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ABSTRACT 

A method for evaluating transport in non-symmetric 
systems is developed and applied to a previously un
studied tipple collisionality regime of tokamaks. This 
collisionality regime, the ripple plateau, is the 
regime of primary importance both for present day and 
reactor scale tokamaks. The results can bo directly 
applied to related systems like the toroidal z pinch. 
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I. INTRODUCTION 
The lack of toroidal symmetry in tokamaks due to the finite 

number of toroidal field coils results in enhanced transport 
coefficients. The enhancement has been evaluated by a number 
of authors. Unfortunately, the ripple collisionality regime 
of most importance to tokamaks, the ripple plateau, was not 
studied, in this paper, a general method of calculating trans
port coefficients in non-symmetric geometries is developed and 
the ripple plateau transport coefficients are evaluated. The 
methods developed here imply corrections are required to the 
earlier work on the banana drift ' transport. However, these 
results will be given in a later paper. The methods of 
evaluating the transport can be applied to other non-syranetric 
devices like stellarators and the results are given in a form 
which is applicable to other systems closely related to the 
tokamak, like the toroidal z ;>inch. 

The fundamental problem in the study of ripple transport 
is the separation of the ordinary neo-classical and the ripple 
effects. In practice, this means separating the particle drift 
into a part which returns to the same magnetic surface after a 
bounce cycle of the trapped particles' and a part which does not. 
The drift of passing particles will be shown not to be signifi
cantly affected by ripple provided good magnetic surfaces exiGt. 
This separation of neo-classical and ripple effects is the sub
ject of Section II, 
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In Section III the ripple plateau transport coefficients 
are evaluated. Although the transport coefficients Maintain 
constant values, as a function of collision frequency through" 
out the ripple plateau, the mathematical method changes, in 
Section III A, the more collisions! ripple plateau is evaluated. 
In that section we assume the collision frequency v lies in the 
range Nv/R >> v >> v#/<Nq)* with v the particle velocity, N 
the toroidal mode number of the ripple, v* - e v/qR the critical 
collisionality for the ordinary banana regime, £ the inverse 
aspect ratio, and R the major radius. In Section III & the less 
collisional part of the ripple plateau regime is evaluated 
assuming vA/(Nq)^ » v >> v#/CNq) . Tha dominant ripple plateau 
transport coefficient is the ion thermal conductivity which will 
be found to be Eq. 55 

K- a^ iUKcNpJ^ f | # 

with n the plasma density <6> twice the average of the ripple 
over the magnetic surface, p^ - v^/ (eB^/mc) the poloidal gyro-
radius, v ^ - (T/m/* the thermal velocity and B and B. the total 
toroidal component of the magnetic field. 
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XI. BASIC EQUATIONS 
The study of ripple diffusion is made easier by the 

separability of the ripple and neo-classical transport, in 
this section, the drift kinetic equation for a tokamak with 
ripple is broken into two equations 

Vlt* 7 F - C(P) , v R'Vf - C(f) . 

The first equation gives the usual neo-classical distribution 
function. The second equation give* the response of the dis
tribution function to ripple effect*. Remarkably, the separability 
of the kinetic equation is not based on the smallness of the 
ripple. The formalism developed in this section can be applied 
to other non-symmetric geometries such as the stellarator. 

To demonstrate separability, the drift velocity is written 

as 5 

v - -^-(S+$x p„S) (1) 

with ft. * V|./(eB/mc) . The derivatives of v(. are defined by the 
energy equation 

z 
E • if BWJI + pB + •* 

(2) 
with the energy and magnetic moment considered as constants. 
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To divide v into a neoclassical and a ripple part, coordinate* 
y , e , • , are defined so that 

B * Vf o x V* (3) 

and the field strength in the related syswetric systea depends 
only or> <i> and 6 . The quantity * is used to label the pressure 
surfaces and can be thought of ma the poloidal Magnetic flu** 
In a tdk&mak one would normally difine 6 so that the toroidal 
angle $ iB given by 

* - * 0 + q(*)0 

with q(<IO the safety factor. This choice is not required, however, 
by the formalism. Using vector identities one can write 

B = p B (7»x V f l) + ^ ^ o n + o V 9 

u u l-TO a w B*ve " B-70 
(4) 

