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SUMMARY

In this work, a previously proposed Enhanced Assumed Strain (EAS) finite element formulation for
thin shells is revised and extended to account for isotropic and anisotropic material non-linearities.
Transverse shear and membrane-locking patterns are successfully removed from the displacement-based
formulation. The resultant EAS shell finite element does not rely on any other mixed formulation, since
the enhanced strain field is designed to fulfil the null transverse shear strain subspace coming from
the classical degenerated formulation. At the same time, a minimum number of enhanced variables is
achieved, when compared with previous works in the field. Non-linear effects are treated within a local
reference frame affected by the rigid-body part of the total deformation. Additive and multiplicative
update procedures for the finite rotation degrees-of-freedom are implemented to correctly reproduce
mid-point configurations along the incremental deformation path, improving the overall convergence
rate. The stress and strain tensors update in the local frame, together with an additive treatment of the
EAS terms, lead to a straightforward implementation of non-linear geometric and material relations.
Accuracy of the implemented algorithms is shown in isotropic and anisotropic elasto-plastic problems.
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1. INTRODUCTION

Finite shell elements technology started with the development of the so-called ‘degeneration

approach’, early introduced by Ahmad et al. [1], where a class of shell elements were obtained

from the continuum, resorting to the concept of a ‘reference’ surface. Plane-stress constitutive

conditions have automatically been included into the formulation, in a way to make elements

numerically consistent with the modelling of thin structures. Since then, isoparametric shell

elements incorporating displacement and rotation-like degrees-of-freedom have been continu-

ously improved, with extensions to different kinds of problems being presented, for instance,

by Krakeland [2], Ramm [3], Zienkiewicz et al. [4], Bathe and Bolourchi [5], Hughes and Liu

[6], Hughes and Tezduyar [7] and Liu et al. [8], just to name the earliest works. A ‘complete’

list of relevant contributions would be extensive (if feasible) and beyond the scope of this

paper. Nevertheless, a comprehensive study on the evolution of shell elements technology can

be reported in the prominent work of Yang et al. [9].

Sooner, however, it was verified that this class of elements, particularly the bilinear ones

(treated in the present work), was prone to show locking effects in the thin shell limit. For this

case, transverse shear strain energy did not vanish at all points within the element domain for

pure bending deformations, contradicting the Kirchhoff–Koiter–Love hypothesis for membrane

structures. The situation is even worse as it is clearly difficult to establish a definite boundary

between situations where a given formulation tends to ‘lock’ or not, with locking appear-

ance being not just a matter of thickness values (or ratio between thickness and a dominant

dimension), as recently demonstrated by Chapelle, Bathe and co-workers [10–15].

In order to circumvent transverse shear locking phenomena, selective reduced integration

technique [16, 4], mixed interpolation of tensorial components [17, 18] (with roots in earlier

publications [19, 7, 20]) and, finally, the assumed natural strain [21–23] have proved to he

successful approaches. The common point with these formulations is the fact that the original,

displacement-based, strain field is judiciously replaced by substituting components which are

interpolated in distinct (non-conventional) ways.

The Enhanced Assumed Strain (EAS) method, from the classical set of papers by Simo,

Rifai, Armero and Taylor [24–26], departs from the previous works, keeping the original

strain field unchanged, then adding additional strain terms, chosen in conformity to the desired

improvement in a given element’s formulation. In this way, the same formalism can be applied

to a set of pathologies appearing in lower-order finite element formulations, such as the in-plane

locking (2D elements), the volumetric locking (3D elements) or membrane locking. Focusing

on the membrane locking, but applied to plate and shell elements, first works dealing with the

enhanced assumed strain concept were presented by Andelfinger and Ramm [27] and Büchter

et al. [28]. About the specific case of transverse shear locking in thin shells, Simo and Rifai

[24] have also introduced a proposal with, however, no strong usage in the literature afterwards.

This was the starting point for the work of the authors. Departing from the conventional

degenerated approach applied to bilinear (four-node) fully integrated shell elements, a complete

analysis of the null transverse shear strain subspace was performed in Reference [29]. Along

with the present work, this reference points to previous developments by the authors in EAS-

based two dimension, shell and solid-shell finite elements technology [30–36].

For the specific case of shell elements, the likelihood of transverse shear locking to happen

was related to the ability (or not) of a given formulation to successfully reproduce the correct

solution by naturally providing enough components to the subspace basis [29]. The main
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advantage of this subspace analysis was that its validity remains unaltered irrespective of the

loading and boundary conditions applied to a given element, thus being a characteristic of a

given formulation. Comparison of the subspace bases provided by the degenerated approach,

the selective reduced integration method and the mixed interpolation of tensorial components

have revealed missing components in the first formulation. Instead of performing a replacement

of transverse shear strain terms to correct the element formulation, the EAS method was then

used to additively improve the transverse shear strain field coming from the displacement-based

formulation. This has led to a set of shell elements with distinct number of internal variables

and with no transverse shear locking for a variety of linear test cases [29]. A preliminary

study on large rotation problems, while keeping elastic strains, was performed by the authors

in Reference [32] with encouraging results.

In the present work, the previous shell formulation is revised and improved, from both

the fundamental and computational aspects. Comparatively, the approach here presented allows

the use of a lower number of EAS internal variables, with gains of computational time and

efficiency. An exhaustive set of results coming from linear and non-linear benchmarks is detailed

in the report [33], with its main aspects and conclusions being summarized in the present paper.

In doing so, this study accomplishes for results coming from both smooth and non-smooth shell

structures, while accounting for non-linear geometric and material models. Related to the latter

topic, isotropic as well as planar and normal anisotropic yield criteria are implemented. Results

obtained with the shell formulation, along with the adopted constitutive laws, are compared

with those provided by experimental and simulation data from well-established formulations in

the literature.

2. SHELL DISPLACEMENT-BASED KINEMATICS

In dealing with shell formulations directly derived from the degenerated concept [1], it is

commonplace to assume the existence of a reference surface B ⊂ R
3, with boundary �B, which

can be occupied by a given shell element. Considering the deformation of the continuum, it is

also useful to invoke a converged (material) and current (spatial) configurations M ⊂ R
3 and

S ⊂ R
3, respectively. In static analysis, these two configurations mimic successive deformation

stages (n) and (n + 1) of a given body partition, without resorting to the time variable.

Departing from a given continuum body into a discretized one, finite elements can be

described within a set of curvilinear (convective) co-ordinates

� = (�1, �2, �3) ≡ [−1, 1] × [−1, 1] × [−1, 1] (1)

characterizing a parametric configuration P ⊂ R
3. Related to this parametric set, the position

vector of any point P ∈ B of a shell element can then be defined by [37, 15]

nx(�) = Nk
nxk + 1

2
�3nakNk

nv3
k (2)

for configuration (n). In this equation, summation over indices k (nodes) is implicit. Nodes are

assumed to rely on the (reference) mid-surface, being nxk (nodal) position vectors related to

an external system of orthonormal vectors, forming a global triad (e1, e2, e3). Also in Equation

(2), Nk = Nk(�
1, �2) are the matrices of two-dimensional isoparametric shape functions, nak

are the nodal thickness values and nv3
k represents a (unit) director vector, normal (at least in
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the initial state) to a plane formed by the tangent to the convective axes (�1, �2), and defining

the so-called thickness direction.

