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Abstract: In this study, we develop the enhanced unconditionally positive finite difference method
(EUPFD), and use it to solve linear and nonlinear advection–diffusion–reaction (ADR) equations. This
method incorporates the proper orthogonal decomposition technique to the unconditionally positive
finite difference method (UPFD) to reduce the degree of freedom of the ADR equations. We investigate
the efficiency and effectiveness of the proposed method by checking the error, convergence rate, and
computational time that the method takes to converge to the exact solution. Solutions obtained by the
EUPFD were compared with the exact solutions for validation purposes. The agreement between the
solutions means the proposed method effectively solved the ADR equations. The numerical results
show that the proposed method greatly improves computational efficiency without a significant loss
in accuracy for solving linear and nonlinear ADR equations.

Keywords: proper orthogonal decomposition; unconditionally positive finite difference method;
advection–diffusion–reaction equations; enhanced unconditionally positive finite difference method
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1. Introduction

Many problems in science and engineering are modeled by partial differential equa-
tions that are often difficult to solve for an exact solution and, in some cases, impossible. Nu-
merical methods are a good alternative in providing approximate solutions close to the exact
solution. As a result, several accurate numerical methods, such as the Crank–Nicolson [1],
finite element [2], finite volume [3], spectral [4], and nonstandard finite difference [5,6]
methods were developed. Developing better numerical methods continues to stimulate
much interest among researchers. Motivated by the continued need for better-performing
numerical methods, in this work, we propose a novel hybrid method that is based on
combining elements of the unconditionally positive finite difference method (UPFD) and
the proper orthogonal decomposition method (POD), called the enhanced unconditionally
positive finite difference method (EUPFD).

The UPFD was developed by Chen-Charpentier and Kojouharov [7] for the advection–
diffusion–reaction equation (ADR), and has since been used by several other researchers [8–10].
It is a finite difference-based method that guarantees the positivity of solutions independent
of time step and mesh size. Numerical schemes that preserve the positivity of solutions
are important in physical applications. To have significant meaning, quantities such as
chemical species concentration, population sizes, and neutron numbers require positive
solutions. On the other hand, the POD is a powerful technique widely used in statistics and
image processing [11,12] to reduce a large number of interdependent variables to a much
smaller number of uncorrelated variables while retaining as much possible of the variation
in the original variables. By utilizing the POD, the EUPFD involves the extraction of a set
of basis functions from the UPFD solution called the snapshot matrix; then, it uses a small
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subset of leading basis functions to construct state variable approximations. One of the
most persistent challenges faced by several numerical methods when solving PDEs is that
they require many grid points and numerous iterations to converge to the exact solution.
That significantly affects their efficiency in terms of computational speed and memory
requirement. The POD has been used to reduce the dimensions of numerical methods, such
as the Crank–Nicolson method [13–18]. The POD is useful when it is impossible to perform
numerical simulations due to large-scale computing requirements.

The POD modes are updated until the EUPFD satisfies the theoretical accuracy re-
quirements. Luo and Sun [19] combined the POD with the finite volume, the finite element,
and the finite difference methods to solve Navier–Stokes, Sobolev, Burger’s, and hyperbolic
equations. In this work, we extend the POD coupling by hybridising it with the UPFD
to obtain a novel numerical method that exhibits higher accuracy with less computing
time, fewer degrees of freedom in numerical computations, and reduced truncation error,
ensuring the positivity of the solutions.

We test the applicability of the EUPFD on the nonlinear ADR equations given below:

∂u
∂t

+ Ua
∂u
∂x
− D

∂2u
∂x2 = f (t, x, u), (x, t) ∈ [a, b]× [0, T] t > 0. x ∈ ∂Ω

u(0, x) = u0(x) ≥ 0,

u(a, t) = ua(t) u(b, t) = ub(t).

(1)

where Ua is the advection coefficient, D is the diffusion coefficient, ut(t, x) is the rate at
which the concentration of substances changes over time, ux(t, x) is the advection term,
uxx(t, x) is the diffusion term, and f (t, x, u) is the reaction term or the source [20]. The
ADR equation governs the process of advection and diffusion simultaneously. It is used
to model exponential travelling waves, absorption of pollutants in soil, semiconductors,
modelling of biological systems, and diffusion of neutrons [21–24]. Among other numerical
methods, the UPFD method has been used to solve ADR equations, is stable, accurate, and
consistent in rectangular domains, and it guarantees the positivity of the solution that is
independent of the step sizes [25]. The Rosenbrock scheme is another interesting approach
that preserves solution accuracy and is mostly used to solve stiff ODEs problems. Al’shin,
Al’shina, Kalitkin, and Koryagina [26] proposed the complex Rosenbrock schemes for the
numerical integration of differential algebraic systems by the ε-embedding method. The
method converges quadratically, and the scheme applies even to superstiff systems. The
method enables computations to be performed with guaranteed accuracy. However, as
always, numerical methods need to be refined and improved to converge faster to the
exact solution.