Using B* (V<f>0* V*) = B , neoclass ica l and r ipple d r i f t v e l o c i t i e s 

are defined by 

V l ! | " - t f B - tV i lDcVel - & CvO x $ * )„. yi •* - -H»* *« l-i. t J ^ u « . » * — f i r V*)J (5) 

;»^[ S + '"(^^F ? e)] 
(6) 
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The justification of the division of the drift velocity 
into two parts requires an examination of the components of 
•+ •+ 
v ^ and v R as well a study of the drift kinetic equation. 
Retaining only the lowest nonvanishing terms in gyroradius to 
system-size 

W e = v^-76 - vR-V6 - v„ - ^ ( 7 ) 

v-V* = v^-V* + vR-7<|» , v-7*0 - v N c.V* o + v R.7* 0 • ( g J 

One also finds 

vuc *v vti ^S^aFLni g,$e J l ' 

^• ' •o- i iH ' I r th i—j3j -«] 

•*• * . S«7"e s [ B 2 1 
V v * o = vn — 3* [p|i | T H • U2) 

Assuming the distribution function is close to Haxwellian, the 
drift kinetic equation can be written 

vu ^ ? it + ****o 8 " ~ C ( F> - 4'*» 3 ^ ' (13) 
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The distribution function F is written in two parts F and f . 
The first function P is driven by the inhcnogeneous term 
v N c " 7 * a f j / 3 * * T h e •• c o n d function t is driven by vR*7f Bf^a* 
That is 

B'Ve 3P j. -»• *, 9F -- *f* 
'II B H + v-^0J|-c(P)-.^c.^Tf ( 1 4 ) 

The parallel motion v..B»V6/B is auch larger than the drift within 
the magnetic surface provided the poloidal gyroradius is small 
compared to system dimensions. This implies W<(> 0 can be neglected 
in the neoclassical equation. However, this term cannot be 
neglected in the ripple equation. The difference is the average 
of the driving term, v V ^ 3fj/&<C » over a particle's transit or 
bounce motion. It is zero for the neoclassical case but not for 
the xipple case. That is 

• + • • * • 1 B 

v •Vib — = — d6 

Of course only the transit or bounce average of v ? 4 affects the 
ripple kinetic equation and this average of v„-*V<f> is zero. 

Nw O 
If negligible terms are eliminated from the kinetic equations , 
it is clear they can be written in the desired forms 

v N C«VF - C(F) , v
R " V f • C(f) • (W) 
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The dependence of the particle and heat flux on F , f , v , 
and v R still requires clarification. Let us consider the particle 
flux. The total flux of particles crossing a i> surface is 

r T - I dS« |d* v vF B (17) 

with 

dS = ^ - d8 d*> , d'v - ij- - 2 — dE dy • (18) 
B'V6 ° m |vj,[ 

and F E the even part of the distribution function in v^ 
This total flux can be divided into a neoclassical and a ripple 
flux by using v»\ty « v„ »Vi|> + v_*Vi|> . The neoclassical flux turns 
out to depend only on the parallel current while the ripple flux 
is closely related to the pressure tensor or parallel viscosity. 
First consider the neoclassical flux, 

By integration by parts this can be written 

t + ( awe .* •*•' lvli' 3 F B 

The dri f t kinetic equation iaqpliea 

. , S.ve 8 F « - c(Fo: 
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with F the odd part of the distribution function in v„ o 
Therefore* 

r « i - {fc£ » N o m d V l 
but the parallel resistivity and current are given by 

1̂ Jn - - r « f v i i c « « ^ 

therefore 

rNC Jg» LB*V© " " ° J 

S i n c e n,.<7ii i s the same for electrons and ions the neoclassical 
flux is intrinsically afcipolar. A similar expression can be fo»mo. 
for the total radial enerqv flux. £he energy, flux, exoxeaaiao. 
depends on the parallel heat flux g. and the parallel thermal 
conductivity K„ • 

The ripple particle flux can be shown to depend only on t n© 
parallel viscosity of the plasma. ?o do this, the ripple 
velocity is written 
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Using 

Pll " | n v i ? F E d 3 v ' P i - " | W ^ E ^ (22) 

and integrating the term depending 3<B/B«76)/S$ by parts, 
one finds 

with dS = d9 d<|> /B*V8 . The pressure tensor P is defined by 

P - P.,bb + P, (8 -bb) 

with 6 the unit tensor. It can then be shown that 

• + - * •+ -*• 
If both s ides of t h i s equation are dotted with (Vi|> x V6}/B«V6 , 

one f inds 

Since the integral of a curl over a closed surface vanishes, 

r„ = § I dS • =?|_ x £? . V + enV*)] * (23) 
K e Jy L B * V 6 J 
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Since like particle collision* can cause an anisotropic 
pressure, the ripple transport is not intrinsically ambipolar. 