In detail, for a mid-surface in the (�1, �2) space, and mapped onto B via a function (chart)

�(�1, �2), a couple of auxiliary (tangent) vectors can be defined in a general form as [15]

v�
l =

��(�1, �2)

��� for � = 1, 2 (3)

By assumption, these linearly independent vectors are candidates in forming a frame on the

plane tangent to the mid-surface at each point (l). The director vector can then be explicitly

defined as

v3
l =

v1
l × v2

l

‖v1
l × v2

l ‖
(4)

However, in algorithmic terms and for a nodal point (l = k) within a finite element, the nodal

director can be defined, for instance, from the global co-ordinates of adjacent nodes or directly

from the user input [38], in order to coincide (or be close) its direction to the fibre (thickness)

direction [39]. Unit vectors (v1
k, v2

k, v3
k) on each node then introduce a unique nodal co-ordinate

system at each configuration.

After deformation, the position of point P can be described in the final configuration (n+1)

as

n+1x(�) = Nk
n+1xk + 1

2
�3 n+1akNk

n+1v3
k (5)

The displacement field of a given point (�1, �2, �3) between configurations (n) and (n + 1)

now appears as

n+1
nu(�) = n+1x(�) − nx(�) (6)

Expansion of Equation (6) gives rise to five nodal degrees-of-freedom, comprising three trans-

lations related to the global frame (e1, e2, e3) plus two rotations related to the nodal frame

(v1
k, v2

k, v3
k) and coming from the general expression

n+1
nu(�) = Nk

n+1
nx + 1

2
�3Nk(

n+1ak
n+1v3

k − nak
nv3

k) (7)

In the present work, from configurations (n) to (n+1), nodal thickness values are kept constant

and equal to ak = nak = n+1ak . After the completion of iterations until the final stage (n + 1),

thickness values at Gauss points are updated enforcing the plane-stress condition, usual in

this class of degenerated shell elements. These Gaussian thickness values are subsequently

extrapolated to the nodal points, and a new deformation stage is started with the corrected

nodal thickness values [40, 41].

Apart from these considerations about nodal thickness values, nodal director variations in

Equation (7) can be explicitly described in the nodal frame (v1
k, v2

k, v3
k) as

n+1
nv3

k = n+1v3
k − nv3

k = �1
k

nv1
k − �2

k
nv2

k − 1
2

[

(�1
k)

2 + (�2
k)

2
]

nv3
k (8)

where (�1
k, �

2
k) are the rotational degrees-of-freedom of director nv3

k about auxiliary vectors nv1
k

and nv2
k , respectively. Although valid for large incremental rotations, the contribution of the
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quadratic terms in Equation (8) to the displacement-based geometric stiffness matrix is not

accounted for in the present work, without prejudice of the overall convergence behaviour and

with the benefit of the computational costs, in the same manner as stated in Reference [42].

The rotational degrees-of-freedom (�1
k, �

2
k) are also used in the construction of a rotation-

based matrix, responsible for the update of the nodal triad at each iteration between two

successive load levels (n) and (n + 1). Focusing on the current and converged directors at a

node, it is possible to state that

n+1v3
k |

i = n+1
n�

i
k

nv3
k (9)

for a given iteration (i). The general form of the second-order transformation tensor adopted

in this work is the Rodrigues formula from rigid body dynamics [43–46]

n+1
n�

i
k ≡ e�

i

k = I2 +
sin(�)

�
�i

k +
1 − cos(�)

�2
�i

k�
i
k (10)

for the second-order identity tensor I2. In this equation, �i
k contains a composition of the

nodal rotational degrees of freedom �1
k and �2

k , from (n) to the ith iteration up to (n + 1), in

the form

[�i
k] =








0 0 i
n�

1
k

0 0 −i
n�

2
k

−i
n�

1
k

i
n�

2
k 0








and with � =

√

(in�
1
k)

2 + (in�
2
k)

2 (11)

once no drilling degrees-of-freedom are employed in the present formulation.

The converged director (nv3
k) is taken as the reference one, being updated at each iteration

(i), and leading to a ‘pseudo-converged’ current director
(

n+1v3
k |

i
)

with iterative character. This

involves the knowledge of the total values of the rotational degrees-of-freedom (in�
1
k,

i
n�

2
k) from

the converged state (n) up to the current iteration (i), respectively. Since the degrees-of-freedom

(�1
k, �

2
k) are, by definition, non-additive variables (even for a small deformation analysis), a

special procedure to convert them into additive variables is employed, following the general

guidelines of Crisfield [47] and detailed in the following for the sake of completeness.

Consider the accumulated rotation vector (previously additively evaluated) from converged

state (n) until the previous iteration (i − 1) for a given node as

i−1
n�k =

i−1∑

j=1

j

j−1�
a
k =









i−1
n�

1
k

i−1
n�

2
k

0









; summation over j iterations (12)

where the index (a) enforces the additive character of the (transformed) rotations. If the iterative

variation in the rotational variables corresponds to vector ( i
i−1�k), it is possible to change its

non-additive character into an additive one, represented by a new iterative rotation vector

( i
i−1�

a
k) in the form

i
i−1�

a
k =

[

H(i−1
n�k)

]−1
i

i−1�k (13)
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accounting for

H(i−1
n�k) =

sin(�)

�
I2 +

1

�2

(

1 −
sin(�)

�

)

i−1
n�k

[
i−1

n�k

]T
+

1

2

(
sin(�/2)

�/2

)2

�k(
i−1

n�k) (14)

and where the function �k(
i−1

n�k) is evaluated according to Equation (11). The updated incre-

mental additive variation can now be directly employed in the director update expressions

(
i−1

n�k + i
i−1�

a
k

)
Equations (9),(10),(11)

�⇒
(

n+1
n�

i
k

)

(15)

The same procedure as detailed for the update of the director (nv3
k) can be extended in order to

obtain the updated triad (n+1v1
k,

n+1v2
k,

n+1v3
k), at each iteration (i). After these considerations

about the nodal frame in each node and configuration, the displacement-based strain tensor for

this class of shell elements can be completely defined.

Taking the deformation path between configurations (n) and (n + 1) (dropping superscripts

(i) for simplicity reasons), the two-point relative deformation gradient tensor

n+1
nF(�) =

�
n+1

x

�
n
x

= n+1gk ⊗ ngk (16)

can be defined as a function of the position vectors and involving the set of covariant and

contravariant based vectors (n+1gk) and (ngk) [37, 43].

The displacement-based Green–Lagrange strain tensor Eu, as well as its components, can

then be stated in the form

n+1
nEu = 1

2

(
n+1

nFTn+1
nF − I2

)

= Eu

�j�l
ngj ⊗ngl (17a)

n+1
nE

u

�j�l =
1

2








ngj ·
�
n+1

nu

��l
+

�
n+1

nu

��j
· ngl

︸ ︷︷ ︸

linear part

+
�
n+1

nu

��j
·
�
n+1

nu

��l

︸ ︷︷ ︸

non-linear part








(17b)

The choice of the convective frame as the departure point for strain components evaluations is

due to generality reasons and also because the enhanced transverse shear strain field used in

this work is firstly defined in this referential, as will be detailed in the next section. The first

two terms of the right-hand side of Equation (17b) lead to the linear strain–displacement and,

subsequently, linear stiffness matrices.

