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Thermal-viscous fingering instability in porous media is a common phenomenon in na-

ture, as well as in many scientific problems and industrial applications. Despite the im-

portance, however, thermal transport in flow of a non-Newtonian fluid in porous media

and the resulting fingering has not been studied extensively, especially if the pore space is

heterogeneous. In this paper, we propose a pore network model with fully graphics pro-

cessing unit (GPU)-parallelized acceleration to simulate thermal transport in flow through

three-dimensional (3D) unstructured pore networks at centimeter scale, containing millions

of pores. A thermal Meter equation is proposed to model temperature- and shear stress-

dependent rheology of the non-Newtonian fluids. After comparing the simulation results

with an analytical solution for the location of the thermal front in a spatially-uncorrelated

pore network, thermal transport in flow of both Newtonian and non-Newtonian fluids is

studied in the spatially uncorrelated and correlated pore networks over a range of injection

flow rates. The simulations indicate that the injection flow rate, the shear-thinning rheol-

ogy, and the morphological heterogeneity of the pore space all enhance thermal-viscous

fingering instability in porous media, but with distinct patterns. In spatially-correlated net-

works, the average temperature and apparent viscosity at the breakthrough point in flow of

a shear-thinning fluid exhibit non-monotonic dependence on the injection flow rate. Anal-

ysis of the fractal dimension of thermal patterns at the breakthrough point supports the

conclusion. The results highlight the importance of designing optimal flow conditions for

application purposes.
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I. INTRODUCTION

Heat transfer in porous media is a common phenomenon in nature, as well as in many scientific

and industrial problems, ranging from heat transfer in magma in Earth’s crust1 and in cement-

ing and drilling fluids2, to thermal recovery of heavy oil3, thermal insulation systems4, ceramic

processing5, filtration processes6, heat flow in a proton exchange membrane fuel cells7, and dry-

ing of porous media8. Although in the studies of heat transfer in flow systems it is often assumed

that the fluids are Newtonian, no real fluid fits perfectly the definition of Newtonian rheology,

even though some fluids, such as water and air, can be approximated by the Newtonian rheology.

Recent molecular simulation for the flow of water in small pores and tubes indicated that, under

a variety of conditions, water follows non-Newtonian, and in particular shear-thinning rheology9

in which case its viscosity is dependent upon the hydrodynamics of the system, such as the shear

rate, in addition to the fact that it is also a function of the temperature regardless of its rheological

equation of state.

In order to upscale heat and mass transfer in flow of non-Newtonian fluids in porous materials,

one must deal with a system whose complexity is fourfold: (a) spatial (and temporal) variabil-

ity of the shear rate, viscosity, and shear stress in the pore space; (b) preferential flow pathways

of the fluids due to the spatial-statistical distribution of pore and throat sizes; (c) energy trans-

fer across solid-fluid interfaces; and (d) chemical and mineralogical heterogeneity across distinct

length scales. In the present paper, we address how the morphological heterogeneity of a porous

medium affects heat and mass transfer in flow of a non-Newtonian fluid in a porous medium,

demonstrating that it leads to instabilities in heat transfer, which we refer to as thermal fingering.

To study thermal transport in flow of a Newtonian fluid through porous media, many exper-

imental, analytical, and numerical approaches have been proposed. For example, based on the

particle image velocimetry (PIV) and liquid crystal thermography (LCT) measurements, the pore-

scale velocity and temperature distribution were generated and visualized in a refractive index-

matched porous medium10. Accurate recording of the dynamic evolution of the temperature in 3D

porous media, particularly at pore-scale, is still an unsolved problem. To estimate the upscaled

thermal parameters, such as thermal conductivity, and the convective heat transfer coefficient,

several analytical approaches have been proposed for simple systems11,12. In addition, various

theoretical approaches for thermal transport in a certain class of porous media, such as packing

of overlapping or non-overlapping particles, have been suggested and analyzed, comprehensive
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reviews of which are given by Torquato and Haslach Jr 13 . Moreover, in systems with regular

and well-defined geometry, such as circular pipes and annular flow between concentric pipes with

or without homogeneous porous media inside and known boundary conditions, the steady-state

temperature distribution can be derived using such techniques as the volume-averaging method,

and assuming that the flow is in the Darcy, Brinkman, or Forchheimer models14–16. Such mod-

els and approaches represent oversimplifications that restrict their utility, as the dynamic thermal

pattern in a heterogeneous porous medium cannot be analytically predicted, but do provide use-

ful checks for numerical simulations in simplified geometries. To study the dynamics of pore-

scale thermal transport, several numerical approaches, such as direct numerical simulation17–19

and pore-network models (PNMs) have been developed (see below).

Compared with the direct numerical simulations in images of porous media, the PNMs have

a lower computational cost and higher numerical stability. They require, however, geometrical

simplifications, as the PNMs are not exact representations of the pore-scale morphology of porous

media. Despite this, the PNMs have been highly successful in studies of various phenomena in

porous media, and have been widely leveraged in recent years for simulating thermal transport

in porous media, especially as a tool to study phase-change of water as a Newtonian fluid7,20–22.

Most of such research was realized using the PNMs with regular connectivity, such as a simple-

cubic network, in order to simplify the calculation of local thermal equilibrium. In 3D regular pore

networks, Surasani, Metzger, and Tsotsas 23,24 studied drying of porous media by proposing a non-

isothermal PNM. With the consideration of heat exchange between the fluid and solid,Belgacem,

Prat, and Pauchet 25 proposed a structured and collocated solid and fluid network to simulate the

formation of liquid water in the proton-exchange membrane fuel cell. Koch et al. 26 proposed an

unstructured dual network, consisting of pores and grains, to simulate the coupled liquid water flow

and heat transfer in both the void space and the solid matrix. Due to the high computational cost

of such algorithms, the domain in such simulation is, however, usually small with only hundreds

to thousands of pores, because dynamic updating of the pressure, velocity, and temperature, plus

phase change that may occur at each time step require considerable calculations. Thus, the size of

the simulation domain limits the scope of a study of the effect of heterogeneity in porous media

on such phenomena. Recently, however, An et al. 27 developed a fully graphical processing unit

(GPU)-based algorithm for PNM simulations in order to accelerate the associated computations. In

particular, the velocity field is computed in a matter of several seconds in a network with millions

of pores.
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On the other hand, thermal transport in flow of a non-Newtonian fluid in porous media, though

highly important for many natural and industrial applications, has not received the attention that it

deserves. The viscosity of a non-Newtonian fluid is a function of the shear rate and is usually sen-

sitive to temperature variations28,29. Several empirical models for non-Newtonian rheology have

been proposed for predicting the relation between the viscosity and shear rate, such as the Cross30,

Carreau-Yasuda31, and Meter32 models for power-law fluids. Sorbie, Clifford, and Jones 33 devel-

oped a 2D PNM to investigate the rheology of pseudoplastic fluids in porous media. For power-law

fluids in a square grid network, Pearson and Tardy 34 and Perrin et al. 35 studied the flow of a non-

Newtonian fluid and the effect of tortuosity on the transport process. Using networks extracted

from actual porous media, Lopez, Valvatne, and Blunt 36 studied the flow of shear-thinning fluid

and compared the results with four experiments. Following a similar approach, the flow of a non-

Newtonian fluid in pore networks without the thermal effect was studied37–40. It should, however,

be pointed out that all such studies were under isothermal conditions.