The rest of the paper is organised as follows. In Section 2, we present the UPFD method,
and illustrate how it is used to solve linear and nonlinear ADR equations. We also provide
the stability and consistency analysis of the UPFD scheme. In Section 3, we formulate
the POD basis to optimise the UPFD scheme and this results in the EUPFD method. In
Section 4, numerical results are presented to illustrate the efficiency and effectiveness of
the EUPFD method to solve the discussed problems. Section 5 provides the conclusion of
the study.

2. Unconditionally Positive Finite Difference Method

In this section, we present details of the unconditionally positive finite difference method
(UPFD), and illustrate how it is utilized to solve linear and nonlinear ADR equations.

The discretization of the linear and nonlinear ADR equation is obtained by using the
derivative schemes given below to obtain the UPFD schemes [7],
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∂u
∂x
≈

un
i − un+1

i−1
∆x

∂u
∂x
≈

un+1
i − un

i−1
∆x

(2)

(3)

∂u
∂t
≈

un+1
i − un

i
∆t

,

∂2u
∂x2 ≈

un
i+1 − 2un+1

i − un
i−1

(∆x)2 .

(4)

(5)

where the spatial step size ∆x =
b− a
m− 1

, and the grid points are given as xi = a + ∆x(i− 1),

1 ≤ i ≤ m. Time step size ∆t =
T

N − 1
with the corresponding grid points are given as

tn = ∆t(n− 1), 1 ≤ n ≤ N.
When approximating the first and second space derivatives, the terms in the finite

difference schemes are evaluated at different time levels n and n + 1. This is required to
preserve the positivity of the solution. Equation (2) is used when the coefficient of the first
space derivative is negative, while Equation (3) is used when the derivative is positive. On
the other hand, Equation (5) is used whether the coefficient of the second space derivative
is positive or negative.

2.1. Linear Advection–Diffusion–Reaction Equation

In this section, we set f (t, x, u) = −u, Ua = 1, and D = 1 in Equation (1) to obtain the
equation given below.

∂u
∂t

+
∂u
∂x

=
∂2u
∂x2 − u, (6)

subject to the following initial and boundary conditions:
u(x, 0) = e−x 0 ≤ x ≤ 6,
u(0, t) = et 0 ≤ t ≤ T,
ux(6, t) = −u(6, t),

(7)

with the exact solution given by u(x, t) = e(t−x) [7].

Since the coefficient of
∂u
∂x

in Equation (6) is positive, we used Equation (3) to find the
UPFD scheme. Therefore, the UPFD discretization of Equation (6) is given by

un+1
i − un

i
∆t

+
un+1

i − un
i−1

∆x
=

un
i+1 − 2un+1

i + un
i−1

(∆x)2 − un+1
i . (8)

Equation (8) can be written as

un+1
i =

un
i + (λ + β)un

i−1 + βun
i−1

1 + ∆t + λ + 2β
. (9)

where λ =
∆t
∆x

and β =
∆t

(∆x)2 .
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2.1.1. Stability

To obtain the region of stability of the UPFD scheme, we used the Fourier series
analysis of the form un

i = ξnej∆ti∆x on Equation (9). The amplification factor is then
given by

ξ =
1 + (λ + 2β) cos ω

1 + ∆t + λ + 2β
− I
[

λ sin ω

1 + ∆t + λ + 2β

]
(10)

where ω is the phase angle, ω = θ∆x where θ is the wave number, and ∆t is the spatial step

size, and ξ =
ξn+1

ξn .

By using the | ξ |2≤ 1 in (10), where | ξ |=
√
(<(ξ))2 + (=(ξ))2, the following is

obtained.

| ξ |=

√(
1 + (λ + 2β) cos ω

1 + ∆t + λ + 2β

)2

+

(
λ sin ω

1 + ∆t + λ + 2β

)2
(11)

The UPFD method presented here guarantees the positivity of the solutions indepen-
dent of the time step and mesh size. The UPFD method works with terms that are the sum
of a positive and negative function of the unknown, and one or both may be zero. The
scheme is positive definite for all values of ∆t, ∆x > 0, hence, the scheme is unconditionally
stable for all ∆x, ∆t > 0.

2.1.2. Consistency

In this section, we investigate the consistency of Equation (6). We use the Taylor
expansion to approximate the un+1

i , un
i+1, un

i−1, thus

un+1
i ≈ un

i + ∆t
∂u
∂t

+
(∆t)2

2
∂2u
∂t2 +

(∆t)3

6
∂3u
∂t3 + · · ·

un
i−1 ≈ un

i − ∆x
∂u
∂x

+
(∆x)2

2
∂2u
∂x2 −

(∆x)3

6
∂3u
∂x3 + · · ·

un
i+1 ≈ un

i + ∆x
∂u
∂x

+
(∆x)2

2
∂2u
∂x2 +

(∆x)3

6
∂3u
∂x3 + · · ·

(12)

The UPFD scheme terms are approximated by using Equation (12), which are then
substituted into Equation (8) to obtain the truncation error for the UPFD method. After
simplification, we obtain the following.

