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Abstract: 0.5BaTiO3–(0.5 − x)BiMg1/2Ti1/2O3–xNaNbO3 (x = 0.10–0.30) ceramics were processed via
a conventional solid state sintering route. X-ray diffraction analysis and Raman spectroscopy showed
the formation of a cubic perovskite structure. Microstructural analysis of the samples revealed
densely packed grains. The addition of NaNbO3 resulted in the enhancement in dielectric properties
as a function of temperature. Relative permittivity decreased from 850 to 564 (at room temperature)
with an increase in x; however, the stability in dielectric properties was improved with an increase in
NaNbO3 concentration. At x = 0.25, relative permittivity (εr) was ~630 ± 15% in a temperature range
of −70–220 ◦C with low dielectric loss (tan δ) < 0.025 (−57 to 350 ◦C) and high recoverable energy
density ~0.55 J/cm3 which meet the criterion for X9R MLCC applications.

Keywords: BaTiO3; capacitor; dielectric properties; X9R

1. Introduction

The electronic industry is growing rapidly and demands new materials with improved
performance for various applications. Among the electronic components, the capacitor
is one of the most widely used components for both low temperature, as well as harsh
environment applications [1–4]. The present market of ceramic capacitors is dominated by
the multi-layer ceramic capacitor (MLCC), having the advantages of both high volumetric
efficiency and small size [5–7]. Trillions of pieces are fabricated every year which makes
it one of the most widely used components used in electronic circuits [8]. The major
characteristics required for capacitor applications are temperature stable high relative
permittivity (εr), high breakdown strength (BDS) and low dielectric loss (tan δ) [9]. The
Electrical industries association designated the upper and lower working temperature limit
for the ceramic capacitor as X7R, X8R and X9R, where ‘X’ represents the lower working
temperature limit which is −55 ◦C, the mid digit stands for 125, 150 and 200 ◦C temperature
for 7, 8 and 9, respectively and ‘R’ represents minimum variation in the capacitance
value (i.e., ±15%) [10,11]. On the other hand, for high temperature electronics (HTE),
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the electronic equipment has to operate at a high temperature greater than >200 ◦C. For
example, the electronic anti-lock brake system on wheels operates across the temperature
range of 150–250 ◦C, some parts working near the engine operate near 200–300 ◦C and
some other applications, such as down-hole drilling and aerospace [12–15].

High εr dielectrics are preferred for capacitors and there are some promising lead-based
ceramics that have a high εr value in the range of 10,000–25,000, such as Pb(Fe1/3W2/3)O3,
Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3 but lead is considered toxic and hazardous to
human health [16–23]. Therefore, the use of lead is constrained by the European Union.
Thus, BaTiO3 (BT) remains the only choice that is considered as a cornerstone for the
fabrication of the ceramic capacitor. BT has a perovskite structure and accommodates
many cations at both the A- and B-site [24,25]. In industrial applications, Ho3+ and Eu3+

doped BT is used in MLCCs for X7R and X8R applications; however, the operating temper-
ature windows need to be extended. The major problem with the pure BaTiO3 is a sharp
Curie temperature (Tc) near 120 ◦C and a high sintering temperature ~1350 ◦C. Gener-
ally, Bi-based perovskites are useful in lowering sintering temperature and broadening
of Tc [26–28]. The binary solid solution (1 − x)BaTiO3–xBi(Mg2/3Nb1/3)O3 (BT-xBMN)
ceramics has been reported [29] to possess a temperature-stable relative permittivity of
Er = 940 ± 15% across 34 to 550 ◦C and tan δ < 0.025 (74–455 ◦C). Among such binary
solid solutions, (1 − x)BaTiO3–xBiMg1/2Ti1/2O3 (BT-BMT) was extensively investigated,
and therefore, is of great interest [30–37]. Zhang et al. [30] investigated BT-xBMT solid
solution for x = 0 to 0.8 and reported high Er values (1500–3000) which attracted consid-
erable attention from researchers. Besides, NaNbO3-modified 0.75BT-0.25BMN which
exhibited Er = 840 ± 15% in the temperature range of −62 to 192 ◦C with low tan δ < 2%
across −28–374 ◦C was reported by the authors [38]. Still, BT-BMT-based ceramics are of
great interest for capacitors and high energy density storage applications [39–41]. Recently,
La-modified BT-BMT was reported to exhibit Er = 572 ± 15% over the temperature range
−70–238 ◦C [42]. The addition of NaNbO3 (NN) was very useful in extending temperature
stability below room temperature and energy storage applications [43,44]. In the present
study, we report the enhanced performance of BT-BMT by substituting Na+ and Nb5+ in
the host lattice.