The expression for the total particle flux crossing a 
magnetic surface, r T " r N c + 7 R h a s a • i * P l e physical interpreta
tion. Consider the usual fluid equation 

7* + ^ v * B « n J + — 7 «P en (24) 

If this expression is crossed with V6/B«V8 , the result is 

B«ve C •^~f— * 
B«ve ["* + e l T ^ * ™ ] 

and 

r = 4 nvdS 

nc nJ + -ft *P + en V* 
(25) 

The drift kinetic and fluid results for the total transport agree 
except for the well known fact that drift kinetic approach leaves 
out the contribution of the perpendicular current to the transport. 
The various terms in the integral for r T represent toroidal torques 
placed on the species being calculated. To see this, note that in 
a torus a force f and the toroidal torque T are related by 
T = Rf. with R the local major radius. Consequently, f can be written 
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using V$ = 4>/R as 

f = TV<(> + f eve + f.v* 

and 

(A--*] T - V* - | y^r- x f | ' (26) 
B'Ve 

The evaluation of the particle and heat fluxes would be 
considerably simplified if only the neoclassical distribution 
function were needed to calculate the neoclassical transport and 
the ripple function for the ripple transport. Unfortunately, 
this is not in general true. However, one finds this separation 
is often a very good approximation. 

If one is using the approximation that the ripple transport 
depends only on the ripple distribution function, one can obtain 
the ripple diffusion coefficients by imagining a plasma in which 
the drift velocity is v R . This drift velocity has an interesting 
feature of being derivable from a Hamiltonian iv 1̂ ,8,4 
coordinates for an arbitrary magnetic field. Let p^ = p(|B/B*V0 . 
Physically p A is c/e times the poloidal angular momentum in the 
parallel motion. $he Hamiltonian is then c/e times mv./2 + uB + e* 
or 

H(* , 9 , *Q f pj = | £ (^PjVf VB + C* (27) 



-13< 

with 

• - i t 0 < *o - -H * < 2 e > 
The longitudinal invariant J is 

J = | I p #d6 « A mvjjdt (29) 

noting that the differential distance along the field lines is 
d£=- (B/B»V6)d6 . 

In this paper we assume exact magnetic surfaces exist. That 
is, we assume there exists a well-behaved and non-trivial 

+ •* function of position P such that B*VP-0 . Under this 
circumstance, we will show that highly passing particles have no 
systematic radial drift due to ripple, which generally implies 
they contribute negligibly to the ripple transport. What is 
actually shown is that highly passing particles have an additional 
constant of the motion besides E and u , which we call K . The 
drift velocity is parallel to the vector H=B+V* (a. B) . Since 
•*• 

H is divergence free it can be thought of as a magnetic field. 
•+ •+ In particular, its "magentic" differential equation H*VK=0 can 

be solved for its "magnetic" surfaces. In mechanics terminology 
K is just a constant of the motion. In toroidal symmetry, 
- * • • * • + + 

B * gV$ t V ^ V f and one can e a s i l y show K , which i s a function of 
V1* = • - 9P| r s a t i s f i e s the "magnetic" d i f f e r e n t i a l equation. The 
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constant of the motion » # is just (c/s) P # with P. the conserved 
toroidal component of the canonical momentum. Now the vector 
H is very close to the vector B for highly passing particles 
provided the gyroradius pfl in the field coisponent B*V6 is 
•mall compared to the system length scale a . Indeed, the 
difference between H and fi is of order (Pfl/a)<v/v.) . Con
sequently, if | v(J/v| » p e/a one expects H to have good surfaces 

-»• when B does. This condition is, of course, never satisfied for 
trapped particles near turning points. 