A degrees-of-freedom vector dk , gathering the translation and rotational components at each

node point (k), is now introduced in the form

dk = {u1 u2 u3 �1 �2}T (18)

for uk = {u1 u2 u3}T. Considering the director cosines of the nodal vectors (v1
k, v2

k, v3
k) as

v1
k = {v11 v12 v13}T, v2

k = {v21 v22 v23}T, v3
k = {v31 v32 v33}T, the components of the nodal

position vector as xk = {x1 x2 x3}T—dropping the configurations indices (n) and (n + 1) it
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is possible to formulate explicit expressions for the linear part of the convective components

of the Green–Lagrange strain tensor (Equation (17b)). These expressions are detailed in the

appendix, and can be grouped in an equivalent (general) single equation in the form

Eu = Mu(�)









d1

· · ·

dk









for k = 1, . . . , nnode and with nnode = 4 (19)

leading to the linear convective strain–displacement differential matrix (Mu) and, afterwards,

to the linear displacement-based stiffness matrix. An analogous nodal discretization also ap-

plies to the non-linear term in Equation (17b), leading to the corresponding non-linear strain–

displacement matrix and, subsequently, the geometric (initial stress) displacement-based stiffness

operator.

Due to the non-orthogonal character of the convective frame, the linear strain–displacement

operator coming from Equation (17b) will now be projected onto a new orthonormal frame

(r1, r2, r3). This local co-ordinate system is used for the constitutive update, invoking the plane-

stress hypothesis. It is defined at each Gauss point over the undefined mesh (being subsequently

updated as deformation occurs).

There is not an unique way to choose the starting configuration for the local frame, and

straightforward algorithms, based on the geometry of each finite element in the mesh, can

be found in References [37, 39]. For the general case of anisotropic elasto-plastic behaviours,

however, axes r1 and r2 can be initially taken coincident with the planar anisotropic axes (rolling

and transverse direction, respectively), thus forcing r3 to reproduce the normal direction vector.

This was the procedure adopted in the solution of the anisotropic elasto-plastic problems in

the end of the paper.

After being chosen in the beginning of the simulation, the local frame for each Gauss point

is subjected to the rigid-body part of the relative deformation gradient, between configurations

(n) and (n + 1). In fact, applying a polar decomposition on the relative deformation gradient

of Equation (16), it follows that

n+1
nF = n+1

nR = n+1
nU (20)

where (n+1
nR) is the orthogonal relative rotation tensor and (n+1

nU) corresponds to the relative

right stretch tensor. The decomposition in (20) was carried out by means of the algorithm

introduced by Franca [48]. Once knowing the local co-ordinate system at stage (n) and the

relative rotation tensor between stages (n) and (n+1), it is possible to perform the final update

[
n+1r1 n+1r2 n+1r3

]

= n+1
nR

[
nr1 nr2 nr3

]

(21)

The same procedure is adopted in the mid-point configuration update of the local frame, from

stage (n) up to (n + 1
2
), and evaluated from the relative deformation gradient (

n+1/2
nF).

In doing so, the local co-ordinate system for a given point is then only affected by the rigid

body component of the total deformation, characterizing this frame as a ‘co-rotational’ one,

with material strain (and stress) tensors being rotated as if frozen into the deformed continuum

[49–54]. As a consequence, the stress update procedure, in the presence of large elasto-plastic

deformations, becomes a direct extension of linear small deformation cases, as recently explored

by Masud and co-workers [55, 56].
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The strain tensor components in the local frame can be obtained, from the convective strain

tensor (17), simply by means of the transformation matrix from convective to local frames

(lcT), in the form

n+1
nĒu = n+1

nĒu(r1, r2, r3) = l
cT n+1

nEu (22)

with the transformation components coming directly from the Jacobian operator between the

two reference systems [24, 27].

The non-linear (geometric or initial stress) strain–displacement matrix, on the other hand,

can be directly referred to the updated local frame in the form [37]

M̄u|nl =



















































Nr1 0 0
a

2
v11

(

�3Nr1 +
��3

�r1
N

)

−
a

2
v21

(

�3Nr1 +
��3

�r1
N

)

Nr2 0 0
a

2
v11

(

�3Nr2 +
��3

�r2
N

)

−
a

2
v21

(

�3Nr2 +
��3

�r2
N

)

Nr3 0 0
a

2
v11

(

�3Nr3 +
��3

�r3
N

)

−
a

2
v21

(

�3Nr3 +
��3

�r3
N

)

0 Nr1 0
a

2
v12

(

�3Nr1 +
��3

�r1
N

)

−
a

2
v22

(

�3Nr1 +
��3

�r1
N

)

0 Nr2 0
a

2
v12

(

�3Nr2 +
��3

�r2
N

)

−
a

2
v22

(

�3Nr2 +
��3

�r2
N

)

0 Nr3 0
a

2
v12

(

�3Nr3 +
��3

�r3
N

)

−
a

2
v22

(

�3Nr3 +
��3

�r3
N

)

0 0 Nr1

a

2
v13

(

�3Nr1 +
��3

�r1
N

)

−
a

2
v23

(

�3Nr1 +
��3

�r1
N

)

0 0 Nr2

a

2
v13

(

�3Nr2 +
��3

�r2
N

)

−
a

2
v23

(

�3Nr2 +
��3

�r2
N

)

0 0 Nr3

a

2
v13

(

�3Nr3 +
��3

�r3
N

)

−
a

2
v23

(

�3Nr3 +
��3

�r3
N

)



















































︸ ︷︷ ︸

for node k

(23)

where the subscript (nl) refers to its non-linear character and

Nrj =
�N

��i

��i

�rj
, summation on i (24)

The basic block presented in Equation (23) is repeated for each node (k) of an element, leading

to a matrix M̄u|nl, for the present bilinear (four nodes) shell element, with a total of (9 × 20)

components.
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After detailing the strain field coming from an entirely displacement based formulation, it is

time to define the enhanced strain field that will be simply added to the linear strain tensor

in (17), in order to eliminate the transverse shear locking and, simultaneously, improve the

in-plane behaviour of the original degenerated shell element.

3. ENHANCED STRAIN FIELD

3.1. General aspects

The core point of this paper relies on the EAS method, in its linear version as originally

presented by Simo and Rifai [24]. The main goal in adopting this kind of mixed formulation

is, for the present work, the efficient elimination of the transverse shear locking in thin shell

structures. The enhanced terms are judiciously chosen and directly included into the convective

transverse shear strain field, in order to enlarge the subspace of null (transverse shear strain)

energy modes and, consequently, retain the Kirchhoff–Koiter conditions in situations where a

pure displacement-based formulation would fail. In this sense, the following analysis relies on

the linear shell formulation presented in detail by the authors in Reference [29], although the

finite element formulated here is more simple than those introduced in the last reference.

In the present work, and although dealing with non-linearities, the original frame of additive

enhancement over the displacement-based convective Green–Lagrange strain tensor is kept, in a

way successfully employed at first by Ramm and co-workers (Reference [27]—linear cases and

Reference [57]—non-linear cases), and after that by Klinkel et al. [58, 59] and, more recently,

consolidated by Vu-Quoc and Tan [60]. As shown in these references, this approach is indeed

computationally simpler (and leading to virtually the same results) than the one originally

advocated by Simo and Armero [25] and subsequently used, for example, by Simo et al. [26]

and Miehe [61].