Since the properties of fluids vary with temperatures, the same fluid at different temperatures

may be assumed as being distinct. In this way, the instability of the front, usually referred to as

the Saffman–Taylor instability for miscible fluids, was studied41,42. Kong, Haghighi, and Yort-

sos 43 were presumably the first to report pore-scale experimental visualization of thermal trans-

port by analyzing the steam flooding of heavy oil in a Hele-Shaw cell, i.e., the channel between

two flat surfaces with a small gap between them. Following their work, others carried out ex-

perimental studies of displacement by steam in 2D micromodels44–48. Kuang, Maxworthy, and

Petitjeans 49 conducted experiments in a transparent capillary tube, studying the displacement of

a high-viscosity fluid at low temperature by the same fluid but at a higher temperature with lower

viscosity, and analyzed the instability and Saffman-Taylor fingering. Thermal-viscous instabil-

ity in a Hele-Shaw cell was widely analyzed by experiments50,51. In addition, some numerical

simulation methods were proposed to investigate thermal-viscous fingering instability in a porous

medium at the continuum scale or/and in simple models52–54.

The present study aims at making two new contributions. One is upscaling thermal and hydro-

dynamic properties of shear-thinning fluids under non-isothermal conditions, which demonstrates

how the instability in thermal transport leads to nonlinearity in the upscaled flow properties. To

our knowledge, there is no pore-scale simulation study that incorporates non-Newtonian fluid flow

under non-isothermal conditions in porous media, which is the second contribution of the present

work. In addition to the focus of the work on non-isothermal transport in flow of a non-Newtonian
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fluid, our work features the use of a GPU-accelerated algorithm for simulating fluid flow and heat

transport in 3D unstructured networks, a unique feature that allows large pore-scale simulations in

correlated and uncorrelated pore networks with about one million pore bodies (see Section II B).

The rest of this paper is organized as follows. First, we introduce theoretical background for

the governing equations of mass, momentum, and energy transport in porous media, a rheological

model for the non-Newtonian fluid, and a numerical scheme used in the simulations (Section II C

and II D). Then, we describe how the correlation length of the spatial heterogeneity in the pore

network affects thermal instability in flow of non-Newtonian fluids in porous materials (Section

III). The last section summarizes the paper and presents the main conclusions. In the Appendices,

we present a comparison between of thermal fronts determined by simulations and the analytical

solutions, the difference between thermal fingering in 3D structured and unstructured networks,

the effect of a solid phase on heat transfer, the distribution of shear stress and viscosity at pore

scale, and the impact of a shear-thickening fluid on thermal fingering patterns.

II. METHODOLOGY

We first describe the problem that we study, the model that we have developed, and the rheology

of the non-Newtonian fluid.

A. Problem definition and assumptions

We study flow and heat transfer in a heterogeneous porous medium, fully saturated by a shear-

thinning fluid. Thus, we first provide a brief description of the model, and the assumptions that

have been made.

• The porous medium is represented by a network of spherical pore bodies connected by

cylindrical pore throats. A disk-shape geometry in which the thickness is much smaller than

the radial extension of the disk is used. The fluid is injected at the central point of the disk.

The motivation for using the disk-shaped geometry is that many experimental studies of

displacement of instability were carried out in porous media with such a geometry. Thus, we

hope that our work with non-isothermal flow of non-Newtonian fluid will motivate similar

experimental studies, so that the data could be compared with our results.

• Slow fluid flow is assumed, so that Hagen-Poiseuille equation can be used.
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• Initially, the pore network is fully saturated by either a shear-thinning fluid or by a Newto-

nian fluid.

• The dynamic viscosity of the fluid depends on both temperature and the shear rate, while

the fluid’s density is temperature-dependent.

• Heat transfer in both the solid matrix and the pore space is explicitly taken into account.

• It is assumed that no phase change occurs in the temperature range that we study.

• Viscous dissipation and radiation are neglected.

B. Generation of pore network

For better visualization, the 3D disk-shaped pore networks with a radius of 5.0 cm and a height

of 0.1 mm were generated. The networks contain about one million pore bodies and four million

pore throats that, to our knowledge, constitute some of the largest PNMs ever used in such studies.

To study the effect of the spatial correlations in the pore sizes, both uncorrelated and correlated

networks were generated, as shown in Fig. 1. By “homogeneous” we mean that the pores are

spatially uncorrelated. That means networks larger than the representative elementary volume

(REV), networks are macroscopically homogeneous. The correlated network had a correlation

length of 0.25 cm. As shown by An et al. 27 , the maximum correlation length should be about 1/20

of the domain size to guarantee the results are independent of the generated realization.

The network generation was done by the following steps: (a) assigning pore bodies’ locations,

by randomly generating them using an on-chip entropy source55; (b) generating the network by

assigning pore throats, using the Delaunay triangulation method. To reflect the statistical infor-

mation of natural porous materials, the average coordination number - number of pore throats

connected to the same pore body - was controlled by eliminating some of pore throats; (c) gen-

erating a continuous correlated field using a log-normal distribution field with specific correlation

length; and (d) assigning the sizes of pore bodies and throats by mapping the continuous field onto

the pore network.
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FIG. 1. The pore-size distribution of (a) spatially uncorrelated and (b) correlated pore networks with (c) the

same statistics and similar pore-size distributions. In the correlated network, the correlation length is 1/20

of the network size.

C. Pore network modelling

Fluid flow in the pore network was simulated by writing down the mass balance with given

boundary conditions, imposed on the network, for each pore unit, defined as the assembly of a

pore body and half-length of pore throats connected to it.

The residual Resi for the mass balance for pore unit i is given by56, with Resi being zero when

the mass balance is satisfied.