III. PLATEAU TRANSPORT 
The ripple transport coefficients in the collisionality 

regimes of primary importance for a tokamak reactor are of the 
plateau form. That is, they are independent of the collision 
frequency. The collisionality range of the ripple plateau regime 
is broad. For this regime, one requires the mean free path 
v/v be much longer than R/N with R the major radius and N the 

2 

toroidal mode number of the ripple, but v*/\> < (Nq) with 
v*=e v/qR , e the inverse aspect ratio, v the particle 
velocity, q the safety factor, and v the collision frequency. 
The factor v*/v is essentially the number of banana orbits a >J 
trapped particle executes before scattering into the passing orbit 
part of phase space. For calculation purposes, the ripple plateau 
consists of two collisionality regimes. In the higher collisionality 
regime, particles with small pitch, vH/v , suffer significant 
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collisions while crossing a single phase of the ripple, in 
the lower collisionality regis* r even particles with zero pitch 
can cross a nustoer of phases of the ripple without suffering 
significant collisions, however* significant collisional 
effects remain during the tie* trapped particles execute their 
banana orbit.*. Passing particLe* do not. contribute in any 
signficant way to ripple plateau transport. The division between 

u 
the two ripple plateau regimes is v#/v= (Nqr 

IIIA RIPPLE PLATEAU (MORE COLLISIONS. CASE) 
First, let us consider a heuristic derivation of the more 

collisional type of ripple plateau transport. The more 
collisional ripple plateau is caused by particles of such low 
pitch A » v( /v that they suffer significant collisions while 
crossing a single phase of the ripple. Let. k be the critical 
value of the pitch. The effective collision time x « is the 
time a particle with |A] < A remains at such low pitch. This time 

2 

is roughly te£f " * c / v with \» the SO0 collision frequency. The 
transit time through a phase of the ripple is i_-R/Ni v with 
R the major radius, N the node number of the ripple, and v the 
particle ve3<?oity. Equating T f t f f and T T and including a factor 
of two for future consistency, one finds A - (vR/2vN)^ 
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In a tokamak reactor X^ * 0.05 . The radial drift due to the 
ripple will be show* to be 

Pfl 
vr a N 6 IT v c o»< N*> 

with 6 the ripple magnitude and p 0 the gyroradiuc in the 
poloidal component of the magnetic field. The diffusion coefficient 
is 

D * Xc ( vr TT ) Z ' Teff 

" N 6 pe £ (30) 

The factor \ Q in D is the fraction of the particles participating 
in the transport and v T_, their radial excursion. Of course, 

TT" Teff"V V * 
Ripple transport is evaluated with the ripple kinetic 

equation 
vR-Vf - C(f) • 

The spacial coordinates we will use are * » 6 , * 0 so 
• + • • * • •*• B»v$ x 7<p . The ordinary toroidal angle is given by $ « $ + q(iji) 0 o o 
The coordinate • is physically the toroidal position of a field 
line when it crosses the mid-plane of the torus. 
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Aestnfting P e/« « 1 , v R-Ve is given by Bq. 7 and * n , w * 0 

if negligible throughout the plateau regis*. An expression for 
v»7*$ is given by Eq, 21 . Howeverf this expresaion can be oon-
siderably simplified. The tern proportional to *w. can be 
neglected, for trapped particles dominate the transport. The 
term 3*/3A is also negligible, but for a somewhat More subtle 
reason. Bq. 23 implies that the aagnituda of 7*P within a Magnetic 
surface, |7»P|S , is of order 

The factor of 6 , the ripple Magnitude, occurs in this formula 
due to the assumption that 7«p averaged over i Q vanishes; so the 
transport arises from the ripple variation of the field interacting 
with 7»p . The diffusion coefficient is given by Eg. 30 . Within 
a surfacR eV* is of the Baroe order of magnitude as ?»P due to Eq. 24; 
so e|7»|£, z |7.p| s/ n * 8(pe/a>TN/R . in this formula a is the 
minor radius and T the temperature. Therefore, 
(e aV3*J/(u9B/94 ) „ p„/a « 1 and 

vR.V> « | „ || : ( 3 1 ) 

in this paper, the magnetic field strength is assumed to be 

B - B (*) n + 2e sin2fl/2 +6 sin N*J (32) 
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with thu inverse aspect ratio e a function of ^ and the ripple 
6 a function of • and 6 . Using 4 « * + q if) 6 , one finus 

||- • H£B0coa (N+0+Nq6) • 

For trapped particles uB «»v /2 ; so 

V R»7* - N6 jg vzco»(M*0+Mqe) ' (33) 

In ordinary r , B , $ toro ida l coordinates 7+ = r RBfl j so the 

radia l r ipple d r i f t 

( v R ) r - $£•-£ vcos(N*) (34) 

with p e • v/(mc/eBe) 

While evaluating the more collisional part of the ripple 
plateau regime, two further approximation!' can be made. The 6 
dependence of v_ (E , p , ty , 8 , iQ) can be ignored and C If) can be 
approximated by 

C(f) - % $-4- (35) 
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with A*v (/v the pitch. The approximation that v(| varies slowly 
in 9 in comparison to its variation due to collisions, will be 
examined more carefully later. It is just this approximation 
which defines the transition from the more to the less collisional 
plateau regime. 