The total strain field in the EAS method, following its initial formulation, is then assumed

to be composed of a compatible (displacement-based) part, coming from Equation (17), and

an incompatible (element-wise) part, in the form [24]

E = Eu + E� (25)

where the left indexes relating to the configuration were omitted for the sake of

simplicity, while the right indexes report to the characteristic of the strain field (displace-

ment u or enhanced internal variables �). Imposition of the orthogonality condition between

stress and enhanced strain field [24–26]

∫

v

S : E� dV = 0 (26)

reduces the number of independent variables in the Hu–Washizu–Veubeke functional to just two.

The weak form of this modified (enhanced) functional is obtained with a Gateaux derivative,

leading to the variations of internal and external potentials [60]

��(u, E�) = ��
int − ��

ext (27a)
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��
int =

∫

v

(�Eu + �E�) :
�Ws(E

u + E�)

�(Eu + E�)
dV (27b)

��
ext =

∫

v

�u · b̂� dV +

∫

s

�u · t̂ dS (27c)

The weak form can now be expanded via a truncated Taylor series about the solution (fixed

point) at the nth state (u|n, E�|n) [57]

��(u|n+1, E�|n+1) ≈ ��(u|n, E�|n) + D[��](u|n, E�|n) · (�u, �E�) (28)

where, in the present context, the (�) operator relates to a finite variation between (n) and

(n + 1) states. The finite element interpolation for the enhanced strain field is described next,

along with the explicit expression for the D [��] operator and the main advantages of including

the additive approach as in (25).

3.2. Implementation aspects

In each element’s domain, the displacement field (from Equation (18), with k = 1, . . . , nnode,

for nnode = 4) and its corresponding variation and increment are interpolated in the form

u ≈ uh = N(�)d, �u ≈ �uh = N(�)�d, �u ≈ �uh = N(�)�d (29)

involving the shape functions matrix N firstly referred to in Equation (2). From the convective

expressions for the displacement-based Green–Lagrange strain tensor (Equations (42) and (42))

(see the Appendix Section), the corresponding linear strain–displacement differential operator

can be represented as

Eu = Mu(�)d, �Eu = Mu(�)�d, �Eu = Mu(�)�d (30)

From that exposed in the last section, matrix (Mu) in Equation (19) is transformed to its local

frame counterpart (M̄u) being, after that, ready to be used within the implemented constitutive

formulation.

In the very same way, the strain–displacement matrix based on the enhanced (internal)

variables within an element must be defined. This is carried out, following the original proposal

of Simo and Rifai [24], again in the convective frame with the corresponding enhanced functions

depending on (�, �) in the form

E�+� = M�(�1, �2)�e + M�(�1, �2)�e (31a)

�E�+� = M�(�1, �2)��e + M�(�1, �2)��e (31b)

�E�+� = M�(�1, �2)��e + M�(�1, �2)��e (31c)

It is implicit from this equation that the general enhanced strain tensor (E�) in the previous

section appears now decomposed into two independent components.

The first part, associated with the strain–displacement matrix (M�(�1, �2)), is added to the

displacement-based transverse shear strain components (modifying the total out-of-plane strain
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energy and, in this way, being responsible for the elimination of transverses shear locking

effects). The second part, characterized by (M�(�1, �2)), acts over the displacement based in-

plane strain energy components, improving the performance of the shell element in bending and

membrane-dominated situations. Each of these differential operators involves a distinct number

of (element-wise) internal variables, grouped in the internal (non-physical) degrees-of-freedom

vectors (�e) and (�e), respectively.

The first matrix (M�(�1, �2)) was specifically designed in order to provide an enlargement

of the null transverse shear strain subspace for the original bilinear degenerated shell element.

A formulation simply based on the displacement field leads to a definite number of components

on this subspace basis, which is not enough to ensure null values of the out-of-plane strain

energy

∫

�

Eu

�1�3 d�1 d�2 = 0 (32a)

∫

�

Eu

�2�3 d�1 d�2 = 0 (32b)

at the element level and area (� ≡ d�1×d�2), for limiting low thickness values, as demonstrated

by the authors in Reference [29].

Comparative analyses (focusing in detail the null transverse shear strain subspace) between

the basic degenerated shell element, bilinear shell elements including assumed strain fields

[7, 17–23] and also bilinear shell elements based on the selective reduced integration of the

transverse shear strain terms [16, 4] were performed by the authors [29] within a linear elastic

formulation. The main conclusion was that, in order to correct the degenerated formulation

from the transverse shear locking point of view, the inclusion of an enhanced transverse strain

field is only necessary in the form







E�

�1�3

E�

�2�3






= M�(�1, �2)�e (33a)

where

M�
11 =

�N�

��2
, M�

12 = 0, M�
13 =

�N�

��1
, M�

14 = 0, M�
15 =

�N�

��1

�N�

��2
, M�

16 = 0

M�
21 = 0, M�

22 =
�N�

��1
, M�

23 = 0, M�
24 =

�N�

��2
, M�

25 = 0, M�
26 =

�N�

��1

�N�

��2
(33b)

�e = {�1 �2 �3 �4 �5 �6}
T (33c)

and accounting for a bubble shape function in the form (N� = (1 − �1�1)(1 − �2�2)).

At this point it is worth noting that the preceding analysis was entirely based on a fully

numerically integrated formulation (corresponding, for the bilinear four node shell element, to

a 2 × 2 integration rule). This integration quadrature is also strictly employed in the strain

field. It is interesting to note that, starting with an a priori complete in-plane integration
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for the displacement strain field—as stated before—the enhanced strain field necessary to

the elimination of transverse shear locking effects turned out to retain a kind of reduced

integrated character, coming from the quadratic terms in the bubble function. In this sense,

this formulation is in contrast to some works in the literature, sometimes resorting to higher

quadrature rules specifically for the enhanced strain field, in order to improve the performance

and remove instabilities from the elements (as in References [26, 62, 63], just to name some

classical works).

Additionally, from the analysis of Equations (33), comes that no dependence on the (�3)

orientation is introduced into the enhanced strain field. This turns the contribution of the

enhanced transverse shear strain terms invariant respecting the number of integration points

along thickness direction, which is clear an advantage for numerical integration procedures in

elasto-plastic problems.

After detailing the relevant aspects of the first enhanced interpolation matrix (M�), it is

necessary to establish the topology of the enhanced matrix (M�) in (31). This term is intended

to affect only the in-plane strain field, improving the element performance in membrane-

dominated situations and being decoupled from the transverse shear strain enhancement. The

choice of the in-plane EAS field, proposed by Andelfinger and Ramm [27] and involving

seven internal variables per element, gave rise to the linear research introduced in Reference

[29]. In the present work, however, a distinct enhanced strain field is adopted involving just

five enhanced variables per element, with no loss in accuracy when compared to the previous

formulation. In fact, the numerical results for both in-plane enhancements proved to lead to

similar results in a series of benchmark tests, with the choice of five internal variables seeming

to be an optimal choice for reliable results, as detailed in the report [33].