Resi =
n

∑
j=1

ρi jki j

[
∆Pi j +0.5

(
ρi +ρ j

)
g
(
z j− zi

)]
= 0, (1)

where n is the coordination number of pore body i, ki j represents the flow conductance of throat

i j, ∆Pi j is the pressure difference between pore bodies i and j, g denotes the gravity acceleration,

zi is the absolute height of pore body i, ρi is the fluid density in pore i, and ρi j is the density of

fluid in the pore throat, ρi j = 0.5(ρi +ρ j). The density and temperature of the fluid were assumed

uniform in each pore.

Cylindrical shapes were assigned to pore throats. Thus, the hydraulic conductance ki j were

calculated using the Hagen-Poiseuille equation:

ki j =
πr4

i j

8ηeff
i j li j

, (2)

where ri j and li j represent radius and length of pore throat i j, respectively, ηeff
i j is the local effective
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dynamic viscosity of the fluid in the pore throat, which is a function of the shear rate in pore space,

as well as the temperature, for a non-Newtonian fluid.

The dependence of the fluid’s density on the temperature, Ti, was assumed to be given by,

ρ (Ti) = ρ (Tr)exp
[
β (Tr−Ti)

m], (3)

in which Tr is a reference temperature (usually assumed to be the critical temperature Tc of the

fluid), and β and m are constant coefficients for a given chemical compound57.

D. Heat Transfer

Pore
Control 

Volume

R1

R2 R3

(a) (b)

R1

R2

R3

R4

(c)

FIG. 2. (a) The 2D illustration of a control volume, including the solid and void space. (b) The solid space

constrained between the pore throats is divided into three parts in 2D, R1, R2, and R3. The volume of each

segment was approximated based on the volume of the connected pores. (c) The 3D graphic presentation of

(b).

Heat transfer in saturated porous media occurs through both the fluid and solid phases. While

heat transfer in the fluid is due to advection and diffusion (conduction), it is transferred through

only conduction in the solid phase. For an unstructured 3D network, we propose a method for

calculating the control volume of each control element, including a pore body, the connected

throats, and the solid phase. The algorithm includes the following steps: (a) each pore body and

the neighbouring pores were assumed to constitute a closed tetrahedron cell, using the Delaunay

triangulation method; (b) the volume of the tetrahedron cells was calculated based on the locations

of the connected pore bodies; (c) each cell was divided into four parts, the ratios of which depend

on the volume of connected corner pores; (d) the control volume of each pore includes all the

pieces from various directions; (e) the local porosity φi j was calculated using the local geometry

as each control volume includes both the solid and void phase, as shown in Fig. 2(a); and (f)
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the area of the interface connecting neighbouring control volumes was calculated by dividing the

throat area by the local porosity. For a clear illustration, the formation of the control volume is

shown in Fig. 2.

Local thermal equilibrium was assumed in each pore element, meaning that the temperature of

the solid and fluid phases in each control volume were identical58. This is a valid assumption if

the Biot number, Bii, is much smaller than 1 in a control volume.

Bii =
hc

λ sf
i

L =
c f

pρ
f

i qiTi

Asf
i ∆T sf

i λ sf
i

L, (4)

where hc [W/(m2K)] is the convective heat transfer coefficient, λ sf
i [W/(m·K)] is the harmonic-

averaged thermal conductivity of the solid and fluid phase, L [m] is the characteristic length as-

sumed to be the apparent radius of the control element, c f
p [J/(kg·K)] is the specific heat capacity

of the flow-in fluid, ρ
f

i is the density of the fluid [kg/m3], qi [m3/s] is the volume flux in the con-

trol volume i, Asf
i [m2] is the surface area between the fluid and the solid, Ti [K] represents the

temperature of the injected fluid and ∆T sf
i [K] is the temperature difference between the fluid and

solid phases.

Under the assumption of local thermal equilibrium, thermal transport is simulated using the

following equations, including thermal advection and diffusion in the porous media59.

ρ
eff
i Viceff

p
∆Ti

∆t
=− ∑

qi j>0
ρ

f
i |qi j|c f

pTi + ∑
qi j<0

ρ
f
j c f

p|qi j|Tj + ∑
j∈Ni

Aeff
i j λ

eff
i j

Tj−Ti

li j
, (5)

where the left side of the equation is the rate of change of energy in control element i over a time

step ∆t, while the right side includes thermal advection by the fluid’s velocity and thermal diffu-

sion in both the solid and fluid phases. The fluid flux qi j was estimated by the Hagen-Poiseuille

equation, representing the volumetric flux from pore body i to pore body j. Aeff
i j is the cross-

sectional area between connected pores, including both solid and fluid parts, while λ eff
i j is the

effective thermal conductivity.

The effective density ρeff
i , effective heat capacity ceff

p , and the product of the effective thermal

conductivity and effective area, Aeff
i j λ eff

i j , were volume-averaged values of the solid and fluid phases

based on the local porosity22,60.

ρ
eff
i = (1−φi)ρ

s
i +φiρ

f
i , (6)
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ceff
p =

(1−φi)ρs
i cs

p +φiρ
f

i c f
p

ρeff
i

, (7)

Aeff
i j λ

eff
i j =

1−φi j

φi j
πr2

i jλs +πr2
i jλ

f
i j, (8)

where superscripts s and f represent, respectively, the solid and fluid phase, Ai j is the cross-

sectional area between the two control volumes including both the solid and fluid phases, and

φi j =
(
φi +φ j

)
/2 is the average porosity of control volumes i and j.

If the Biot number is much larger than one58, meaning that the local thermal equilibrium does

not hold, two temperature distributions should be separately calculated for the fluid and solid

phases, as shown by Eq. (9) and (10).

ρ
f

i Viφic f
p

∆T f
i

∆t
=− ∑

qi j>0

(
ρ

f
i |qi j|c f

pT f
i

)
+ ∑

qi j<0

(
ρ

f
j c f

p|qi j|T f
j

)
+

∑
j∈Ni

Ai jλ
f

i j

T f
j −T f

i

li j
+Asf

i λ
sf
i

T s
i −T f

i
Ri

 (9)

ρ
s
i Vi(1−φi)cs

p
∆T s

i
∆t

= ∑
j∈Ni

(
Ai j

1−φi j

φi j
λ

s
i j

T s
j −T s

i

li j
+Asf

i λ
sf
i

T f
i −T s

i
Ri

)
(10)

λ
sf
i =

λ
f

i λ s
i

λ
f

i (1−φi)+λ s
i φi

(11)

where T f
i and T s

i are temperatures of the fluid and solid phases in the control volume i, Ri is the

characteristic length of the control volume, Asf
i is the interfacial area between the fluid and solid

phases in control volume i, λ sf
i is the harmonic-average thermal conductivity between the fluid

and solid61. Note that ∆t is the smallest time step, and that apart from the heat transfer between

the neighbouring fluid and solid phases, the heat exchange in each control volume should also be

calculated.