2. Materials and Methods

0.5BaTiO3–(0.5 − x)BiMg1/2Ti1/2O3–xNaNbO3 (BT–BMT–NN) ceramics with x = 0.10–0.30
were processed through a solid-state sintering route. Reagent grade (purity > 99%, Sigma
Aldrich) raw chemicals BaCO3, Bi2O3, TiO2, MgO, Na2CO3 and Nb2O5 were dried to re-
move moisture and hydroxides and then weighted according to the molar ratios of batches.
Powders were mixed/milled using a planetary ball mill (Fritsch, pulverisette 7600 rpm,
Germany) in isopropanol for 6 h. The mixed powders were calcined at 900 ◦C for 4 h
and then re-milled to dissociate agglomerates. The calcined powders were pressed into
cylindrical shape pellets using a 10 mm die, at a pressure of 100 MPa and sintered in the
temperature range 1050–1125 ◦C for 2 h.

The density of sintered samples was measured by the Archimedes principle. Phase
analysis was carried out at room temperature using a PANalytical X’pert Pro X-ray
diffractometer (United Kingdom), using CuKα radiations. Raman spectra of the sam-
ples were collected at room temperature using a Renishaw In Via Reflex microspectrometer
(United Kingdom), using a 514 nm Ar laser at a power between 30 and 300 mW. The sam-
ples were thermally etched at a temperature 10% lower than the sintering temperature
(990 ◦C for 15 min). The microstructure of the polished and thermally etched samples was
analyzed using a JEOL (JSM-6460LV) scanning electron microscope (Japan). For electrical
measurements, pellets were coated with silver on both sides. Dielectric properties as a
function of temperature were measured using an Agilent 4284A LCR meter (United States).
Capacitance (Cp) and tan δ were measured at 1 kHz, 10 kHz, 100 kHz and 1 MHz in the
temperature range from −70 to 500 ◦C. Low-temperature data were collected in liquid
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nitrogen using a homemade system. Polarization-electric field (P–E) loops were measured
at a frequency of 10 Hz, using a modified Sawyer–Tower circuit at room temperature.

3. Results

X-ray diffraction (XRD) patterns of BT–BMT–NN, sintered at 1100 ◦C for 2 h are shown
in Figure 1a. The diffraction patterns matched JCPDS # 131-0174, having a cubic perovskite
structure and the patterns were indexed accordingly. No evidence of secondary peaks was
observed within the detection limit of the in-house XRD facility, suggesting that Na and Nb
cations were completely soluble in the BT-BMT solid solution. The peaks slightly shifted to
high 2θ values (higher d-spacings), indicating a decrease in unit cell volume, which may be
due to the replacement of slightly larger Bi ions (rXII = 1.38 Å) by Na ions (rXII = 1.34 Å)
at the A-site, and Mg ions (rVI = 0.72 Å) by Nb ions (rVI = 0.64 Å) at the B-site of the host
lattice [45]. Figure 1b shows the enlarged view of (200) reflection which shows no splitting,
indicating the cubic-like structure.
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Figure 1. (a) XRD patterns of BT–BMT–NN ceramics, sintered at 1100 ◦C for 2 h, (b) enlarged (200) peak.