∂u
∂t

+
∂u
∂x

=
∂2u
∂x2 − u−

(
∆t +

∆t
∆x

+
2∆t
(∆x)2

)
∂2u
∂t2 −

(
∆t
2

+
(∆t)2

2
+

(∆t)2

2(∆x)
+

(∆t)2

(∆x)2

)
∂2u
∂t2

−
(
(∆t)2

6
+

(∆t)3

6
+

(∆t)3

6(∆x)
+

(∆t)3

3(∆x)2

)
∂3u
∂t3 +

∆x
2

∂2u
∂x2 −

(∆x)2

6
∂3u
∂x3 + · · ·

(13)

The above scheme is not consistent when ∆t→ 0, ∆x → 0; as a result, ∆t = (∆x)3 to
obtain the following equation.

∂u
∂t

+
∂u
∂x

=
∂2u
∂x2 − u−

(
(∆x)3 + (∆x)2 + 2(∆x)

)∂2u
∂t2

− (∆x)3

2

(
1 + (∆x)2 + 2∆x + (∆x)3

)∂2u
∂t2

− (∆x)6

6

(
1 + (∆x)2 + 2∆x + (∆x)3

)∂3u
∂t3 +

∆x
2

∂2u
∂x2 −

(∆x)2

6
∂3

∂x3 + · · · (14)

when ∆x −→ 0 , ∆t −→ 0, Equation (14) reduces to Equation (6); hence, the UPFD scheme
is consistent when ∆t = (∆x)3.
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2.2. Nonlinear Advection–Diffusion–Reaction Equation

In this section, we set f (t, x, u) = ru(1− u), and Ua = 0 in Equation (1) to obtain the
nonlinear reaction diffusion equation given below.

∂u
∂t
− D

∂2u
∂x2 = ru(1− u) (x, t) ∈ [0, 1]× [0, T] (15)

with initial and boundary conditions given by

u(x, 0) =

{
0.7e−σ(x−x0)

2
, |x− x0| ≤ 0.06

0, otherwise
(16)

u(0, t) = 0, 0 ≤ t ≤ T

u(1, t) = 0,

where σ = 80, x0 = 0.5 [7].
With the exact solution given as

u(t, x) =
11 +

 1−
√

u(x, 0)√
u(x, 0) exp

(
1

6D
√

6Drx
)
 exp

(
−5

6
rt +

1
6D
√

6Drx
)

2 (17)

where D = 0.0002, r = 0.05.
The discretization of the nonlinear ADR Equation (15) using Equation (5) is given

below.

un+1
i =

(1 + r∆t)un
i + λ(un

i+1 − un
i )

1 + 2λ + r∆tun
i

. (18)

where λ =
D∆t
(∆x)2 .

2.2.1. Stability

By applying Fourier series analyses of the form ui,n = ξnej∆ti∆x, and freezing coefficient
technique [27] to Equation (18), we obtain the following amplification factor.

ξ =
1 + ∆tr + 2λ cos ω

1 + 2λ + r∆tumax
(19)

where by the freezing coefficient technique, u2 is replace by uumax, and u is frozen to a
constant umax, which represents the maximum value of the solution u.

The scheme is unconditionally stable for all ∆x, ∆t > 0.

2.2.2. Consistency

Through the consistency of the UPFD scheme [25] by the Taylor expansion to Equation (18),
we obtain the following.

∂u
∂t
− D

∂2u
∂x2 = ru(1− u)− ∆t

2
∂2u
∂x2 −

(
(∆x)3ru + 2∆xD

)∂u
∂t

− (∆x)3

2

(
1 + 2∆xD + r(∆x)3u

)∂2u
∂t2 −

(∆x)6

6

(
1 + 2∆xD + r(∆x)3u

)∂3u
∂t3 · · · · · · (20)

As ∆x −→ 0 and ∆t −→ 0, Equation (20) reduces to Equation (15); therefore, the
scheme is consistent.
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3. Formulation of the POD Basis

In this section, we discuss the POD basis that reduces the degree of freedom for
numerical methods [28].

The POD is used to reduce the computational time accumulated in the UPFD method.
The EUPFD method is built by extracting a snapshot matrix from the matrix solution of
the UPFD method. The snapshot matrix is then used to construct a small subset of leading
basis functions, which is an eigenvector generated by singular value decomposition (SVD),
to approximate state variables ψi. The SVD technique is used to decompose a matrix into
several component matrices, exposing many of the original matrix’s useful and interesting
properties [29]. The POD method seeks a low-dimensional basis that could be used to
approximate the state variables well. POD basis functions are typically the left singular
vectors of the matrix.