With the approximation* we have discussed/ the ripple kinetic 
equation can be written 

B«V8 3f M , mc i M „ „ , M A ,„„Ai _ v 3 f ,,c, 
vu ~r~ 3 f + N 6 2 e v T F ( * o + N q e ) i r r ( 3 6 ) 

Define g(s) , \ c , and a so 

*c ̂  q B've 3* L J Re 
(37) 

The critical pitch A c agrees with that of the heuristic derivation 
for B/B»ve z qR . The braclets t ... ] R e mean the real part. 
The ripple kinetic equation can then be simply written 

$-9- - isg - -1 (38) 
ds 
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which has the solution 

g(s) - j e x p t - j t 1 - 1 s t ) dt . (39) 

Actually only the even part in v.. of the distribution function 
contributes to the transport. Let G(s) be the even part of g (s) 

f* 3 j 
G(s) = cos(st)e~ t / 3dt HO) 

then the even part of the distribution function f„ is 

B*ve f
E '~& m q" re JT —xf- «•»•<,+ *9> MD 

The total particle flux crossing a magnetic surface is 

r * j dS * j v Rf &* v 

with dS= (7V/B-V6) de d* .He ignore the cross terms between 
neoclassical and ripple transport since the cos(N$) averaging 

* • makes these cross terms small. Using Eq. 33 for vn>Vty and Eq. 41 
for f 

x §§^4_2mr2dvdA . (42) 
B*ve 
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The pitch integral is just 

- 2jT | . in<$V Urt^dt 

w U < < 1 ) (43) 
c -

while the average of cos (»•) is juit % . Therefore, 

The derivative of a Haxwellien with respect to # with the energy 
held constant is 

and 

M M Jldn.ed* . 1 1 w 1 3] 1 dT*l f 

-g?r e [n ay + T a* + [ j ~r " i J f a*J *M 

f v

3 ^ M d

s

v = _16_ f T | V i f d n + 3 n d T + e n d l ] 
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One then finds 

_ f 56 d» Tfirf*„x 2 f«c] 1 B f Tl/*1 fdn . 3 n dT . en d*l 
(45) 

For the case of almost circular flux surfaces so lp-iptr) , RBg= dty/dr ( 

and q=rBVHB 9 , one can evaluate a diffusion coefficient 

D . [}]* N< f i

2>pJ I f - § - f <»-> E £ } V « ( 4 6 ) 

2 

with v t n * T / m and p^ * v t h / {eBg/mc) . The average r a d i a l p a r t i c l e 

f lux per u n i t a r e a , Y , i s t h e n ' 

v - n f d n . 3 n d T . e n d * l .>_. 

The total heat flux Q crossing a surface is 

Q « f dS • J v R[|mv 2 If a'v (48) 

which gives 

-irdftr'i^TiiU [i«h'%*l (49) 

and 

f f 1 z 1 s 1*M *" , 1 6 x 6 T [T 1 V * fcta . 5 n dT . en d*"| J l ? m v J v " 5 + d v ^ = ~ 2 [ i j Ld* + 2 T dTjT + "f-d* J 
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This means 

Q - _f d 0 d * o faM**! !* 1 ffiEf I - £ _ f*l V , l f 3a + 1 n fT + en a*) 

(50) 

For the almost circular flux surface case,the thermal conductivity 
" is 

The average heat flux per unit are* q is 

v fdT . 2 f _ 1 dn . „ d4 ) ] 
q - - K [ d r + ? l T 5 3r + e or j j ' 

(52) 

The ion ripple plateau diffusion coefficient exceeds that 
of the electrons by the square root of the mass ratio. Hence, we 
might expect ambipolarity would require the potential to adjust 
to hold in the ions. That is 

_ e d * 1 dn . 3 ̂  dT , 
T dr n dr 2 T or " l 5 3 ' 