For a better understanding of the local structure, room temperature Raman spectra of
BT–BMT–NN ceramics were recorded as shown in Figure 2, which is consistent with the
data previously reported for BT-BMT [34]. The Raman bands were overlapped and became
broader with the increase of NN content, indicating the disorder in the lattice induced by
the multiple ions at the same site [46]. For a better illustration, the Raman spectrum was
fitted using a simple Lorentzian function, as shown in Figure 2. The first sharp peak at
117 cm−1 and the second band near 180 cm−1 was related to vibrations of A-site cations
and displacement [47]. The band near 180 cm−1 shifted to lower wavenumber, probably
due to the incorporation of Na+ for Bi3+ with different ionic sizes [45]. In pure BT, a
sharp peak appears near 305 cm−1 along with a dip near 180 cm−1 which is indicative of
long-range ferroelectric order. In the present case, a relatively broader band at 335 cm−1

and another band near 281 cm−1 appeared (polar BO6 octahedral vibrations), and starts
merging with increasing x-value [48]. This behavior may be associated with the destruction
of ferroelectric order and the broadening may be related to the formation of polar-nano
regions due to multiple cations at the same site of the lattice. The Raman bands in the
range 400 to 650 cm−1 are often related to the vibrations of oxygen octahedrons [46]. In the
present case, two different bands at 497 and 575 cm−1 were observed which merged with
an increase in x. The possible reason for this behavior may be the stretching symmetric
vibrations of TiO6 and MgO6 octahedra because ionic radii difference is large between
Ti4+ and Mg2+. The substitution of Nb5+ resulted in a broad band which may be due to
decreasing amount of Mg2+ because the ionic radii difference between Nb5+ and Ti4+ is
small. The modes at 724 and 773 cm−1 merged to form a broad band. This band is known
as A1g mode which is associated with the breathing of BO6 octahedra [49]. A1g mode is
symmetric and Raman active in A-site doped BT but the splitting comes from the different
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octahedra because the frequency of this mode changes with change in ionic radius which
creates asymmetry [50].
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Figure 2. Raman spectra of BT–BMT–NN ceramics.

The samples were sintered in the temperature range 1050–1125 ◦C for 2 h (Figure 3a).
For all samples, the bulk density increased with an increase in temperature from 1050 ◦C.
For a sample with x = 0.10, maximum bulk density was observed at 1075 ◦C which decreased
with a further increase in temperature. For samples with x > 0.10, the highest bulk density
was observed at a sintering temperature of 1100 ◦C. The decrease in bulk density above
optimal sintering temperature may be due to the volatile nature of bismuth or abnormal
grain growth. However, for a better comparison, the samples sintered at 1100 ◦C (optimal
sintering temperature) were selected for investigation because bismuth is volatile and a
slight temperature change may affect the properties of the sintered ceramics. Figure 3b
shows a variation in bulk density versus x (NaNbO3 concentration). The bulk density
decreased with an increase in x which may be due to the decreasing amount of bismuth as
the atomic weight of bismuth is higher than sodium.
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Figure 3. Bulk density versus (a) temperature, and (b) NaNbO3 concentration (x) in BT-BMT.

Figure 4 shows the SEM images of the polished and thermally etched BT–BMT–NN
ceramics sintered at 1100 ◦C for 2 h. All the samples showed well-packed grains and dense
microstructure, consistent with the high relative density (>94%). The average grain size was
found to be quite small of 1–1.8 µm for samples with x = 0.10 to 0.30 (See Supplementary
Materials Figure S1), which is, technologically, of great importance for the fabrication of
MLCCs [51]. The average grain size and relative density of all the samples sintered at
1100 ◦C are given in Table 1. For a sample with x = 0.25, both the relative density and grain
size were larger.
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Table 1. Relative density and average grain size of BT–BMT–NN ceramics.

x Relative Density
(%)

Average Grain Size
(µm)