From the standard UPFD solution, denoted by un
i , where (1 ≤ i ≤ m), 0 ≤ n ≤ N, we

extract the first L sequence of solutions {un
i }L

(n=1) (1 ≤ i ≤ m, and L ≤ N) as snapshots,
yielding the formulated m× L snapshot matrix shown below.

A =



u1
1 u2

1 · · · · · · uL
1

u1
2 u2

2 · · · · · · uL
2

· · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·

u1
m u2

m · · · · · · uL
m


(21)

where m and L are the mesh points of the snapshot. When the snapshot is tall and skinny,
the method of snapshot is an efficient alternative way to compute the POD basis. The POD
modes are computed by using the method of snapshots developed by Sirovich [30].

The SVD is then used to factorise snapshot matrix A.

A = UΣVT = U
(

Σl×l Ol×(L−l)
O(m−1)×l O(m−l)×(L−l)

)
VT (22)

where l = rankA, Σl×l = diag(σ1, σ2, . . . , σl) is a diagonal matrix that is generated from
the SVD of A as arranged from the decreasing order σ1 ≥ σ2 ≥ · · · · · · ≥ σl > 0, U =
(ψ1, ψ2, . . . , ψm) is an m × m orthogonal matrix consisting of the eigenvectors of AAT ,
whereas V = (φ1, φ2, . . . , φL) is an L× L orthogonal matrix consisting of the orthogonal
eigenvectors of AT A and O is a zero matrix [31].

The eigenvalues of AT A and AAT are identical and satisfy Λj = σ2
j (j = 1, 2, . . . , l).

Therefore, we may first find the eigenvalues Λ1 ≥ Λ2 ≥ · · · · · · ≥ Λl > 0(l = rankA)
for matrices AAT and corresponding eigenvectors ψj. That means that the following
relationship applies.

ψj = Aφj/
√

Λj, j = 1, 2, · · · · · · , l. (23)

Eigenvectors φj(j = 1, 2, · · · · · · , l) that correspond to the nonzero eigenvalues for
matrix AAT are obtained. Therefore,

AM = UΣVT = U
(

ΣM×M OM×(L−M)

O(m−M)×M O(m−M)×(L−M)

)
VT (24)
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where ΣM×M = diag(σ1, σ1, · · · , σm) represents the diagonal matrix that consists of the first
M positive singular values of diagonal matrix Σl×l . The 2-norm of matrix A is defined as
follows: ‖A‖2= supu∈<L‖Au‖2/‖u‖2 ( where ‖u‖2 is the l2 norm for vector u).

Theorem 1. Let φ = (ψ1, ψ2, · · · , ψM) consist of the first M eigenvectors U = (ψ1, ψ2, · · · , ψm);
then, we have

AM =
M

∑
i=1

σiψiφ
T
i = φφT A. (25)

Proof.

AM =
M

∑
i=1

σiψiφ
T
i = (ψ1, · · · · · · , ψM)



σ1 · · · · · · · 0
· · · · · · · · ·
· · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
0 · · · · · · · σM





φT
1
·
·
·
·
·
·
·
·

φT
M


(26)

A = (ψ1, · · · · · · , ψl)



σ1 · · · · · · · 0
· · · · · · · · ·
· · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
0 · · · · · · · σl





φT
1
·
·
·
·
·
·
·
·

φT
l


(27)

φφT A = φ



ψ1
·
·
·
·
·
·
·
·

φT
M


(ψ1, · · · · · · , ψl)



σ1 · · · · · · · 0
· · · · · · · · ·
· · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
0 · · · · · · · σl





φT
1
·
·
·
·
·
·
·
·

φT
l


(28)
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= φ
(

IM O
)



σ1 · · · · · · · 0
· · · · · · · · ·
· · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
0 · · · · · · · σl





φT
1
·
·
·
·
·
·
·
·

φT
l


(29)

= φ



σ1 · · · 0 · · · 0
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
0 · · · σM · · · σl





φT
1
·
·
·
·
·
·

φT
l


(30)

= (ψ1, · · · · · · , ψM)



σ1 · · · · · · · 0
· · · · · · · · ·
· · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
0 · · · · · · · σM





φT
1
·
·
·
·
·
·
·
·

φT
M


= AM (31)

Thus, by the relationship between the matrix norm and its spectral radius, we have

min
rank(B)≤M

‖A− B‖2,2 = ‖A− AM‖2,2 = ‖A− φφT A‖2,2 =
√

ΛM+1 (32)

where φ = (φ1, φ2, · · · · · · , φM) consist of the first M eigenvectors U = (ψ1, ψ2, · · · · · · , ψm).
If the L column vectors of A are denoted by un = (un