In the simulations, the solid phase was assumed to be sandstone, which is characteristically

made of quartz. The density and thermal properties of sandstone were assumed to be independent

of the temperatures, since the properties of sandstone are much less sensitive to temperature com-

pared with the fluid. The density of sandstone was taken to be 2323 kg/m3, its thermal conductivity

was assumed to be λs = 1.6 W/(m·K), while its heat capacity was 672.62 J/(kg·K)62.
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E. Properties of the Non-Newtonian fluid

The viscosity of most shear-thinning and shear-thickening non-Newtonian fluids exhibits an

S-shaped functional dependence on the shear stress τ . Such fluids behave as a Newtonian fluid,

with their viscosity having a plateau at low and high values of τ , but a strong dependence on τ

in the intermediate regime. The viscosity of non-Newtonian fluids also varies non-linearly with

temperature. An equation that describes the S-shaped shear stress and temperature-dependent

viscosity has not been reported in the literature. Thus, we modified the shear stress-dependent

Meter equation to account for the temperature-dependent viscosity. The proposed equation could

be referred to as thermal Meter equation (TME), Eq. (12), in order to distinguish it from the

original Meter equation32,63.



η(τ,T ) = η∞,T +
η0,T−η∞,T

1+(τ/τm,T)
ST
,

η0,T = η0,0e−BT ,

η∞,T = η∞,0e−CT ,

τm,T = τm,0eDT ,

ST = S0eET ,

(12)

where η(τ,T ) is the temperature- and shear stress- dependent viscosity of a non-Newtonian fluid

at given shear stress τ and temperature T , η0,T and η∞,T are the viscosity of the fluid at zero

and infinite shear stresses, respectively, at temperature T , τm,T is shear stress of the fluid at a

viscosity, (η0,T +η∞,T )/2 at temperature Tm, ST is the shear stress-dependent exponent at a given

temperature, η0,0, η∞,0, τm,0 and S0 are the corresponding values at absolute zero temperature, and

B, C, D and E are constants.

For a pore throat(i.e., cylindrical tube), the effective viscosity was calculated based on the

following equation63,64,

η(τ,T ) = η∞,T +
η0,T −η∞,T

1+
(

β ri j
2τm,T

∆Pi j
li j

)ST
. (13)

The parameters in Eq. (12) were estimated by fitting the equations to the experimental data

for a given fluid. Then, the fitted parameters were used to calculate the effective viscosity using

Eq. (13). In this paper, we simulated flow of a crude oil65 to study thermal transport in flow of a

non-Newtonian fluid in porous media. The dependence of the viscosity of non-Newtonian fluid on
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the shear stress at various temperatures was fitted to data using the TME, and is shown in Fig. 3(a).

0.5

0.55

0.6

0.65

0.7

0

0.4

0.8

1.2

1.6

2

270 290 310 330 350 370 390

T
h

er
m

al
 c

o
n

d
u

ct
iv

it
y
 (

W
/m

 K
)

V
is

co
si

ty
 (

m
P

a·
s)

Absolute temperature (K)

Viscosity

Thermal conductivity

0

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7

Shear stress (Pa)

T = 393K

T = 373K

T = 353K

T = 333K

η0, 0 = 1556.6 Pa·s

η ∞, 0 = 1295.9 Pa·s

𝜏𝑚, 0 = 21.5 Pa

𝑆0 = 0.933

𝐵 = 0.032 K-1

𝐶 = 0.034 K-1

𝐷 = 0.016 K-1

𝐸 = 0.0 K-1

10 10 10 10 10 10 10 10

50

40

30

20

10

(a) (b)

V
is

co
si

ty
 (

m
P

a·
s)

FIG. 3. (a) The relation between viscosity and the shear stress of the crude oil at various temperatures. The

symbols represent experimental data, while the curves are the resulting fits. (b) Temperature-dependence of

viscosity and thermal conductivity of water. Polynomial equations were fitted to the experimental data.

Change of heat capacity or thermal conductivity of non-Newtonian fluids (e.g., Xanthan gum

solution) can be estimated by experiments. Otherwise, general empirical equations can be used to

estimate the heat capacity as a function of temperature. The thermal conductivity of many liquid

polymers increases with increasing temperature66, and the increase is estimated based on Eq. (14).

1

c f
p

dc f
p

dT
≈ 1.0×10−3 K−1. (14)

The thermal conductivity of liquid, λ f , was estimated using the Weber equation67:

λ f = 3.56×10−8c f
p

(
ρ4

M

) 1
3

, (15)

where M represents the molecular weight.

Due to the absence of accurate data, the heat capacity of the crude oil was assumed to be 2500

J/(kg·K) at the temperature of 298 K. The formulation of temperature- dependent heat capacity

was derived based on Eq. (14), as

c f
p = 2500e0.001(T−298). (16)
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In the Weber equation, the molecular weight of the non-Newtonian fluid was assumed to be

250, while its density being the same as that of the chosen Newtonian fluid simulated in this paper

(see below).

F. Properties of the Newtonian fluid

We assumed water to be the Newtonian fluid, whose flow and heat transfer were simulated

through the pore space. The heat capacity of liquid water was assumed to be constant, 4200

J/(kg·K), when temperature was between 273 K and 373 K. The temperature-dependent density,

viscosity, and thermal conductivity of liquid water were fitted using experimental data. Based on

the Eq. (3), the fitted temperature-dependence of water density was determined to be, as ρ (Ti) =

958.35exp
[
0.001328(373−Ti)

0.7943
]
. Using polynomial approximation, we fitted water density

to the data, with the result being:

η = 3.40×10−8T 4−4.63×10−5T 3 +2.37×10−2T 2−5.41T +465.65. (17)

If the temperature increases from 273 K to 373 K, the thermal conductivity of water increases

slightly, as shown in Fig. 3(b). The experimental data were fitted using a polynomial approxima-

tion, with the result being,

λ f = 4.07×10−8T 3−4.91×10−5T 2 +2.01×10−2T −2.10. (18)

G. Computational setup and GPU-based acceleration

The spatially correlated and uncorrelated networks, governing equations for simulation, and

properties of fluid and solid phases have been introduced as aforementioned. The networks were

initially saturated by a fluid with temperature of 298 K. For boundary conditions, the fluid with

temperature of 373 K was injected at the center of the radial domain with a constant flow rates,

and the pores at outlet were assumed to be at atmospheric pressure. The flow simulation, heat

transfer, and updating of the parameters, such as the density, viscosity, and thermal properties,

were iteratively carried out. At time t, the temperature-dependent properties of the fluid were

updated for the flow simulation. The computed pressure field was then utilized to update the

viscosity in order to re-calculate the velocity field until the governing equations converged at time
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t. Then, time was increased by time step ∆t and heat transfer was simulated using Eq. (5) or

Eqs. (9) and (10) to update the temperature field at time t +∆t.