0.1 96.0 1.8
0.15 96.8 1.77
0.2 94.4 1.20

0.25 97.8 1.44
0.3 96.5 1.06

The εr and tan δ as a function of temperature for BT–BMT–NN ceramics measured
at different frequencies from 1 kHz–1 MHz in a temperature range of −70 to 500 ◦C is
shown in Figure 5a–e. The temperature of maximum εr (Tm) drastically decreased from
91 to −40 ◦C, with an increase in x from 0.10 to 0.30. A similar effect of decreasing Tm
was reported for NaNbO3-modified BaTiO3-Bi(Zn0.5Ti0.5)O3 solid solution [52]. εr linearly
decreased with an increase in Na+ and Nb5+ concentration which encouraged the short-
range ferroelectric behavior. A similar trend was observed for (1 − x)NaNbO3–xBaTiO3
ceramics [53]. Another reason for the decrease in εr may be the smaller polarizability of
Nb5+ than Ti4+. As evident from the P-E loops and Raman data, the crystal structure is
cubic but still, εr is higher than centrosymmetric structures, such as CaTiO3 which may be
attributed to the formation of polar nanoregions (PNRs) due to the occupancy of multiple
cations at the same site [31].
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Tm shifted to a lower temperature and the thermal stability of Er was enhanced with
the increase of NN content. Dielectric properties of BT–BMT–NN ceramics are listed in
Table 2 while the variation in εr as a function of temperature is shown in Figure 5f. The
sample with x = 0.10 possesses Er = 850 ± 15% across −8 to 450 ◦C and tan δ < 0.025
(25–412 ◦C). Upon further increase in x, lower temperature stability was enhanced below
room temperature, but high temperature stability degraded. An optimum set of dielectric
properties were achieved for x = 0.25, i.e., Er = 630 ± 15% stable over the temperature range
−70 ◦C to 220 ◦C, and the dielectric loss was <0.25 over the operating temperature range
−57–350 ◦C which satisfy the requirements of the X9R type capacitor.

Table 2. Dielectric properties of BT–BMT–NN ceramics.

x Tm
(◦C) Er(max) Er(RT)

T–Range (◦C)
Er(RT) ± 15%

(1 kHz)

T–Range (◦C)
tan δ < 0.025

(1 kHz)
Ref.

0.1 ~91 890 850 −8–450 25–412

This work
0.15 <66 722 710 −20–390 −3–418
0.2 <28 656 655 −43–305 −26–400
0.25 0 641 630 −70–220 −57–350
0.3 −40 593 565 −70–165 −62–357

Nb-doped BT-BMT – – 764 −55–200 ~−25–200 [36]

La-doped BT-BMT 0 >500 572 −70–238 −40–300 [42]

BT-BiYO3 ~50 417 −55–200 100–200 (<0.01) [54]

BNT–SrZrO3–NN – 1250 1170 −55–545 −55–300 [55]

A dispersion below Tm was observed which is indicative of the “relaxor behavior”.
The relaxor behavior of ferroelectric materials can be effectively described with the help of
modified Curie–Weiss law [56,57].

1
ε
− 1

εm
=

(T − Tm)
γ

C
(1)

Here, ‘εm’ represents maximum εr, ‘γ’ and ‘C’ are constants. The value γ varies from
1–2 for normal to ideal relaxor ferroelectrics. γ is obtained from the slope of log(1/E − 1/Em)
versus log(T − Tm) as plotted in Figure 6. The value γ ranges from 1.32 to 1.54, indicating
relaxor-like behavior. It has been reported [48,58] that cation disorder at the A- and/or
B-site is responsible for relaxor behavior, in agreement with the Raman studies (Figure 2).
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Figure 7 shows P-E loops for BT–BMT–NN samples measured at 75 kV/cm. The
samples with x = 0.30 exhibited the lowest maximum polarization, Pm = 3.43 µC/cm2

while the maximum Pm value of 6.4 µC/cm2 was obtained for samples with x = 0.10.
Similar behavior was observed in Na+ and Nb5+ doped Bi0.5Na0.5TiO3-BT ceramics [59].
The decrease in polarization may be due to the decrease in polarizability of the constituents.
However, a non-linear trend was observed in Pm values for samples with x = 0.2 and
0.25. For both these two samples, an opening in the P-E loops was also observed which
shows a weakly nonlinear dielectric behavior. The same phenomenon was observed for
(1 − x)BT–xBMT (x = 0.4) ceramics which was attributed to the increase in the conductive
tan δ at room temperature [33]. For BT–BMT–NN with x = 0.20 and 0.25, tan δ is very
low (<0.025) at room temperature; therefore, the origin for the observed weak non-linear
behavior needs further investigation. The recoverable energy density (Wrec) calculated
for the sample with x = 0.10 was 0.5 J/cm3 at an applied electric field of 110 kV/cm. A
maximum Wrec of 0.55 J/cm3 and an efficiency of 82% were observed for the sample with
x = 0.25 at 150 kV/cm.
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