1 , un
2 , · · · · · · , un

m)
T(n = 1, 2, · · · · · · , L)

we have

‖un − un
M‖2 = ‖(A− φφT A)ξn‖2 ≤ ‖A− φφT A‖2,2‖ξ‖2 =

√
ΛM+1, (33)

where

un
M =

M

∑
j=1

(ψj, un)ψj (34)

which represents the projection of un onto φ = (φ1, φ, · · · · · · , ψM)(ψj, un) is the inner
product of ψj and un, and ξn denotes the unit vector with the nth component being 1.
Inequality (33) shows that un

M is an optimal approximation un whose error is no more than√
ΛM+1; thus, φ is just an orthogonal optimal POD base of A.
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3.1. Formulation of the POD to Reduce the Order of the Finite Difference Scheme for the
Advection–Diffusion–Reaction Equations

The EUPFD method is built on the basis of POD. The solution vector of the UPFD
method is given by un = (un

1 , un
2 , . . . , un

m)
T(n = 1, 2, · · · · · · , L, L + 1, · · · · · · , N) and have

a finite difference scheme, as follows:

un+1 = un +
∆t

∆x2 Bun + ∆tFn (35)

where Fn =
(

f n
1 , f n

2 , · · · · · · , f n
m
)

and

B =



−2 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
0 0 1 −2 · · · 0 0
· ·
· ·
· ·
0 0 0 0 · · · −2 1
0 0 0 0 · · · 1 −2


(36)

Matrix B is a tridiagonal matrix with the following eigenvalues:

Λj = −2 + 2 cos[(2j− 1)π/(2m + 1)], j = 1, 2, · · · · · · · · · , m. (37)

Taking the norm of matrix B, we obtain the following.

‖B‖2,2 = |2− 2 cos[(2m− 1)π/(2m + 1)]|
= |2− 2 cos[π − 2π/(2m + 1)]|
= |2 + 2 cos[2π/(2m + 1)]| < 4

(38)

Replacing un in Equation (35) with u∗n = φφT Aξn(n = 1, 2, · · · · · · , L), which is
u∗n = φαn(n = L + 1, L + 2, · · · · · · , N), where αn = φT Aξn, we obtain the EUPFD scheme
as follows. 

u∗n = φφT Aξn, · · · · · · , n = 1, 2, · · · · · · , L

φαn+1 = φαn +
∆t

∆x2 Bφαn + ∆tFn,

n = L, L + 1, · · · · · · , N − 1

(39)

where αn = (αn
1 , αn

2 , · · · · · · , αn
M)T are vectors that are yet to be determined.

Using orthogonal vectors in φT multiplied by (39), we obtain
αn = φTun, , · · · · · · , n = 1, 2, · · · · · · , L

αn+1 = αn +
∆t

∆x2 φT Bφαn + ∆tφT Fn,

n = L, L + 1, · · · · · · , N − 1

(40)

We obtain the αn(n = L, L + 1, · · · · · · , N) from Equation (40); then, we obtain the
EUPFD solution as follows.

u∗n = φαn, n = 1, 2, · · · · · · , N. (41)

Therefore, the EUPFD solution component of Equation (6) is given as follows.

u∗nj,k = u∗ni , · · · · · · 0 ≤ j ≤ J, 0 ≤ k ≤ K, 1 ≤ i = k(J + 1) + j + 1 ≤ m = (K + 1)(J + 1)
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3.2. Error Estimates of the EUPFD for the Advection–Diffusion–Reaction Equation

By finding the norm of Equations (39) and (40), we obtain the following.

‖un − u∗n‖2 = ‖un − un
M‖2 = ‖(A− φφT A)ξn‖2 ≤

√
ΛM+1 (42)

n = 1, 2, · · · · · · , L

Theorem 2 (Accuracy). The errors between solutions un
i from the UPFD scheme and solution u∗ni

from the EUPFD scheme satisfy the following estimates:

|un
i − u∗ni | ≤ (1 + δ)n−L

√
ΛM + 1 for (L + 1 ≤ n ≤ N) (43)

where δ =
∆t

∆x2 ‖B‖2,2.

The errors between exact solution u(x, t) and solution un
m from the POD-reduced-order FD

scheme satisfy the following estimates [31]

|u(xi, tn)− u∗ni | = O
(
(1 + δ)n−L

√
ΛM + 1, ∆t, ∆x2

)
, 1 ≤ i ≤ M, 1 ≤ n ≤ N. (44)

Proof.

|un − u∗n|2 = |un − un
M|2 = |(A− ααT A)εn|2 ≤

√
ΛM+1, n = 1, 2, · · · · · · , L. (45)

Equation (39) is rewritten as follows.

u∗n+1 = u∗n +
∆t

(∆x)2 + ∆tFn, n = L, L + 1, · · · , N − 1. (46)

By putting δ = ∆t|B|2/(∆x)2, we obtain the following simplified equation of Equation (45).

|un+1 − u∗n+1|2 ≤ (1 + δ)|un − u∗n|2
≤ · · ·
≤ (1 + δ)n+1−L|uL − u∗L|2
≤ (1 + δ)n+1−L√ΛM+1, n = L, L + 1, · · · , N − 1.