To accelerate the computational speed and enlarge the simulation domain, flow and heat transfer

simulations were fully parallelized using the GPU-CUDA technology68,69. A GPU-based linear

solver based on Jacobi preconditioned conjugation gradient method was adopted to solve the mass

balance equations, Eqs. (1) and (2)27. The governing equations for heat transfer through the porous

medium were explicitly solved by allocating each element’s equations into distinct threads. All

the calculations were carried out on NVIDIA Tesla v100 GPU card, which had 5120 CUDA cores

with 1380 MHz clock frequency, 900 GB/sec memory bandwidth, and 32 GB of global memory.

III. RESULTS AND DISCUSSIONS

A. Flow properties of the pore network

An uncorrelated network and a correlated one with a correlation length of 0.25 cm (1/20 of

the system’s radius) were generated. The absolute permeability of the uncorrelated and correlated

networks were computed to be 0.25 D and 0.41 D, respectively, calculated based on Eq. (19).

Q =
2πkh

ηeff ln
(
Rout/Rin

)∆P, (19)

where Q is the volume flow rate, ηeff is the effective viscosity, Rout and Rin are the radii of inlet

and outlet boundaries, respectively, h is the height of the sample, and ∆P is the pressure difference

between the inlet and outlet.

The ratio of the thermal advection to diffusion (conduction) is referred to as Péclet number,

defined as Eq. (20). The Péclet number was calculated under the initial temperature of 298 K.

Pe =
uL
α

=
Q(Rout−Rin)ρeffceff

p

2πRouthφλeff
, (20)

where u = Q/(2πhRoutφ) is the characteristic velocity at the outlet. Note that in a radial system

such as one that we utilize, and with a constant injection rate, the radial velocity decreases with the

distance from centre. L = Rout−Rin is the characteristic length, and α = λ/
(
ρcp
)

is the thermal

diffusivity. The averaged thermal diffusivity for bulk system was determined in as manner similar

to Eqs. (6)-(8) using the porosity of the network.
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B. Local thermal equilibrium versus non-equilibrium conditions

As already pointed out, the assumption of local thermal equilibrium is valid when the Biot

number is much small than one58. As Eq. (4) indicates, the Biot number is directly proportional to

the flow rate. At the highest flow rate that we simulated, 10.0 mm3/s, we analyzed the distribution

of local Biot number for each control volume for both Newtonian and non-Newtonian fluids in both

correlated and uncorrelated networks. To calculate the Biot number under dynamic conditions,

the thermal properties at the initial temperature were utilized to compute the velocity field. The

temperature difference was taken to be the difference between the inlet and initial temperatures.
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(crude oil) under a flow rate of 10.0 mm3/s in spatially homogeneous and heterogeneous networks. (b)

The comparison of thermal patterns and average temperature under equilibrium (Eq 5) and non-equilibrium

(Eqs. 9 and 10) conditions for the non-Newtonian fluid.

As shown in Fig. 4(a), a very small group of local Biot numbers are larger than 1, implying

that the assumption of local thermal equilibrium is valid in all the simulations carried out. To

assess further the impact of equilibrium assumption, using Eq. (5), on the upscaled behavior, non-

Newtonian fluid flow in a spatially uncorrelated network at the highest volume flow rate was also

simulated and compared with the non-equilibrium case, using Eqs. (9) and (10). The spatial tem-

perature distribution and the dependence of the average temperature on the distance from center

for the two cases at the breakthrough time are plotted in Fig. 4(b), which indicate almost iden-

tical fingering patterns and average cross-sectional temperature. Thus, in all the simulations, we

assumed local thermal equilibrium.

For validation, to our knowledge, there is no experimental or theoretical work in literature for
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transient non-isothermal flow of a non-Newtonian fluid through porous media in the literature,

presumably due to experimental complexities. Therefore, we validated the model with isothermal

non-Newtonian fluid flow experiments, as reported in Appendix A. The results there demonstrate

that the pore-network model is capable of upscaling the rheology of fluid from bulk rheology

to porous media rheology. To further validate the model under non-isothermal conditions, we

propose an analytical solution for the location of thermal front in a spatially-uncorrelated pore

network in order to compare the front from the numerical simulation, as shown in Appendix A.

The dispersion was not considered in the analytical equation. Then, the effect of unstructured

topology and heat transfer in solid phase were analyzed in Appendices B and C.

C. Effect of hydrodynamics and spatial heterogeneity on thermal fingering

We now present the results of our study of the effect of several factors on heat transfer in

porous media, including (a) the flow rate (which is tantamount to varying the Péclet number),

(b) Newtonian versus shear-thinning fluids, and (c) spatial heterogeneity by comparing the results

for a spatially homogeneous network with those for a spatially correlated network but with same

pore-size statistics.

To visually demonstrate and quantitatively analyze the results, all the analysis were carried

out at the temperature breakthrough point, defined as the state when the temperature at the outlet

is higher than its initial value. Flow rates of 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5.0, and

10.0 mm3/s were utilized in all the simulations. For water, these flow rates represented the Péclet

numbers of 0.016, 0.082, 0.16, 0.41, 0.82, 1.23, 1.64, 4.11, 8.22 and 16.45, respectively. For

the non-Newtonian fluid, based on the values of density, heat capacity and conductivity at the

temperature of 298 K, the corresponding Péclet numbers were 0.026, 0.13, 0.27, 0.67, 1.33, 2.0,

2.67, 6.67, 13.36, and 26.72, respectively.

Newtonian fluid in a spatially homogeneous porous medium: As shown in the first row of

Fig. 5(a), the temperature patterns at the breakthrough points are similar, in all direction, from the

center to the outlet boundary for all the aforementioned flow rates. The reason is twofold: (a) the

fluid is Newtonian, i.e., its viscosity is not sensitive to the shear stress and temperature, and (b)

the medium is homogeneously random and no clear pathway was generated by the permeability

field. With the increase of flow rate (i.e., increasing Péclet number), the transition front from max-

imum to minimum temperature becomes sharper due to the high intensity of advective transport.
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FIG. 5. (a) The thermal patterns at the breakthrough points of four cases, namely, Newtonian fluid in the

uncorrelated porous medium, non-Newtonian fluid in the uncorrelated porous medium, Newtonian fluid in

the correlated porous medium, and non-Newtonian fluid in the correlated porous medium under various in-

jection flow rates. (b) The radially-averaged temperature from the inlet (center) to the outlet versus distance

from the inlet.