Doing so, the membrane/bending EAS modes are given by the following interpolation:

















E
�

�1�1

E
�

�2�2

E
�

�1�2

















= M�(�1, �2)�e (34a)

where

M
�
11 = �1, M

�
12 = 0, M

�
13 = 0, M

�
14 = 0, M

�
15 = 0

M
�
21 = 0, M

�
22 = �2, M

�
23 = 0, M

�
24 = 0, M

�
25 = 0

M
�
31 = 0, M

�
32 = 0, M

�
33 = �1, M

�
34 = �2, M

�
35 = �1�2

(34b)

�e = {�1 �2 �3 �4 �5}
T (34c)

The in-plane EAS interpolation matrix (34), in conjunction to the out-of-plane (transverse

shear) in Equations (33), define the formulation of the present S4E6P 5 shell element. The

acronym comes from the characterization of a shell element with four nodes, six transverse

shear enhanced variables, plus five in-plane enhanced variables. This lower number of internal

variables automatically influences the computational costs involved in a given analysis, mainly

when considering elasto-plastic material modelling, as within the scope of the present paper.
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4. ALGORITHMIC TREATMENT OF NON-LINEARITIES

4.1. Geometric non-linearity

After the description of the interpolation functions and variables for both the displacement-

based and enhanced strain fields (in-plane and out-of-plane strain fields), the second member

of the right-hand side of the linearized weak form (28) can be rewritten (dropping the state

and elemental indices) as [57–60]

D[��](d, �, �) · (�d, ��, ��) =
�(��

int − ��
ext)

�(d, �, �)
· (�d, ��, ��) (35)

Including the corresponding displacement and enhanced based interpolation, the variations in

(35) take the matricial form

��
int(d, �, �) = �dT

∫

V

(M̄u)TS̄dV + ��T

∫

V

(M̄�)TS̄ dV + ��T

∫

V

(M̄�)TS̄ dV (36a)

��
ext(d) = �dT

∫

V

NTb̂� dV + �dT

∫

S

NT t̂ dS (36b)

where the (M̄�) and (M̄�) matrices refer to the enhanced strain operator in the local frame

while, in the same way, (S̄) points to the second Piola–Kirchhoff stress tensor also related to

the local orthogonal frame.

Focusing on the variation of the internal part (36a) of the whole potential, it is possible to

state that

D[��
int] · (�d, ��, ��) =

�(��
int)

�d
· �d +

�(��
int)

��
· �� +

�(��
int)

��
· ��

= �dT
[(

K
lg
uu + K

nlg
uu

)

�d + Ku��� + Ku���
]

+ ��T[K�u�d + K����] + ��T[K�u�d + K����] (∀�d, ∀��, ∀��)

(37)

Linear and non-linear geometric (initial stress) stiffness matrices (K
lg
uu and K

nlg
uu , respectively)

are defined as in a fully displacement-based formulation [37], coming from the expressions

defined in Section 2.

The main result of the inclusion of the enhanced parameters into the variational formulation

is the appearance of the coupling stiffness matrices (K�u, Ku�) and (K�u, Ku�), as well as the

introduction of the fully enhanced stiffness operators (K��) and (K��), all of them possessing

the same structure as in the linear formulation of Reference [24]. In fact, the adopted additive

approach in the way of Equation (25) leads to a straightforward algorithmic extension from

the linear case, with no inclusion of non-linear geometric stiffness matrices associated with the

enhanced variables, as happens in formulations based on the multiplicative enhancement of the

deformation gradient (References [25, 61], among others).
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The result is then an equivalent system of equations, on matrix form, with the structure

[57–60]:







(K
lg
uu + K

nlg
uu ) Ku� Ku�

K�u K�� 0

K�u 0 K��















�d

��

��









=



















∫

V

NTb̄� dV +

∫

S

NT t̄ dS −

∫

V

(M̄u)TS̄ dV

−

∫

V

(M̄�)TS̄ dV

−

∫

V

(M̄�)TS̄ dV



















(38)

The internal force vectors related to displacement and enhanced fields, (
∫

V
(M̄u)TS̄ dV,

∫

V
(M̄�)TS̄ dV,

∫

V
(M̄�)TS̄ dV) come from the discrete form of Equation (27b). Also, no cou-

pling between the two enhanced strain field appears in the equivalent expression (38), and the

two fields can be treated altogether in the implementation.

4.2. Material non-linearity

Although the enhanced strain field is defined based on the (material) (Green–Lagrange local

strain tensor, energetically conjugated to the second Piola–Kirchhoff local stress tensor, the stress

field to be constitutive updated in the incremental-iterative process is the (spatial) Cauchy stress

tensor. This is possible since the incremental stress is referred to the local frame detailed before,

updated with the rotation tensor coming from the polar decomposition. In this way, the local

orthogonal system is only affected by the rigid-body rotation part of the deformation, acting as

a ‘co-rotational’ reference frame. A detailed description of the algorithmic steps involved can

be found in classical works in References [40, 64–70].

The last detail in the implementation of the constitutive equations is the transformation of

the incremental spatial tensors to incremental material tensors, in order to directly include

the displacement and enhanced-based formulations described in Section 2. For small strains

(n+1
nU ≈ I2) and following the previously defined rotated local axes, the incremental rotated

(co-rotational) Cauchy stress tensor turns to be equivalent to the incremental rotated second

Piola–Kirchhoff stress tensor [54, 66], and it is possible to write a final incremental rotated

stress update equation in the form [55, 56]

n+1�̄ = n�̄ + n+1
n�̄ = n�̄ + n+1

nS̄ (39)

Increment in the rotated second Piola–Kirchhoff stress tensor comes from the increment of the

rotated (local-based) Green–Lagrange strain field, between (n) and (n + 1) configurations, and

approximated at a mid-point configuration in the form

n+1
nĒ =

n+1/2
nM̄u n+1

nd +
n+1/2

nM̄� n+1
n� +

n+1/2
nM̄� n+1

n� (40)
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Strain–displacement matrices, either for displacement and EAS fields, are constructed upon the

definition of the local frame at the mid-point configuration, coming from analogous relations

than those presented in Equations (20) and (21).

Related to the elasto-plastic algorithm implementation, a standard ‘elastic predictor plastic

corrector’ radial return algorithm in the sense of References [71, 72] was implemented, properly

adapted to account for either isotropic and anisotropic planar and normal yield criteria. Detailed

implementation steps can be found in Reference [33], being omitted here for the sake of

understandability purposes.

In the following section, large displacement and rotation elasto-plastic problems are presented,

in order to assess the reliability of the before described formulation. Isotropic yield criteria

in the following refer to the standard J2 plasticity model of von Mises, while for anisotropic

plasticity the (planar and normal) models of Hill [73], as well as the criterion from Barlat

et al. [74], were implemented.

5. NUMERICAL EXAMPLES

5.1. Isotropic elasto-plastic constitutive behaviour

5.1.1. Channel-section beam with plasticity. A channel-section (U-shaped) beam, clamped at

one end and subjected to a concentrated force at its free end, is analysed. The geometry is

according to Figure 1, where values for length, width, height and thickness of the beam follow

those originally proposed in Reference [75]. Among well-known works following with the

treatment of this problem within shell formulations are, for instance, References [76–79]. All

of these formulations employ drilling degrees-of-freedom. In the particular case of Reference

[77], folded zones of the beam are modelled with rigid intersections, accounting for three

rotational degrees-of-freedom. Also for these formulations, only non-linear geometric analyses

were performed, except for Reference [78], where for the first time elasto-plasticity were

accounted for. Therefore, these results will be taken as the reference ones, for the present

work.