If this occurs the ion heat flux q. is given by 
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with the ambipolar thermal conductivity K. = 2K/5 . That i s 

K A s s 3 ( 5 ] 5 S n N < f i I > P a ^ | - (55) 

With the transport evaluated, let us examine the approximation 
that y, varies slowly with 6 compared to its variation due to 
collisions. As is clear from the calculation, the only critical 
region of velocity space in near v.. = 0 . That is near the 
turning point of a particle. The turning point 
region remains critical even in the more collisionless regimes; so 
an expression for v.. is required which is valid near turning points. 
Letting v.. (0) = v. (6 = 0) , one finds from energy conservation 
Eq. 2 and the expression for B, Eq. 32 

v„ (0) f 
v l = v— - 2 e s i n e/2 - 6[sin(N* Q + Ng6) - s i n N<{>0 ] 

(S6> 

where we have assumed |v.(0)/vJ<<l . To simplify the expression 
for v.. , one would like to ignore the term proportional to 8 

2 

To obtain the correct 6 dependence of v., near a turning point at 
e = 8„ one must have the correct derivative of v(| 

there. 

4s [ir\ = ~ e s i n 6

T -Nqdcos(N<|> o + NqeT) 



-25-

Cleariy a* • (e/»q6) sin 9 T »u«t *» greater than one for the 
neglect of the terra proportional to 6 to be valid. The 
condition a* > 1 is also the criterion for the ripple to be too 
weak to form local magnetic walls. Although a* generally is not 
larger than one near 6*0 we assume it is larger than one 
over -ffipŝ  tri ttie % -range \i.e. tt»'E/lSq6» 1} . lifet T » otmtpfrxe 
the approximate expression for v.. 

[5_] . [H^.u^'w <". 
with c t f l l i s ional terms. Define s so v . /v = X s as before, tuen 

2 2 

near a turning point e„ , s • e sin 0^(9-- 9J/A • . The dominant 
contributions to plateau transport come from s - ! , 
9m -6 =3/Nt3 • The critical cross over in the v. variation due 
to collisions and colxisionless orbital effects is then 

E sin e_ _ 2 " V - *c " (58) 

Using V* = £ v/gR this condition can be put in a simpler form 

V,/V < !^a_r- (59) 
2Csine„) ; a 

for the colliaional part of the ripple plateau, v*/v is the 
approximate number of times a trapped particle bounces before 
scattering out of the trapped particle region of velocity spa£e. 
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IXIB. RIPPLE PLATEAU <LESS COLLISIONAL CASE) 
The physics and the calculational method changes considerably 

as we move from the more to the less collisional ripple plateau. 
However, the transport coefficients remain unchanged. The physics 
is this. As a particle goes along a field line it averages 
the radial drift due to the ripple to zero except near its 
turning points, its radial drift near the turning point Ar is 
just the radial ripple velocity (v R) r = N8(pg/R)v times the time 
to cross the last ripple which is TR«R/SV|t =qR/v/eNq . The 
reason v(|/v ~ /iiNq is that the particle is such a small distance 
from its turning point. Consequently, Ar s 6 p„ /Nq/e . The 
fraction of the particles which take part in the transport is 

h e. , for all trapped particles participate. Each time the particle 
bounces it picks up a random Ar for we assume there are enough 
collisions in a bounce time T„ = qR//e"v so the turning point of 
the banana 6 T has changed by more than 1/Nq . This means 

2 

v*/v < (Ng) is the criterion for remaining in the ripple plateau 
with \>* = E3'2v/qR. The diffusion coefficient is then 

D = e^tArJ/Tg 

as before. 
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The appropriate drift kinetic equation for the less 
collisional ripple plateau is 

"„2#H'V?*T-<=<£> MM 
with the collision operator of the Lorentz form 

c { f ) . vJjLf-vHf] • ( 6 1 ) 

Let 

A ( 8 ) m T V-'V* - 4 - r ^ S y - d6 . (62) 
J A R lVll I B.Vfl 

Physically A(6) is the displacement in i|» of a particle from its 
position at the turning point 6«6. . The important feature 
of A(6) is that it approaches a constant A* for |6„,-6| > 1/Nq . 
Letting o»Vu/|V|t| be the sign of the parallel velocity the drift 
kinetic equation becomes 

" H - H ^ - i i n x 5 ' " • '"» 
Over the range [8^ - 8\ 5 1/Nq collisions have little effect in 
this less collisional regime; so 

fff(e> = aA(e> - ^ + f?eT> , | e T - e | < JL . ( 6 4) 
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Por the collisional problem, 19_ - 9 | » 1/Nq , we write 

fff(0) = gff(B) [cxA, ̂  + fceT>] , |6 T-e| » ^ (65) 

with g„(9T) =1 . The plan is to substitute this expression for 
f into Eq. 63 to find ga(d) . Before doing this, we must evaluate 
A* and change from using p as a velocity variable to 6„ 

While carrying out the calculations, we assume 9 T > 0 . The 
calculations for 9 T < 0 follow in an obvious manner. 