The radially-averaged temperature versus distance from the center to the outlet boundary at the

breakthrough point was calculated, as shown in Fig. 5(b). When thermal transport is dominated

by diffusion, i.e., low Péclet number, for example, an injection flow rate of 0.01 mm3/s, the tem-

perature gradually decreases from the center toward the outlet, but the decreasing rate drops with

the distance.

Shear-thinning fluid in a homogeneous porous medium: The second row of Fig. 5(a) shows

the temperature field at the breakthrough point in the non-Newtonian shear-thinning fluid in the

uncorrelated network (identical to the first row). Clearly, the decrease in the viscosity of the fluid

associated with increased temperature and shear rates generated thermal fingering. For flow rates
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smaller than 0.1 m3/s, the thermal patterns are identical for both Newtonian and non-Newtonian

fluid flow, since thermal diffusion governs heat transfer which is independent of the shear rate.

When the flow rate is larger than 0.1 m3/s, the effect of flow rate becomes clear as the fluid

viscosity changes with the shear rates and thermal dispersion increases as well. Since the nature

of the network in this case was spatially homogeneous, thermal fingering was generated in all

directions.

Newtonian fluid in a heterogeneous porous medium: The third row of Fig. 5(a) indicates that

thermal fingering in flow of the Newtonian fluid through a heterogeneous (spatially-correlated)

network is far more visible than the homogeneous case. Due to the spatial correlation, clusters

with large pores are connected together to generate the preferred paths for flow. Advection begins

to control heat transfer when the injection flow rate is larger than 0.1 m3/s, which results in the

thermal fingering front. The radially-averaged temperature along the radius shown in Fig. 5(b),

indicates that the heterogeneity clearly enhances the spreading of the temperature, and that even

at high flow rates it is not possible to get a sharp transition in the temperature profile.

Shear-thinning fluid in a heterogeneous porous medium: Finally, the fourth row of Fig. 5(a)

presents the combined effect of shearing-thinning behaviour and porous medium’s heterogeneity

on the temperature profile at the breakthrough point. The synergy of morphological heterogeneity

and shear-thinning nature of fluid generated much clearer thermal fingering than the three previ-

ous cases. When the injection flow rate is smaller than 0.1 m3/s, the transition from high to low

temperature is smooth, with slight heterogeneity near the inlet. With increasing flow rate (i.e.,

increasing effect of advection), the thermal fingering pattern becomes more pronounced, espe-

cially for injection flow rates larger than 1.0 m3/s. Clearly, the shear-thinning behaviour of the

fluid, together with the heterogeneity enhance thermal fingering. Clusters of large pores in the

correlated field generate the preferred flow and transport paths and, thus, the fluid has a higher ve-

locity in such preferential pathways, which leads to reduction of fluid viscosity and enhancement

of advective heat transfer. Thus, one expects shear-thickening fluid to behave completely differ-

ent, and reduces the impact of the heterogeneity on thermal fingering, which is briefly studied in

Appendix E. Therefore, using shear-thickening fluids, one can control thermal transport fingering

in heterogeneous porous media.

Both morphological heterogeneity and shear-thinning nature of the fluid enhance thermal fin-

gering in porous media. The thermal fingering patterns due to the two principal factors are, how-

ever, different. In the uncorrelated network, thermal fingering resulting from viscosity variations of
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the fluid has a more smooth front and is randomly distributed in all directions. The heterogeneity-

based thermal fingers, on the other hand, have preferred directions due to the structure of geometry.

To quantitatively describe the complexity of the thermal morphology, the fractal dimension of ther-

mal fronts was calculated using the box-counting method70,71. At the temperature breakthrough

time, the fractal dimension of the thermal front was calculated. The depth was not considered in

estimating the fractal dimension. As shown in Fig. 6, the fractal dimension decreases with the

increase of the injection rate. For heat transfer in the Newtonian fluid through the uncorrelated

network, the fractal dimension decreases slightly with the flow rate, and all the values are close to

2. The fractal dimensions for the other three cases have a more notable decrease. Note that the

fractal dimension of thermal fingers is the smallest for the shear-thinning fluid in the correlated

network.

The link between the microscale phenomena, such as the fingering pattern, and microscale

heterogeneity with the upscaled properties can be made through the apparent viscosity, a lumped

parameter that is significant for practical reasons. The average temperature and apparent viscosity

of the Newtonian fluid for the entire domain at the breakthrough time were calculated and shown

in Fig. 7(a). The same was also calculated for the non-Newtonian fluid and shown in Fig. 7(b).

20



For the Newtonian fluid, the relation between the average temperature and the flow rate exhibits

an S-shape, ranging from diffusion-dominated to advection-dominated thermal transport. Corre-

spondingly, the effective viscosity at the breakthrough point decreases with increasing flow rate

(hence, the increased average temperature and shear rate).
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For the non-Newtonian fluid in the spatially homogeneous network, shown in Fig. 7(b), the

average temperature correlates positively with the flow rate up to 1.0 m3/s, after which the average

temperature slightly changes with the increase of flow rate. For the flow rates larger than 1.0 m3/s,

heat transfer is advection-dominated. Hence, further increase in the flow rates slightly enhances

the broadness of the shear stress distribution in the pore space, and thus the fingering would be en-

hanced slightly. Due to increased advection, the radially-averaged temperature, shown in Fig. 5(b),

also indicates that the location of the transition front decreased with increasing flow rate lower than

1.0 m3/s, due to the increased advection. A wider front is, however, observed for flow rates larger

than 1.0 m3/s. Correspondingly, the apparent viscosity at the breakthrough point decreases with

increasing flow rate up to 1.0 m3/s. Afterward, the apparent viscosity is affected only weakly by

the flow rate, due to limited spatial variability of the local viscosity.

The effect of spatial heterogeneity on average temperature is not significant at small flow rates,

which is the diffusion-dominated region of thermal transport. With the formation of fingers at
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higher rates, however, the difference between average temperature in the spatially homogeneous

and heterogeneous porous media is significant. Contrary to the aforementioned and described S-

shape profile for the Newtonian fluid, the dependence of the average temperature and apparent

viscosity on the flow rate exhibits non-monotonic behavior, shown in Fig. 7(b). By increasing the

injection flow rate from 0.01 to 0.75 m3/s, advection is enhanced but the diffusion still plays an

important role by making the thermal pattern more uniform. In this range, the average temperature

at the breakthrough point increases with the increasing flow rate. For flow rates larger than 0.75

m3/s, thermal transport is controlled by advection, giving rise to specific thermal patterns. More-

over, increasing flow rate results in a further heterogeneous, fractal-like thermal pattern due to

shear thinning. Correspondingly, the apparent viscosity reaches its lowest value at around the flow

rate of 0.75 m3/s. The transition length from the maximum temperature to the minimum value,

shown in Fig. 5(b), becomes shorter with the increasing flow rate but smaller than 0.75 m3/s, and

then becomes longer because of the more nonuniform pattern of flow rates larger than 0.75 m3/s.