(47)

(48)

Remark 1. The error terms containing
√

ΛM+1 are caused by the POD-based reduced-order for the
classical FD scheme, which could be used to select the number of the POD basis, i.e., it is necessary
to take M such that

√
ΛM+1 = O(∆t, ∆x2). Whereas E(n) = (1 + δ)n−L (L + 1 ≤ n ≤ N) are

caused by extrapolating iterations that could be used as the guide for renewing the POD basis, i.e., if
(1 + δ)n−L√ΛM+1 > max(∆t, ∆x2) it is necessary to update the POD basis. If we take ΛM+1
that satisfies (1 + δ)n−L√ΛM+1 = O(∆t, ∆x2), then the EUPFD scheme converges; thus, we did
not have to update the POD basis [31].

3.3. Implementation of the EUPFD Scheme Algorithm for
Advection–Diffusion–Reaction Equations

In order to facilitate the use of the EUPFD scheme for the linear and nonlinear ADR
equation, the following implementation steps of the algorithm for the EUPFD scheme are
useful [31].
Step 1: Standard UPFD computation and extraction of snapshots:
Write the standard UPFD scheme in vector form and find solution vectors
un = (un

1 , un
2 , · · · , un

m)
T(n = 1, 2, · · · , L) at the few L steps.
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Step 2: Snapshot matrix A and eigenvalues of AT A: Formulate snapshot matrix A =
(un

i )x×L and compute eigenvalues Λ1 ≥, Λ2 ≥, · · · , Λl > 0(l =Rank A) and eigenvectors
φj(j = 1, 2, · · · , M̃) of matrix AT A.
Step 3: Choice of POD basis: For error tolerance µ = O(∆t, ∆x2), decide the numbers
M ≤ M̃ of POD basis, such that

√
Λu(M+1) ≤ µ, and formulate the POD bases φ =

(ψ1, ψ2, · · · , ψM)(where ψj =
Aφj√

Λj

, j = 1, 2, · · · , M).

Step 4: Solve or compute the EUPFD model:
Solve Equation (40) and use (41) to obtain the reduced-order solution vectors of the EUPFD
given in a form of u∗n = (u∗n1 , u∗n2 , · · · , u∗nm ), further obtain the component forms u∗nj,k = u∗ni ,
where (0 ≤ j ≤ J, 0 ≤ k ≤ K, i = k(J + 1) + j + 1. 1 ≤ i ≤ m = (K + 1)(J + 1)).
Step 5: Check accuracy and renew POD basis to continue:

Set δ =
∆t || B ||2,2

(∆x)2 . If (1 + δ)n−L
√

Λu(M+1) ≤ µ, then u∗n = (u∗n1 , u∗n2 , · · · , u∗nm )T is

the solution vectors for the EUPFD scheme that satisfy the accuracy requirement. Else, if
(1 + δ)n−L

√
Λu(M+1) > µ, put u1 = u∗(n−L), u2 = u∗(n−L+1), · · · , uL = u∗(n−1) and return

to step 2.

4. Numerical Results

This section presents solutions to the linear and nonlinear ADR equations using the
UPFD and EUPFD. Exact solutions are also used for comparison purposes. Convergence
rates, absolute errors, and computational time were calculated to evaluate the methods’
performance. The numerical and analytical solutions are denoted by ūi,n and ui,n, respec-
tively. The error is denoted by ei,n ,and its magnitude is measured by the L∞-norm given
by the formula below.

||ei,n||∞ = ||ui,n − ūi,n||∞ = Max|ui,n − ūi,n| (49)

The convergence rate is calculated by using the formula below.

q(∆tk) =
log2(

ek
ek+1

)

log2(
∆t

∆tk+1
)

or q(∆xk) =
log2(

ek
ek+1

)

log2(
∆x

∆xk+1
)

(50)

The accuracy of the EUPFD relies on the size of the snapshot, L. Therefore, finding the
best snapshot size such that the accuracy is maximal is paramount. To determine the best
snapshot size, we first set L = 1 and found the solution. We then produced increments of 1
on L until there was no significant change in the solution. For this, we set up a tolerance as
follows.

||uexact − uL||∞ ≤ ε, L = 1, 2, 3, . . . (51)

where uexact is the exact solution, and uL is the solution at the specific value of L. The first
value of L that satisfies (51) is the optimal value of L. In this work, we set ε to be 10−10.