An initial yield stress 	y0 = 5.0 × 103 and isotropic hardening coefficient Hiso = 0.0

(perfect plasticity) were adopted. The director update procedure equations (10) and (11) and its

inextensibility condition, adopted in the present work, are similar to the procedures adopted in

the so-called ‘5/6 parameter’ formulation in Reference [78, pp. 247–248]. The main difference

remains in that the present S4E6P 5 shell element does not include drilling rotations in its

formulation, treating in the same way smooth and folded thin plates or shells. According to

the conclusions of Eberlein and Wriggers [78], such a formulation would ‘completely fail in

the present example’. However, the behaviour of the proposed enhanced strain element is quite

acceptable (mainly in the combined elasto-plastic non-linear geometric case), as can be clearly

seen in Figure 2, where the displacement of the loaded node (in the direction of F in Figure

1) is shown graphically, both for only geometric (nlgeom) and geometric plus material (nlgeom

+ ep) non-linearities. In Reference [78], a mesh consisting of 20 × 72 shell elements was

considered, while in the present work 20 × 36 S4E6P 5 elements were adopted (further mesh

refinements have given the same results).

Related to the number of load steps in each analysis, the non-linear geometric path was

achieved in 56 increments, compared to 90 for the full geometric and material non-linear
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w = 2

E = 107

= 0.333ν 
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F

L

thickness = 0.05

Figure 1. Channel-section beam—model with a mesh of 36 × 20 elements,
including geometric, boundary and loading conditions.

behaviour. For both cases, the ‘cylindrical’ arc-length control procedure [80–82] was imple-

mented. It is also worth mention that just two Gauss points along thickness direction were

adopted (in opposition to Reference [78], employing five Gauss points along thickness direction).

As stated in Reference [78], equivalent plastic strain peaks occur near the clamped end of

the structure, starting in early stages of loading. With the increase of deformation, however,

a spread of plastic zones along the longitudinal direction of the beam is verified, as shown

in Figure 3, where the deformed configuration for an absolute displacement of 1.471 (of the

loaded node point) is represented.

5.1.2. Elasto-plastic analysis of a simply-supported plate. In this example, a simply-supported

square plate is subjected to pressure loads, as shown schematically in Figure 4. This example

has been treated in a number of references, including shell and solid-shell formulations and
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Figure 2. Channel-section beam—deflection curves for the loaded node.

adopting a variety of mesh topologies (see, for instance References [28, 61, 78, 83–86]). About

Figure 4, and following the previous references, the total length of the plate is 2L = 508, with

thickness a = 2.54 consistent unities. Only one quarter of the plate needs to be modelled, due

to symmetry. Material behaviour is described by a Young’s modulus E = 6.9 × 104, Poisson’s

ratio 
 = 0.3, initial yield stress 	y0 = 248 and isotropic hardening coefficient Hiso = 0.0

(for a linear hardening law of the type 	y(�
p) = 	y0 + Hiso�

p). For each simulation just two

Gauss points along thickness direction are employed, as for a higher interpolation order the

same results were obtained. For comparison, Reference [78] adopts five Gauss points along

thickness direction, while References [85, 86] use six integration points. About boundary and

loading conditions, displacements along the OZ direction are restrained on the outer edges,

while a deformation dependent pressure load p = f × p0 is applied on one side of the shell,

for a nominal load level of p0 = 10−2.

In the present work, four mesh topologies were adopted to attest the convergence behaviour

of the proposed enhanced strain formulation: a first coarser mesh consisting of equally spaced

15×15 shell elements (Figure 4); a second mesh with the same number of elements but refined

towards the outer corners [78]; a third mesh consisting of 24 × 24 regularly spaced elements

[83] and a last, extremely refined, mesh with 1375 elements [41]. The last three meshes are

schematically represented in Figure 5.

Figure 6 shows the load-deflection curve, for a maximum load factor (f = 60.0), with the

corresponding out-of-plane deflection of the central point of the plate (point C in Figure 5).

Results are compared to those provided in References [78, 83]. Within the analysed meshes,

all of them converge to the solution presented by Betsch and Stein [83]. The only exception is

the regular mesh with 15 × 15 shell elements, and just for the range of displacement between
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Figure 3. Channel-section beam—deformed configuration and equivalent plastic
strain for a displacement value of 1.471.
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Figure 4. Simply-supported plate—problem definition with a representative
regular mesh of 15 × 15 elements.

30 and 65 consistent unities, where the present solution approaches the one by Eberlein and

Wriggers [78]. However, the overall behaviour obtained with the present S4E6P 5 shell element

is quite good.

The deformed structures (f = 60.0) for each mesh assume a ‘pillow-like’ configuration, with

the elements in the corner zones being subjected to a high level of out-of-plane distortions

(more pronounceable with the regular mesh of 15 × 15 elements). From the analysis of the

equivalent plastic strain levels, it is noticeable the onset of their maximum values in the corner

zones of the plates. More importantly, it is possible to assess some level of mesh dependency of

the equivalent plastic strain values, an interesting aspect which is not addressed in the previous

references. For the present case, the values of the maximum equivalent plastic strain values

are as following: 0.190 (15 × 15 regular mesh); 0.249 (15 × 15 refined mesh); 0.214 (24 × 24

regular mesh) and 0.343 (1375 elements’ mesh). For the sake of completeness, the number of

load increments necessary to reach the load factor (f = 60.0) are: 44 for the 15 × 15 regular

mesh; 47 for the 15 × 15 refined mesh; 54 for the 24 × 24 mesh and, finally, 56 for the more

refined mesh of 1375 elements.

A deeper insight of the structural behaviour can be retained with the increase of the load

factor applied to the pressure loads. In Figure 7, six deformation stages of the plate (top view)

are represented, for the refined mesh of 1375 elements. The first one (Figure 7(a)) represents

the deformed plate for a load factor (f = 285.4). At this stage, the out-of-plane displacement

verified for point C (Figure 5) is equal to 121.4 consistent unities. Even more relevant is

the fact that, at this load factor, it can be verified the onset of wrinkles at the mid-side of

each plate’s edge. With a further increase of the load factor, this phenomenon is even more

noticeable, as represented in the sequence on Figure 7(b) (load factor f = 386.8). Figure 7(c)

(load factor f = 479.9) and Figure 7(d) (load factor f = 557.6), corresponding to central

point displacements of 131.6, 140.5 and 149.0, respectively. Above this load level, and with an
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Figure 5. Simply-supported plate—adopted meshes with: (a) 15 × 15;
(b) 24 × 24; and (c) 1375 shell elements.

even higher load factor, the plate is only able to accommodate more deformation if adopting

a spherical shape. The corner zones of the plate (still those with higher levels of plastic

strains) tend, therefore, to assume a rounded shape (losing their sharp aspect still visible on

Figure 7(a)–(c)). The spread of plastic areas is noticeable, starting in configuration (b), with

the plate, for the final two steps (Figure 7(e) and (f)), virtually covered by plastic zones as

a whole. Displacement of the central point for the last two configurations is equal to 157.0

and 164.5, for load factors of (f = 600.7) and (f = 635.5), respectively. Dimetric projections
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Figure 6. Simply-supported plate—load-deflection curves for a limit load factor f = 60.

of configurations at load levels (a), (c) and (f) are reproduced in Figure 8, where the final

rounded shape of the plate can be further observed.