To demonstrate the variations of shear stress and viscosity of the non-Newtonian fluid at pore-

scale, their statistical distribution at the breakthrough time for injection flow rates, ranging from

0.01 mm3/s to 10 mm3/s, are shown in Fig. 8. Fig. 8(a) indicates that the shear stress of the non-

Newtonian fluid increases with increasing injection rate, as expected. The difference between the

spatially homogeneous and heterogeneous networks in terms of shear distribution is not signifi-

cant, especially when the injection flow rate is less than 0.1 mm3/s. On the other hand, heat transfer
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is significantly influenced by the injection flow rate and the structure of the network, which led

to significant variation in the pore-scale viscosity under various conditions, as shown in Fig. 8(b).

For an injection flow rate of 0.01 mm3/s, the smooth temperature pattern results in a monomodal

distribution of the viscosity, regardless of the network heterogeneity. When advective transport

becomes significant (with injection flow rate larger than 0.1 mm3/s), a bimodal distribution of the

pore-scale viscosity is developed. The small-viscosity peak represents the reduced viscosity due

to the increased temperature and shear stress. The high-viscosity peak represents those parts of

the domains that do not experience increased temperature. With increasing flow rate, the popu-

lation of the intermediate pore-scale viscosities between two peaks decreases in size due to the

decreasing ratio of the pores with transitional temperature (between the highest and lowest tem-

peratures). Thus, the results imply that in such circumstances, the effect of temperature on the

viscosity is much stronger than the corresponding effect of shear-thinning rheology for the chosen

fluid properties and flow conditions. Further details are given in Appendix D. In the heterogeneous

pore space, the fraction of pores with lower viscosities is smaller than that in the homogeneous

network, which is caused by the stronger thermal fingering.

Our results imply that in the presence of heterogeneity and for a shear-thinning fluid, for appli-

cations such as thermal enhanced oil recovery, it is important to design the injection flow rates in

a way that thermal fingering is minimized and a lower effective viscosity, similar to what Fig. 7(b)

indicates, is achieved.

IV. CONCLUSIONS

To study thermal-viscous fingering instability in porous media, a pore network model and a

computational algorithm were proposed in order to simulate time-dependent thermal transport in

flow of a non-Newtonian fluid through 3D unstructured networks at centimeter level with millions

of pores.

Both spatially-uncorrelated and correlated pore networks in a radial geometry were generated

with identical pore-size distributions and topological structures. We also proposed a method for

calculating the control volume of each pore body in the 3D unstructured networks. For the non-

Newtonian fluid, a thermal Meter equation was proposed to express the relation between the vis-

cosity and shear stress under varying temperatures. We then simulated the dynamics of coupled

fluid flow and thermal transport for both Newtonian and non-Newtonian fluids under the assump-
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tion of local thermal equilibrium. A simple analytical model, based on energy balance, for the

position of thermal front in the radial geometry was also proposed. The fully GPU-parallelized

algorithm made it possible to quickly carry out the simulation of thermal transport.

We analyzed the effect of the injection flow rate and heterogeneous morphology of the pore

space on thermal transport and the resulting patterns for both Newtonian and non-Newtonian flu-

ids. After comparing the thermal front obtained by numerical simulation with the predictions of

the analytical model in a spatially uncorrelated network, the thermal patterns at the breakthrough

point were analyzed for the Newtonian fluid, assumed to be water, and a crude oil that represented

the non-Newtonian fluid, in both spatially heterogeneous and homogeneous porous media. Both

the structural heterogeneity and the non-Newtonian nature of the fluid result in thermal-viscous

fingering instability. The thermal fingers due to the heterogeneity have a preferred direction, re-

flecting the geometrical structure. Thermal fingering in the uncorrelated network due to the non-

Newtonian rheology of the fluid and its associated shear rate-dependent viscosity propagate in all

directions and with a smoother front. The fractal dimension of the thermal fronts indicates that the

two phenomena enhance each other. For the flow of the Newtonian fluid in all networks, as well

as the non-Newtonian fluid in the spatially-uncorrelated network, the dependence of the average

temperature at the breakthrough point on the injection flow rate exhibits an S-shape form. For

flow of a non-Newtonian fluid through a correlated porous medium the average temperature and

the apparent viscosity follow non-monotonic dependence on increasing injection flow rates.

Appendix A: Validation against experiment and analytical model

For validation, to our knowledge, there is no experimental work in the literate that reports on

transient non-Newtonian fluid flow under non-isothermal conditions, presumably due to experi-

mental complexities. There have, however, been some experimental studies that were focused on

isothermal non-Newtonian fluid flow through porous media. Thus, we validated our model with

the experimental data reported in Eberhard et al. 72 . The porous medium was made of packed

monodisperse spherical beads.

The network was extracted from the generated packed bed, shown in Fig. 9(a). To accurately fit

the absolute permeability of the bead packing using the pore-network model, the pore sizes were

increased by a factor of 1.07. The measured bulk rheology was fitted using the MMM as shown

in Fig 9(b). With the bulk rheology data and pore-network morphology, the non-Newtonian fluid
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about the sample can be found in Eberhard et al. 72 . (b) Fitted rheology using MMM. (c) Comparison

between simulation results and experimental data.

flow in the pore network was simulated under isothermal condition using various injection rates.

As a result, we established the relation between the Darcy velocity and effective viscosity of the

non-Newtonian fluid flow through the porous medium, and compared the results with experimental

data as shown in Fig. 9(c). The results clearly demonstrate that the model is capable of reproducing

the experimental data.

Given that we perform simulation for non-isothermal conditions, we wish to demonstrate the

effect of heat exchange between the solid and the fluids and the change of rheology due to the non-

isothermal effects. Thus, we propose a simplified analytical solution for the location of thermal

front, by excluding dispersion, in a spatially-uncorrelated pore network in order to compare the

front compared by the numerical simulation, as shown in Appendix A. The energy balance was

checked for all the simulations by comparing thermal energy entering and leaving the system, i.e.,

Ein−Eout, versus additional internal energy Eadd in the entire domain Ω.

