ '' = Φαβγ 0κ,l'κ ', l' 'κ ' '( ) eακ
λ eβκ '

λ ' eγκ ''
λ ''

Mκ M ′ κ M ′ ′ κ 
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∑

κ
∑    (4) 

Here, κ  designates the κth atom (with mass Mκ ) in the th unit cell, Φαβγ 0κ,l'κ ', l' 'κ ' '( ) are 

third-order anharmonic interatomic force constants obtained from the Tersoff and L-J 

potentials, R  are lattice vectors, and eακ
λ  are phonon eigenvectors. 

     Due to the large concentration of 10B atoms (19.9%) in the more abundant 11B atoms 

(80.1%) in naturally occurring boron, isotopic impurity scattering is crucially important to 

understanding the lattice thermal transport in BN systems.  We treat the isotope impurity 

scattering using perturbation theory [28].  The scattering rate is: 

                                 1/τλ
iso =

π
2N0

ω λ
2 gκ ˆ e κ

λ ⋅ ˆ e κ
′ λ *

κ
∑ 2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

′ λ 
∑ δ(ωλ −ωλ ' )    (5) 

where gκ = f iκ (ΔMiκ / M κ )2

i
∑  is the mass variance parameter [28], with i representing the 

two different isotope types, f iκ  the fraction of such isotopes, and ΔMiκ  the mass difference of 

the isotopes from the average, M κ .  The nitrogen in h-BN is almost pure 14N so we take 

gN = 0, with the natural B isotope concentrations, gB = 0.001366. 

     The high impurity concentration in naturally occurring h-BN systems, raises the question 

of the importance of coherent scattering.  For boron nitride nanotubes [29], it has been shown 

that multiple scattering effects lead to only modestly higher thermal conductivity than 

predicted by the independent scatterer model used here.  Furthermore, recent calculations of 

thermal transport in carbon nanotubes [30] with isotopic disorder show good agreement 
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between results obtained using BTE and Greens function approaches demonstrating the 

accuracy of the former approach even for high isotope concentrations. 

     In h-BN and graphite, phonons scatter from crystallite boundaries [10], so crystallite size is 

an important factor in determining κL.  The scattering rate due to crystallite boundaries is 

taken to be, 1/τλ
bs = 2 | vλx | /L , where L is a measure of the length between boundaries in the 

transport direction.  This form gives the correct limits of κL for nanotubes [31] and 

nanoribbons [32] in the ballistic ( L →0) and diffusive ( L → ∞ ) limits.  For the crystallite 

sizes considered here (L~1-10μm) almost the same results are obtained using the more 

conventional relation, 1/τλ
bs =| vλ | /Leff  ( | vλ |= vλx

2 + vλy
2 ), with the choice Leff = L / 2 .  This 

follows from the isotropy of transport in an infinite 2D hexagonal lattice, so that vλ
2 = 2 vλx

2 . 

     Millions of Normal and Umklapp processes are calculated to accurately represent the 

three-phonon scattering rates, Eqs. 2 and 3.  Using these scattering rates, the phonon BTE is 

solved with an iterative approach identical to that presented previously for graphene systems 

[5, 7, 13].  The standard relaxation time approximation (RTA): τλ
0 = (1/τλ

anh +1/τλ
iso +1/τλ

bs)−1 

gives much lower κL than the exact solution of the phonon BTE in 2D layered systems 

because of the unusually strong Normal scattering processes involving ZA phonons, which are 

incorrectly treated as resistive in the RTA [7, 13]. 

V.  Results and Discussion 

     Figure 2 shows the calculated κhBN (solid red curve) as a function of temperature, T, 

compared to the measured data [10] (black diamonds). The only adjustable parameter in the 

model is L for which a value of L=2μm (Leff=1.4μm) gives a reasonably good fit to the 

measured data [33]. 
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     The peak and subsequent decrease in κhBN with increasing T indicates that three-phonon 

scattering becomes dominant.  Similar behavior is obtained for an isotopically pure system 

where all boron atoms are 11B (red dashed curve), with a ~30% enhancement in κhBN at 300K 

and almost a 70% increase around 100K.  Note that the 300K value of ~520Wm-1K-1 is still 

much lower than κgraphite, which contains 1.1% 13C.  We find that the difference stems 

primarily from the overall lower acoustic phonon frequencies in h-BN.  Specifically, the 

Brillouin zone center curvature of the ZA branch is 29% smaller in SLBN than in graphene 

while the TA and LA velocities are 27% and 13% smaller, respectively.  The lower phonon 

frequencies enter Eq. 3 resulting in stronger phonon-phonon scattering rates, Eq. 2, and lower 

κL. 