5.1.3. Pinched cylinder including elasto-plasticity. This example deals with a cylindrical shell,

subjected to a pair of concentrated loads and bounded by rigid diaphragms on its extremities.

It is a common benchmark in shell and solid-shell elements technology, and have been treated

by a number of authors (firstly by Simo and Kennedy [87] and after that in, for instance,

References [61, 72, 78, 88–90]). In the present work, the problem will be considered in the

same way as stated in the last references, particularly following References [61, 78].

The initial geometry of the shell is as illustrated in Figure 9, where the mesh area is just

one-eighth of the cylinder, due to symmetry reasons. Geometrical data refer to the whole

length of the cylinder L = 600, the radius R = 300 and thickness a = 3. The rigid diaphragm

boundary condition acts in a way that only displacements along the OY direction are allowed

in the cylinder free-ends. Material properties are the elasticity modulus E = 3000.0, Poisson’s

coefficient 
 = 0.3, initial yield stress 	y0 = 24.3 and isotropic hardening coefficient Hiso =

300.0, for the same linear hardening law used in the previous examples.

Following References [61, 78], a mesh consisting of 32 × 32 S4E6P 5 shell elements is

employed. Also, an incremental load controlled procedure, based on the Newton–Raphson

method with the ‘cylindrical’ arc-length control, is used. In the set of works cited before,

on the other hand, displacement controlled advance methods were employed to grant stable

convergence.
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Figure 7. Simply-supported plate—deformed configurations (top view) for load factors: (a) f = 285.4;
(b) f = 386.8; (c) f = 479.9; (d) f = 557.6; (e) f = 600.7; and (f) f = 635.5.
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Figure 8. Simply-supported plate—deformed configurations (dimetric perspective) and equivalent
plastic strain for load factors: (a) f = 285.4; (b) f = 479.9; and (c) f = 635.5.
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Figure 9. Pinched cylinder—initial configuration with geometry, loading and boundary conditions.

In Figure 10 the displacement of the loaded node is monitored and plotted against the

total load level F in Figure 9. For the same mesh, results coming from the presented elasto-

plastic formulation applied to the S4E6P 5 EAS shell element are compared to the solid-shell

formulation proposed by Miehe [61] and to the ‘5 parameter’ shell formulation of Eberlein and

Wriggers [78].

The results are almost coincident in the major displacement range, with the present element

being slightly more flexible for displacements greater than 175 consistent unities (being in

accordance with results obtained by Wriggers et al. [88] for a 3D formulation not shown in

the figure). Even dealing with a load control procedure, convergence is easily achieved, with

the whole displacement path being covered in 108 (automatically incremented) load steps. For

the sake of completeness, evolution of the equivalent plastic strain, in successive deformation

states, is shown in Figure 11.

5.2. Anisotropic elasto-plastic constitutive behaviour

5.2.1. Hydro-bulge forming of a circular plate (bulge test). This example is a well known and

useful test to determine stress vs strain curves as well as forming limit diagrams for a given

material, being also adopted on the validation of anisotropic models. In this case, and although
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Figure 10. Pinched cylinder—deflection of the loaded node as a function of the external force (F ).

the geometric, loading and boundary conditions could induce symmetric strain contours with

deformation, anisotropic properties of the 2008-T4 aluminium alloy analysed will inevitably

lead to differences from purely isotropic plasticity models. The chosen anisotropic constitutive

model follows the criterion proposed by Barlat et al. [74] for aluminium alloys.

The bulge forming starts with a circular plate with an initial radius R = 81 mm and initial

thickness a = 1.24 mm. Isotropic material properties refer to Young modulus E = 69 GPa.

Poisson coefficient 
 = 0.33, isotropic hardening factor Hiso = 0.0, initial yield stress value of

	y0 = 185.0 MPa, saturation yield stress value of 	y∞ = 408.0 MPa and exponential hardening

factor n = 6.14. All these terms are interrelated in the evolution law for the yield stress level,

as a function of the equivalent plastic strain value, in the form

	y = 	y0 + Hiso�
p + (	y∞ − 	y0)

(

1 − e−n�p
)

(41)

Anisotropic parameters, in turn, are given as the values for the constant parameters to be

used in the criterion proposed by Barlat et al. [74], being numerically equal to C1 = 1.223,

C2 = 1.014, C3 = 0.986, C4 = 1.0, C5 = 1.0, C6 = 1.0 and m = 11.0, for the present example

[91, 92].

The adopted finite element mesh consists of 392 S4E6P 5 shell elements, following the

mesh distribution in Figure 12, where one-fourth of the plate is represented due to symmetry

reasons. For each element, five Gauss points over the thickness direction were adopted. The

adopted finite element model is a simplified one, since no contact between the blank-holder

and the plate (blank) was taken into account. Instead, the borders of the plate are considered

clamped, with the hydrostatic pressure being represented by an uniform pressure load over the

plate surface, with nominal value of p0 = 4 MPa.
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Figure 11. Pinched cylinder—equivalent plastic strain levels for displacement values of: (a) 101.2;
(b) 151.3; (c) 200.0; and (d) 246.8 consistent unities.

Starting with the imposition of an isotropic von Mises material model, it is possible to

establish a set of comparisons between the present shell formulation against results obtained

with shell elements from Abaqus finite-element commercial code (shell elements S4, S4R and

S4R5). Shell elements in Abaqus code also encompassed five Gauss points along the thickness

direction, in accordance to what was done with the present shell element. The analysis of the

out-of-plane apex point displacement evolution, with increasing pressure levels, led to the graph

represented in Figure 13.

It is interesting to note that the present shell formulation is able to avoid locking effects for

the set of boundary, geometry and loading conditions. Additionally, for the present example,

the methodology behind the enhanced shell element has not revealed sensitivity to the mesh

distortion (namely on the apex zone), which is frequently a strong pitfall for enhanced-based

finite elements in the literature. The results obtained with the present finite elements are close

to those obtained with Abaqus commercial code. Nevertheless, deviations appear between the

simulation results with the S4E6P 5 finite element and the experimental ones.
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Figure 12. Hydro-bulge forming—mesh and boundary conditions adopted.

In order to assess the importance of the constitutive law on the quality of the solution, results

with the presented enhanced assumed strain shell element along with the anisotropic criterion

of Barlat et al. [74] are considered. Experimental results (including anisotropic effects) give a

final pole displacement of approximately 23mm [91]. For the present EAS shell element, results

including the anisotropic criterion are reproduced in Figure 14 and compared to experimental

data. At the final pressure level, the EAS shell formulation led to a pole displacement of

23.6 mm, which is in good agreement with the experimental solution, and considerably higher

than the analogous result considering an isotropic yield criterion.