∆E = Ein−Eout =
∫ t

0
Qinρ f c f

p(Tin−Tout)dt, (A1)
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Eadd = ∑
i∈Ω

[
(1−φi)Viρscs

p +φiViρ f ic
f
pi

]
(Ti−T0). (A2)

The quantitative relative error was less than 0.01 percent for energy balance in all the simula-

tions. Additionally, for further assessment, an analytical expression for thermal front, Eq. (A4), is

proposed to compare its prediction against the simulation results. To be able to use the analytical

expression, the densities and heat capacities of the fluids and the solid phase were assumed to be

constant (values taken at 298 K).

The energy storage capacity of the water-saturated network was calculated based on,

Ctol = (1−φ)V ρscs
p +φV ρ f c f

p. (A3)

We set the constant boundary flux at Qin = 10.0 mm3/s at the inlet boundary (center of the

system). The initial temperature of the porous medium was 298 K, and the injected fluid had a

constant temperature of Tin = 373 K. The temperature of system near the inlet boundary quickly

increased to 373 K. Thus, the energy contributed by diffusion between the injected fluid and the in-

let pore units was ignored, meaning all the in-flow energy (Ein) in the domain is due to convection.

The energy adding rate, defined as the difference between in-flow and out-flow energy (Eout), was

calculated using Eq. (A1). Assuming a sharp thermal front in the spatially homogeneous porous

medium, the front location is calculated by,

L f =

√
∆E

Ctol(Tin−T0)

(
R2

out−R2
in

)
+R2

in

=

√√√√ Qinρ f c f
pt

(1−φ)V ρscs
p +φV ρ f c f

p

(
R2

out−R2
in

)
+R2

in,

(A4)

where L f represents the front location (radial distance from the center), and φ and V represent the

porosity and bulk volume of the network, respectively.

The porosity of the uncorrelated network was about 0.184. Therefore, energy storage capacity

of the water-saturated network, Ctol, turned out to be 1.61 J/K. So long as the temperature of

the outlet pores was higher than the initial temperature (Tout = 298K), we had ∆E = 3.15 J/s.

For the uncorrelated network, the front locations were calculated using Eq. (A4) at a given time,

represented by the vertical solid lines in Fig. 10(b). Since the porous media have a distribution

of the pore sizes, they lead to a distribution of advective force and thermal dispersion. Thus, the
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FIG. 10. Dynamic evolution temperature in (a) the Newtonian and (c) non-Newtonian fluids. The perfor-

mance of the analytical expression for purely advective heat transfer based on Eq. (A4) (vertical lines),

is compared with the average front temperature obtained by simulations for (b) Newtonian and (d) non-

Newtonian fluids.

temperature profiles in porous media are not similar to a step function. The middle point of the

smeared front represents the purely advective heat transfer (without dispersion) that is presented

in Fig. 10(b). With the same boundary conditions as before, we simulated the flow of crude oil and

heat transfer in the identical uncorrelated network. As shown in Fig. 10(c), the transition front for

the crude oil with shear-thinning properties is much longer than that of water. We also estimated

the average front location by Eq. (A4), shown as the vertical lines in Fig. 10(d). Clearly, the

analytical equation failed to accurately predict thermal fingering in non-Newtonian heat transfer

in the porous medium studied.

Appendix B: Comparison of thermal fingering in 3D structured and unstructured networks

To compare the effect of a structured and unstructured morphology on heat transfer in flow

through the pore networks, we generated both networks with volume of 1 cm3. The spatial cor-

relation length in the correlated network was 1/20 of its linear size, as shown in Fig. 11. The

uncorrelated networks, shown in Figs. 11(a) and (b), had identical pore-size distribution pattern.
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FIG. 11. (a) The structured and uncorrelated networks, (b) the unstructured and uncorrelated network, (c)

the structured and correlated network, and (d) the unstructured and correlated network.

The radius of correlated networks, shown in Figs. 11(c) and (d), are also assigned based on the

same radius field. To guarantee that heat transfer is simulated in the networks with the same abso-

lute permeability, the pore sizes of the structured network were re-scaled using a scaling factor of

0.91. The absolute permeabilities of uncorrelated and correlated networks were 138 and 145 mD,

respectively. The thermal pattern and average distribution of temperatures were analyzed for four

networks saturated with the non-Newtonian fluid, shown in Fig. 12. Although the structured net-

works could produce qualitatively the temperature patterns, the upscaled properties do have clear

difference with those of the unstructured networks, especially the change between uncorrelated

and correlated networks.

Appendix C: Effect of solid phase on heat transfer

To indicate the importance of accurate simulation of heat transfer between the fluid and solid

phases, we compare the simulation results with and without heat transfer in the solid phase, as

shown in Fig. 13. Based on the temperature field at the breakthrough time, we conclude that heat

transfer only in the fluid phase fails to predict the dynamic thermal front, as the heat capacity and

conductivity are highly dependent on the solid ratio of each control volume.
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FIG. 13. The temperature distribution at breakthrough time in the spatially correlated network under flow

rate of 10.0 mm3/s with heat transfer (a) in both solid and fluid phases and (b) only in fluid phase. (c) The

comparison of the local viscosity distribution in the two systems.

Appendix D: Effect of temperature- and shear-dependent viscosity on thermal fingering

For the non-Newtonian fluid, the effect of temperature- and shear-dependent viscosity on ther-

mal fingering was studied with an injection flow rate of 1.0 mm3/s. The comparison indicates that
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the effect of temperature on thermal fingering is much stronger than the rheology of the shear-

thinning fluid under the flow conditions that we simulated.
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FIG. 14. (a) Rheology of the non-Newtonian fluid under the temperature of 298 K, and the distribution of

the local shear stress with an injection flow rate of 1.0 mm3/s. (b) The comparison of the local viscosity

distribution under three conditions, namely, 1) the temperature- and shear-dependent viscosity, 2) the shear-

dependent viscosity under the temperature of 298 K, and 3) the temperature-dependent viscosity ignoring

shear-thinning property.

Appendix E: Comparison between shear-thinning and shear thickening fluid

In the present work, the results are based on a shear-thinning fluid. We anticipate that the

rheology of shear-thickening fluids should reduce the impact of the heterogeneity on thermal fin-

gering. Thus, we simply generated two inverted rheologies and simulated heat transfer in two

fluids, assuming that the viscosity is dependent on the shear stress. The temperature fields and

corresponding distributions of local shear stress and viscosity are shown in Fig. 15. The average

temperature under the conditions of Fig. 15(a) is 324.9 K, and 330.4 K for Fig. 15(b). The fields

are binarized using a threshold of median temperature. Then the fractal dimension was calculated

for the binary images, obtaining 1.891 and 1.922, respectively. Thus, the simulations indicate that

shear-thickening rheology weakens the fingering.
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