     The green solid and dashed curves show the calculated κL for SLBN (κSLBN) for the 

naturally occurring and the isotopically pure systems.  The same value of L=2μm has been 

used as for the bulk.  In both cases, κSLBN is much higher than κhBN.  This enhancement occurs 

primarily because of a selection rule in 2D crystals, such as SLBN and graphene, connected to 

the underlying reflection symmetry perpendicular to the layer [5, 7], which causes the matrix 

elements, Eq. 4, to vanish for all three-phonon processes having an odd number of ZA 

phonons.  The resulting strong restriction of the phase space available for phonon-phonon 

scattering increases ZA phonon lifetimes and enhances their already dominant contribution to 

κSLBN.  This selection rule is broken by the interaction between the atoms in different layers, 

and the additional phonon-phonon scattering results in decreased κhBN [13].  

     In layered materials such as h-BN and graphite, larger crystallite size increases κL [10].  To 

highlight this point and to illustrate the relative strengths of three-phonon scattering and that 

due to isotopes, Fig. 3 shows the calculated κSLBN at 300K as a function of L including: 1) 
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Only boundary and isotopic impurity scattering: κL
iso (blue dashed curve);  2) boundary and 

phonon-phonon scattering: κL
pure  (red solid curve).  This is the isotopically pure case; 3) 

boundary, isotopic impurity and phonon-phonon scattering: κL
nat  (black solid curve).  This 

corresponds to naturally occurring boron isotope concentrations.  For comparison, the lowest 

curve shows κhBN (dashed black curve).  It is evident that κL
iso is considerably larger than κL

pure  

demonstrating that phonon-phonon scattering is much stronger than isotopic scattering around 

room temperature even for the high isotope impurity concentration.  We note the extremely 

high values of κL
pure  (617-1107Wm-1K-1 for L=1-10μm) and the added enhancement obtained 

with increasing L:  The L=1μm (L=10μm) value is 66% (144%) larger than κhBN for the same 

L. 

     Figure 4 shows the percent enhancement in κL, P = (κL
pure /κL

nat −1) ×100%, due to isotopic 

enrichment as a function of T for different values of L.  For fixed L, P rises as T decreases 

from 300K because of the weakening phonon-phonon scattering.  The isotope scattering then 

plays a more important role in limiting κL so its removal causes greater enhancement.  At low 

temperature, P drops because only low frequency phonons are thermally populated so the 

stronger frequency dependence of the isotopic scattering (see Eq. 5) compared to the boundary 

scattering causes the latter to dominate as T →0. 

     Most striking in Fig. 4 are the successively larger peaks that form with increasing L.  In 

this temperature range, the isotope scattering is strongest relative to the combined boundary 

and phonon-phonon scattering.  The additional enhancement with increasing L reflects the 

weakening of the boundary scattering for the larger systems.  At 300K this effect is modest, 

with P ranging from 26% for L=1μm to 37% for L=10μm.  In contrast, the peak 

enhancements range from about 40% for L=1μm to 200% for L=10μm. 
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     Recently, the isotope effect has been observed in 10μm long multi-walled BNNTs in the 

range of about 100K to 300K [12].  The P extracted from this data exhibits a surprisingly 

weak dependence on T.  Recent theoretical work [34] was able to match the κL data for both 

the naturally occurring and isotopically enriched samples, but only by assuming weak 

phonon-phonon scattering.  This assumption would preclude a fit to the high T data for bulk h-

BN shown in Fig. 2, yielding instead much larger than observed κhBN.  Furthermore, strongly 

T dependent isotope effects qualitatively similar to that shown in Fig. 4 have been observed in 

bulk materials [35-37].  It is notable that in bulk h-BN, which is a closer representation of 

multi-walled BNNTs, P shows a weaker T dependence over most of the measured range of 

Ref. 12, and its peak lies below this range (see Fig. 4 inset).  Finally, the measured κLs of 

multi-walled carbon nanotubes (MWCNTs) in Ref. 12 are almost the same as those for mult-

walled BNNTs, which contrasts with the fivefold higher κL of graphite [11] compared to bulk 

h-BN [10].  Additional measurements on naturally occurring and isotopically enriched h-BN, 

SLBN and BNNT systems as well as on MWCNTs are needed to further address this issue. 