To evaluate A* an expression is needed for v.. » This is 
given by Eq. 57 which we further simplify by assuming 6 £ 1 so 
sin 6/2 - 6/2 . The turning point 6 is then 

with vAO) - v..(6-0) . Hence 

(ij. }«£-.•, . C67, 

Using Eq. 33 for vR«Vi(i and assuming | 9 T | » | 9 T - 9 | » 1/Nq we have 

^ a f GT COS(H4 +Nq9) 
A* « N6 g , V

 2 *V T 2 -T <36 • (68) 
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L e t t i n g x = ttq(6T- 6) the in t egra l bacoaas 

;»„, c 0 s (N4 +Nqo> i f ™ . dx 
- 2 _ _ d8 - - i - co.(N*+Nq8T-x) ^ 

* ( m f ^ c o 8 ( N • 0

+ N ( ' e T , + 8 i n t N * o + ^ e T

) ] 

and 

A « = -2 - (^- ) % 6 " V ^ [ C M { N * o + ̂ V + »i*W0 + NqeT)] 
(70) 

The switch from y to 6_ as a coordinate is carried put using 
Eq. 66 and energy conservation. That is E«eeimv /4+ yB + e* 
with B the magnetic field at 8»0. This means 

B Qdy- -e | m v 2 B T d B T . m ) 

The velocity element d v for example can be written with 6„ positive 

d'v = -~— dEdy * |v„| 
- - S TO-eTdeT4*v*dv <72> 
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and the collision operator (Eq. 61) becomes 

c»-*l*-|(if*iM«i-f«; 
where we have assumed fi « B and uB <* mv 2/2 . 

We can now insert Eq, 65 for £ (8) into Eq. 63 , the kinetic 
equation. In doing this, we assume 3A/39 is zero for it has zero 
average over the range of G for which collisions are important. 
We also assume f(8 T) ~ &* as will be shown later and Nq >> 1 . 
Then 

ccfj «£l3i «' 2 | v | UJ e T 99* I °;-° !P°% (74) 

but 3 2f ( J/ae T
2 = - (Hq)2fc . This means 

For CT = + 1 , g becomes exponentially large; so £(8 T) must be 
chosen to make the factor multiplying it zero or f(8 T) =-A^l" H/3^ , 

The expression for ga for a = -1 becomes exponentially small before 
the other turning point is reached provided v^/v * (Nq) which is 
just the criterion for being in the ripple plateau regime. The 
interpretation is obvious. Particles with v.. > 0 (and hence o = l) 
have not yet hit the ripple near the turning point 6 T > 0 . 
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Particles will v|( < o have been deflected fro* the * surface by 
ripple an anount 2A A which depends sensitively on their turning 
point. Collisions intermix particles with different turning 
points causing the shift to go to xero away from the turning points. 

For purposes of calculating the transport, we will actually 
only iieea the even part of the distribution function (in v„),f B , 

and only for \ G T - 61 S 1/Nq . This expression is 

£E-- A*-5^ ' ( 7 6 ) 

The particle transport is using Eq. 72 for d v 

r de d<* - jf 
r = J MT * T^r^^^^lv^^Tf] ' < 7 7 ) 

Now (vR-V4')tB/B.ve)/lv||! --3A/36 , so integrating over 6 one finds 
with a factor of two coming from the two turning points 

r = - j -g£ ev9 TdQ T4Tiv £dv/4 -Jr * <78> 

Using Eq. 70 for A # and averaging over * , 
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How the integrand is evaluated at 8»8_ so we can drop the "T" 
from 8 . However, when this is done the equation must be divided 
by two for 8_ i 0 while -ir £ 81 IT . 

-/T*[*l*WTiite[/',-5"']] 
which is exactly Eg. 44. 

(80) 
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