For the sake of completeness, equivalent plastic strain contours are presented for speci-

mens with rolling directions at 0◦ and 45◦ relative to a reference direction OX. On algorithm

terms, the local axis (r1) of each Gauss point is initially taken along these directions, at

the start of the numerical process. Subsequent deformation will drive the evolution of the

local triad, as described before. For a rolling direction of 0◦ with OX direction, the contour

plots of the equivalent plastic strains are reproduced in Figure 15, for the maximum pressure

level. For a rolling direction of 45◦ relative to the reference direction, contour plots of the

equivalent plastic strain now change, as can be seen in Figure 16. From this figure, it is vis-

ible the lack of concentricity of the contour curves, as well as the influence of measurements

along distinct rolling directions, as expected when considering anisotropic constitutive evolution

laws.
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Figure 13. Hydro-bulge forming—results for S4E6P 5 EAS shell element for
the isotropic constitutive evolution.

5.2.2. Forming of elliptical cross-section pressure vessel heads. In this example, the simulation

of the hydro-bulge forming of a pressure vessel head is carried out. The main data for the

analysis come from experimental specifications that can be found in Reference [93], dealing with

the integral hydro-bulge forming (IHBF) technology, originally proposed for the manufacturing

of medium to large radius pressure vessel heads [94, 95].

The motivation in accounting for the present example relies on the fact that, for a given

level of forming pressure applied to the initial blank, wrinkles might appear in the deformed

part during the manufacturing process. This phenomenon, verified experimentally, is of tran-

sient character, tending to disappear with further increase of the fluid pressure applied to the

undeformed part. From the simulation standpoint, and as shown here, reproduction of the onset

of wrinkles is highly dependent on the constitutive model employed.

Isotropic-based plasticity models cannot reproduce the instability conditions leading to the

wrinkles. More interesting, nevertheless, is that planar anisotropic criteria, such as those coming

from the works of Hill [73] and Barlat et al. [74], also fails. Wrinkles appearance can be

reproduced, on the other hand, with the implementation of a normal anisotropic criterion.

Following Reference [93], a schematic representation of the geometry of the initial

(undeformed) part is represented in Figure 17, for a blank thickness of 3 mm. The mesh

is distinct to the one adopted in Reference [93], and models one fourth of the whole initial

part, due to symmetry reasons. The finite element model is supposed to be clamped on its

outer edge, and is supposed to represent a circular central flat plate joined (by welding) to a

ring outer zone, built up from the cutting of a pre-bent tube. The whole structure is subjected
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Figure 14. Hydro-bulge forming—results for S4E6P 5 EAS shell element,
considering an anisotropic yield criterion.
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Figure 15. Hydro-bulge forming—equivalent plastic strain distribution for a rolling direction at 0◦,
considering an anisotropic yield criterion and a pressure level of 4 MPa.
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Figure 16. Hydro-bulge forming—equivalent plastic strain distribution for a rolling direction at 45◦,
considering an anisotropic yield criterion and a pressure level of 4 MPa.
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Figure 17. Pressure vessel head—schematic representation of the undeformed (initial) part, along with
the mesh and boundary conditions adopted.
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Figure 18. Pressure vessel head—deformed configuration and evolution of equivalent plastic strain
for pressure values: (a) 0.18 MPa; (b) 0.2 MPa; and (c) 0.4 MPa.

to pressure on its internal face, with the corresponding deformed form showing an elliptical

cross-sectional pattern.

Departing from Reference [93], however, an aluminium alloy similar to the last example is

employed here in order to attain a higher number of wrinkles than those obtained in the latter

reference (who used steel as the tested material). The material properties for the von Mises

and Barlat yield criteria are the same as those used in the last example. Constants for the
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Figure 19. Pressure vessel head (cont.)—deformed configuration and evolution of equivalent plastic
strain for pressure values: (d) 0.6 MPa; (e) 0.8 MPa; and (f) 1.0 MPa.

Hill criterion for anisotropic parameters for planar anisotropy are R0 = 0.8, R45 = 0.6 and

R90 = 0.7, while for the normal anisotropy the equivalent (resultant) coefficient is R = 0.675.

The maximum attained pressure load in the simulation (enough to induce the appearance of

wrinkles) is equal to p0 = 1MPa. All the before-referred constitutive models were implemented

and tested, along with their ability to reproduce physical phenomena attained experimentally.
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For the present case (aluminium alloy part), and as said before, only the normal anisotropy

yield criterion is able to predict the appearance of the wrinkles along the perimeter of the

deformed part. Although the induced equivalent plastic strain level is not high, its gradient is

visible over the deformed vessel head, as reproduced in Figures 18 and 19.

For a pressure level of approximately 0.4 MPa, wrinkles initiation is visible, remaining

stabilized until an internal pressure value of 1.0 MPa. For higher loads, the wrinkles tend

to disappear (with the spread of plasticity on the internal part of the vessel head) and a

smooth final elliptical cross-sectional shape is attained. Similar conclusions were also reported

in Reference [93] for steel vessel heads.

6. CONCLUSIONS

The present work represents the closure of the research line initiated by the authors back in

Reference [29], and dealing with the treatment of transverse shear locking in degenerated bilin-

ear shell elements, solely resorting to the application of the EAS method. Finite displacement

and rotations algorithmic treatment are carried out here, considering small to moderate strains.

The additive dealing of non-additive rotation degrees-of-freedom is described in detail. Further-

more, implementation of isotropic as well as anisotropic yield criteria is dealt with. In the end,

an improved EAS-based thin-shell finite element formulation is achieved, involving a minimum

set of enhanced variables at each element level, when compared to previous works. The finite

element formulation, along with the implemented non-linear geometric and constitutive models,

have led to good results when tested in simulation and experimental benchmark problems.

APPENDIX

Explicit expressions for the convective displacement-based strain tensor components, before the

introduction of the enhanced transverse shear assumed strain approach:
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89. Sorić J, Montag U, Krätzig WB. An efficient formulation of integration algorithms for elastoplastic shell

analysis based on layered finite element approach. Computer Methods in Applied Mechanics and Engineering

1997; 148:315–328.

90. Sansour C, Kollmann FG. Families of 4-node and 9-node finite elements for a finite deformation shell theory:

An assessment of hybrid stress, hybrid strain and enhanced strain elements. Computational Mechanics 2000;

24:435–447.

91. Yoon JW. Finite element formulation based on incremental deformation theory for sheet metal forming

of planar anisotropic materials. Ph.D. Dissertation, Korea Advanced Institute of Science and Technology

(KAIST), South Korea, 1996.

92. Cardoso RPR. Development of one point quadrature shell elements with anisotropic material models for

sheet metal forming analysis. Ph.D. Dissertation, University of Aveiro, Portugal, 2002.

93. Zhang SH, Danckert J, Nielsen KB. Integral hydro-bulge forming of pressure vessel heads. Journal of

Materials Processing Technology 1999; 86:184–189.

94. Wang ZR, Wang T, Kang DC, Zhang SH, Fang Y. The technology of the hydro-bulging of whole spherical

vessels and experimental analysis. Journal of Mechanical Working Technology 1989; 18:85–94.

95. Zhang SH, Wang ZR. Research into the dieless hydroforming of double-layer spherical vessels. International

Journal of Pressure Vessels and Piping 1994; 60:145–149.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:1360–1398