      Two recent papers have investigated theoretically thermal transport in boron nitride 

nanoribbons (BNNR) using non-equilibrium Green’s function [38] and molecular dynamics 

[39] approaches.  Ref. 38 finds BNNRs have similar κL to those of graphene nanoribbons.  

However, this work does not include phonon-phonon scattering.  Ref. 39 includes phonon-

phonon scattering and finds much larger κL for graphene nanoribbons compared to h-BN 

nanoribbons, which is qualitatively consistent with our results.  This highlights the important 

role played by phonon-phonon scattering in determining κL in both h-BN and graphene 

systems.  Ref. 39 has also developed a different Tersoff parameter set for h-BN layers, which 

shows similarly good agreement with the low frequency portion of the measured in-plane 
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phonon dispersion of bulk h-BN.  We note that the effect on κL of isotope impurity scattering 

and its interplay with the anharmonic phonon-phonon scattering, which is a central part of the 

present work, is not considered in Ref. 38 or Ref. 39. 

 

VI.  Summary and Conclusions 

     Using an exact numerical solution of the phonon BTE, the κLs of both naturally occurring 

and isotopically enriched SLBN and h-BN have been calculated.  Good agreement is obtained 

with measured h-BN data, and the stronger phonon-phonon scattering identified in these 

systems explains why their κLs are lower than those in graphene and graphite.  The κL for 

SLBN is significantly larger than its bulk counterpart because of a reduction in phonon-

phonon scattering in the 2D layer resulting to a large extent from a symmetry-based selection 

rule.  This feature gives SLBN one of the highest room temperature κLs other than those in the 

carbon allotropes.  Additional enhancement is obtained from isotopic enrichment, which 

exhibits a strong peak as a function of temperature with magnitude growing rapidly with 

crystallite size. 
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Table 1 Optimized Tersoff and Lennard-Jones parameters for h-BN systems.   

 
                                         eVA  0.1433=          eVB  30.417=  
                                         1

1  4661.3 −= Åλ        1
2  2288.2 −= Åλ  

                                         1
3  0000.0 −= Åλ        72674.0=n               

                                         4.30692=c             71.0239 −10×=β  
                                         7295.4=d               98578.0−=h  
                                         ÅR  95.1=                ÅD  15.0=  
                                         eV 004.0=ε            nm3212.0=σ  

 

 

Table 2 Lattice constants, cohesive energy, and acoustic phonon velocities for in-plane 

bulk h-BN as given by the Tersoff potential compared to experiment.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aReference 22. 
bFrom ab initio calculation Reference 23.  
cFrom dispersion Reference 21. 

 Experiment Tersoff/L-J
model 

alat (Å)  2.50a 2.50 

clat (Å) 6.66a 6.65 

Ecoh (eV) -8.09b -8.04 

vTA (m/s) 11496c 10890 

vLA (m/s) 19145c 19157 
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Figure Captions 

Figure 1  Phonon dispersion given by the optimized Tersoff potential for bulk h-BN (black 

curves) compared with measured data (green circles) [21].  

 

Figure 2  The red (lowest) solid curve shows the calculated κL of h-BN as a function of 

temperature, T, compared to measured values (black diamonds).  The red (lowest) 

dashed curve shows the κL for isotopically pure h-BN.  The green (highest) solid curve 

gives the calculated κL for naturally occurring SLBN while the green (highest) dashed 

curve shows calculated κL for isotopically pure SLBN. 

 

Figure 3 κL of SLBN at T=300K as a function of L including: boundary and isotope scattering 

(blue dashed curve), boundary and phonon-phonon scattering (red solid curve), and 

boundary, isotope, and phonon-phonon scattering (black solid curve).  Also shown is 

κhBN (dashed black curve). 

 

Figure 4 Percent enhancement, P, of κL in isotopically pure SLBN compared to naturally 

occurring SLBN as a function of T for different values of L.  Inset compares P for SLBN 

and h-BN for L=2μm. 
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