4.1. Numerical Results for the Linear Advection–Diffusion–Reaction Equation

The convergence rates of the UPFD and the EUPFD with respect to the time and spatial
steps are shown in Tables 1 and 2. The convergence rates of UPFD and EUPFD decreased
with a decrease in time and spatial step sizes. Table 3 compares the exact, UPFD, and
the EUPFD solutions at (t, x) = (0.008, 0.05), (0.016, 0.1), and (0.032, 0.2), as well as the
computational times for the UPFD and EUPFD methods. EUPFD took less computational
time to converge to the solution of the linear ADR equation compared to the UPFD.
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Table 1. Convergence rates for the linear ADR equation by the UPFD and EUPFD with respect to ∆t
and a fixed ∆x = 0.025.

q(∆tk)

∆tk UPFD EUPFD

0.001 3.668 3.568
0.002 3.573 3.448
0.004 3.530 3.375

Table 2. Convergence rates for the linear ADR equation by the UPFD and EUPFD with respect to ∆x
and a fixed ∆t = 0.001.

q(∆xk)

∆xk UPFD EUPFD

0.0125 3.269 3.320
0.025 3.001 3.075
0.05 3.074 3.146

Table 3. Numerical results of the linear ADR equation at a fixed ∆x = 0.025 and ∆t = 0.004 .

(t, x) Exact
Solution

UPFD
Solution Error EUPFD

Solution Error

(0.008, 0.05) 0.979 0.975 0.003 0.975 0.003
(0.016, 0.1) 0.938 0.928 0.010 0.928 0.010
(0.032, 0.2) 0.9003 0.883 0.016 0.883 0.016

Time 0.008816 0.004314

In Table 4, we compare the infinity norms of the proposed EUPFD with the Crank–
Nicolson method in solving the linear ADR equation. For this example, results show that
Crank–Nicolson achieved better accuracy. However, Crank–Nicolson did not preserve the
positivity of solutions, which is the main focus of this work.

Table 4. Infinity norm results of the linear ADR equation by using the exact, Crank Nicolson, and
EUPFD solutions.

(t, x) Exact Crank–
Nicolson Error EUPFD Error

u(:, 0.05) 0.9231 0.9246 0.0015 0.9056 0.0175
u(:, 0.1) 0.9608 0.9621 0.0013 0.9071 0.0536
u(:, 0.2) 1.0000 0.9987 0.0013 0.9087 0.0913

Figure 1a shows the contribution of each POD basis mode. The first 12 modes con-
tained the predominant information where the EUPFD met the theoretical accuracy require-
ment. The 12 modes were significant in optimizing the linear ADR equation. Figure 1b
shows the decreasing error when the number of modes increased.



Mathematics 2022, 10, 2639 13 of 18

(a)

0 5 10 15 20 25 30 35 40
10

-20

10
-15

10
-10

10
-5

10
0

(b)

0 5 10 15 20 25 30 35 40

POD Modes

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

E
rr

o
r 

POD Modes vs Error

Figure 1. (a) POD modes for linear reaction diffusion equation. (b) Number of POD modes vs. error.

Figures 2a,b and 3a show the surface plots of the exact, UPFD and EUPFD solutions
of linear ADR. Figure 3b shows the increase in error when the POD modes increased.

(a) (b)

Figure 2. (a) Surface plot of the exact solution of the linear ADR equation. (b) Surface plot of the
UPFD solution of the linear ADR equation.
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Figure 3. (a) Surface plot of the EUPFD solution of the linear ADR equation. (b) Number of POD
modes vs. CPU time for the linear reaction diffusion equation.

Figure 4a,b show the absolute errors between the exact solution and EUPFD solution
for the linear ADR against time and space, respectively.
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Figure 4. (a) Absolute error between the exact and EUPFD solutions of the linear ADR against time.
(b) Absolute error between the exact and EUPFD solutions for the linear ADR against space.

4.2. Numerical Results for the Nonlinear Reaction Diffusion Equation

Tables 5 and 6 show the convergence rates of the UPFD and EUPFD for the nonlinear
reaction–diffusion equation with respect to time and spatial steps. In these tables, the
convergence rate of the UPFD and the EUPFD decreases with the increasing time step, and
increases with the increasing spatial step sizes.

Table 5. Convergence rates for the nonlinear diffusion reaction by the UPFD and EUPFD equations
with respect to ∆t and a fixed ∆x = 0.01.

q(∆tk)

∆tk UPFD EUPFD

0.00625 2.041 2.041
0.0125 2.028 2.028
0.025 1.983 7 1.983

Table 6. Convergence rates for the nonlinear diffusion reaction equation by the UPFD and EUPFD
with respect to ∆x and a fixed ∆t = 0.025.

q(∆xk)

∆xk UPFD EUPFD

0.0005 7.160 4.767
0.001 5.405 4.320
0.002 3.878 3.882

Table 7 shows the comparison of the exact, UPFD, and EUPFD solutions obtained at
(t, x) = (0.05, 0.02), (0.1, 0.04), and (0.2, 0.08), and the computational times taken by the
UPFD and EUPFD methods. The EUPFD took less computational time to converge to the
solution of the nonlinear reaction–diffusion equation than the UPFD did.

Table 7. Numerical results of the nonlinear ADR equation at a fixed ∆x = 0.01, ∆t = 0.025, r = 0.05
and D = 0.002.

(t, x) Exact
Solution

UPFD
Solution Error EUPFD

Solution Error

(0.05, 0.02) 3.191 × 10−9 3.214 × 10−9 2.281 × 10−11 3.214 × 10−9 2.285 × 10−11

(0.1, 0.04) 1.488 × 10−8 1.603 × 10−8 1.152 × 10−9 1.603 × 10−8 1.152 × 10−9

(0.2, 0.08) 6.508 × 10−8 7.285 × 10−8 7.764 × 10−9 7.285 × 10−8 7.764 × 10−9

Time 0.004314 0.002357
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In this example, the infinity norms of the EUPFD and Crank–Nicolson errors are shown
in Table 8. Results show that EUPFD was slightly more accurate than Crank–Nicolson.

Table 8. Infinity norm results of the nonlinear ADR equation by using the exact, Crank–Nicolson,
and EUPFD solutions.

(t, x) Exact Crank
Nicolson Error EUPFD Error

u(:, 0.02) 0.7103 0.6998 0.0105 0.7000 0.0101
u(:, 0.04) 0.7103 0.6993 0.0110 0.7000 0.0101
u(:, 0.08) 0.7103 0.6989 0.0114 0.7000 0.0101

Figures 5a,b and 6 shows the surface plots of the exact, UPFD and EUPFD solutions of
the nonlinear ADR equation. Figure 6b shows the increase in CPU time when the number
with the increase in POD modes.

(a) (b)

Figure 5. (a) Surface plot of the EUPFD solution of the nonlinear ADR equation. (b) Number of POD
modes vs. CPU time for the nonlinear reaction diffusion equation.
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Figure 6. (a) Surface plot of the exact solution of the nonlinear reaction diffusion equation. (b) Surface
plot of the UPFD solution of the nonlinear reaction diffusion equation.

Figure 7a shows the contribution of each of the POD basis modes. The first 9 modes
contain the predominant information where the EUPFD met the theoretical accuracy re-
quirement. The 9 modes were significant in optimising the nonlinear ADR equation.
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Figure 7. (a) Significant POD modes against number of modes. (b) Absolute error between the exact
solution and EUPFD solution against time.

Figures 7b and 8 shows the absolute error between the exact and EUPFD solutions for
the nonlinear ADR against time and space, respectively.
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Figure 8. Absolute error between the exact and EUPFD solutions against space.

5. Conclusions

In this paper, we presented a new method, the enhanced unconditionally positive
finite difference (EUPFD) method. The method uses the POD in conjunction with the
unconditionally positive finite difference (UPFD) scheme. We used it to investigate the
solutions to the linear and nonlinear diffusion reaction equations. The POD’s goal is to find
the UPFD’s low-dimensional approximated solution. Results show that the EUPFD gives
a good approximation to the solutions of these problems, and this validated its efficiency
and effectiveness. Another remarkable result of the EUPFD is the reduced computational
time compared to that of the UPFD. Besides the reduction in computational time and
solution positivity that the EUPFD guarantees, only a small number of modes containing
the predominant information are required to meet the theoretical accuracy. As the POD
modes increased, the error of EUPFD measured against the exact solution significantly
decreased. The spatial steps were taken to be ∆x = 0.01, 0.02 and 0, 04, while the time step
was ∆t = 0.025, 0.0125 and 0.00625. We had δ < 1; thus, we next took 50 snapshots from the
UPFD. By performing POD on UPFD, we achieved

√
Λ9 ≤ 4× 10−4 and

√
Λ35 ≤ 4× 10−4

for the linear and nonlinear ADR equations, respectively. As long as the first 9 and 12 POD
bases were used, the theoretical accuracy requirement could be met. Since the EUPFD
only used 9 and 12 POD modes from the selected 50 classical solutions of the UPFD as
the snapshot, this would mean that EUPFD saves computational time, reduces degrees
of freedom in numerical computations, alleviates truncation error accumulation, and it
preserves the positivity of the solution. These render the EUPFD more efficient and effective
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in solving linear and nonlinear PDEs. However, the accuracy of the EUPFD was less than
that of Crank–Nicolson when solving the linear ADR equation.
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Abbreviations

UPFD Unconditionally positive finite difference method
EUPFD Enhanced unconditionally positive finite difference methods
POD Proper orthogonal decomposition
CPU time Computational time
PDEs Partial differential equations
SVD Singular value decomposition
t Time variable
x Spatial variable
∆x Change in spatial variable
∆t Change in time variable
Ua Advection coefficient
D Diffusion coefficient
ut Rate at which the concentration of substances changes over time
ux Advection term
uxx Diffusion term
ξ Amplification factor
q Convergence rate
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