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ENHANCED VARIATIONAL IMAGE DEHAZING

ADRIAN GALDRAN∗ , JAVIER VAZQUEZ-CORRAL† , DAVID PARDO‡§¶, AND

MARCELO BERTALMÍO†

Abstract. Images obtained under adverse weather conditions, such as haze or fog, typically
exhibit low contrast and faded colors, which may severely limit the visibility within the scene. Un-
veiling the image structure under the haze layer and recovering vivid colors out of a single image
remains a challenging task, since the degradation is depth-dependent and conventional methods are
unable to overcome this problem. In this work, we extend a well-known perception-inspired varia-
tional framework for single image dehazing. Two main improvements are proposed. First, we replace
the value used by the framework for the grey-world hypothesis by an estimation of the mean of
the clean image. Second, we add a set of new terms to the energy functional for maximizing the
inter-channel contrast. Experimental results show that the proposed Enhanced Variational Image
Dehazing (EVID) method outperforms other state-of-the-art methods both qualitatively and quanti-
tatively. In particular, when the illuminant is uneven, our EVID method is the only one that recovers
realistic colors, avoiding the appearance of strong chromatic artifacts.

Key words. image dehazing, perceptual color correction, contrast enhancement, variational
image processing, visibility enhancement.

1. Introduction. Under good visibility conditions, the human eye can resolve
two different objects only within a range of a few kilometers. Indeed, when looking at
mid and long range open natural scenes, colors of far away parts of the scene tend to
mix with the color of the atmosphere, gradually fading away and vanishing against the
horizon. However, distance is not the only factor that can deteriorate perceptibility,
but also bad weather conditions can accentuate visibility decrease. The presence of
tiny suspended particles in the atmosphere lying between the observer and the objects
in the scene can cause the deflection of light beams that travel from the latter to the
former. This is produced by a wide range of factors, including dust, pollution, fog,
haze, rain, or snow.

Recently, the problem of restoring and properly enhancing images affected by
bad atmospheric conditions has attracted much attention in the image processing
and computer vision community. From a practical point of view, many vision systems
operating in real-world outdoor scenarios assume that the input is the unaltered scene
radiance. These techniques designed for clear weather images may suffer under bad
weather conditions where, even for the human eye, discerning image content can
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(a) (b)

Fig. 1.1. (a) Hazy image, where the degradation increases with distance. A non-uniform
illuminant dominates the scene. (b) The result of our dehazing method.

represent a serious challenge. Therefore, robustly recovering visual information in bad
weather conditions is essential for several machine vision tasks, such as autonomous
robot/vehicle navigation [15], remote sensing [22] or video surveillance systems [49,
40]. Aerial and remotely sensed images, related to applications such as land cover
classification [51, 23], and even underwater image restoration [6, 11] can also benefit
from efficient dehazing techniques.

From a physical point of view, models of the propagation of light through the
atmosphere can be traced back to the work of Kochsmieder [20], who formulated a
simple linear model relating the luminance reflected by an object to the luminance
reaching the observer. This model identified the distance between the observer and the
source, as well as the particle composition of the atmosphere, as the key parameters
that govern the decay of the luminance. From then on, studies of the interaction of
light with the atmosphere continued growing as a rich field of research in the area of
applied optics [27, 25].

Based on these physical models, many image dehazing methods have been pro-
posed. They can be roughly classified into multiple image ones [33, 29, 39, 30, 31, 32],
if they use more than one input image to estimate depth information, or single image
ones [43, 17, 9], that work only with an initial degraded image. We can also find
works that directly compute the albedo. In this case, a depth map can be obtained
as a by-product of these methods. Examples of this approach include the work of
Tan [42], where the albedo is estimated by imposing a local maximization of contrast,
or Fattal [8], where it is assumed that depth and surface shading are locally uncor-
related. Unfortunately, both of these approaches rely on the assumption that depth
is locally constant, and as a consequence, the obtained images may sometimes suffer
from artifacts and tend to over-enhance the results.

This work is an extension of the conference work of [12]. In this version, two
main developments over the previous work have been introduced. First, we have
extended the original functional, adding extra energy terms that allow us to control the
degree of image saturation on the output. Second, we have conducted an exhaustive
quantitative evaluation versus a large set of recent methods. As our experiments
demonstrate, the minimization of our model provides high-quality haze-free images,
even in challenging scenarios with uneven illumination or remarkably poor chromatic
information. These seem to be situations where the majority of the state-of-the-
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art methods tend to encounter difficulties in restoring the degraded image without
introducing color artifacts.

The rest of the paper is structured as follows. In the next section we review
recent methods for image dehazing. Next, we formulate the image dehazing problem
in a variational setting, and we develop our Enhanced Variational Image Dehazing
(EVID) method. Section 4 is devoted to experimental results and comparison to other
state-of-the-art methodologies. We end up in section 5 by summarizing our approach.

2. Related work. Most previous works on image dehazing are based on solving
the image formation model presented by Koschmieder [20] that can be computed
channel-wise as follows

(2.1) I(x) = t(x)J(x) + (1− t(x))A,

where x is a pixel location, I(x) is the observed intensity, J(x) is the scene radiance,
corresponding to the non-degraded image, transmission t(x) is a scalar quantity that
is inversely related to the scene’s depth, while A, known as airlight, plays the role of
the haze color, which is usually considered constant over the scene, and therefore in
a channel-wise formulation it is a scalar value.

Solving Eq. (2.1) is an under-constrained problem, i.e. there exist a large num-
ber of valid solutions. To constrain this indeterminacy, extra information in different
forms has been introduced in the past. A large part of these works can be grouped un-
der the category of methods that work with multiple input images or other data, which
must be fused to take profit of this extra-information. For example, in [31], several
instances of the same scene are acquired under different weather conditions. Then,
differences in pixel intensities allow to estimate depth discontinuities, computing thus
a scene structure map that enables the recovery of a clear weather scene. Schaul
et al. acquire visible and near-infrared (NIR) images of the same scene [38], taking
profit of the fact that NIR images are less sensitive to haze. Both images are then
fused by means of a multiresolution scheme to obtain a dehazed image. The work in
[19] retrieves depth information from geo-referenced digital urban and terrain models.
An interactive registration of the photograph and its model is performed, after which
depth information is available, making possible to remove haze effects in the input
image. In [39], multiple images taken through a polarizer at different orientations are
used. This approach relies on the fact that the light scattered by atmospheric par-
ticles is partially polarized to invert a physical model of image formation, enhancing
scene contrast and correcting color. Unfortunately, all these methods depend on the
acquisition or availability of extra information, which is often unavailable, and this
hinders the practical use of these techniques.

Dehazing is particularly challenging when only a single input image is available.
In this case, the majority of existing methods are also focused on solving Eq. (2.1) by
inferring depth information. The method in [4] assumes that hazy images are usually
acquired outdoors, allowing to conclude certain characteristics about the geometry of
hazy scenarios. For example, the top part of the image is considered to contain the
most hazy regions in the image. Tarel et al. propose in [43] a fast algorithm that
estimates the atmospheric veil (equivalent to the depth map) through an optimization
procedure in which they impose piecewise smoothness. The main advantage of this
method is its low complexity, that they show to be a linear function of the number
of pixels. More recently, several fusion-based dehazing strategies have also been pro-
posed. In [1], a multi-scale fusion strategy is adopted, in which the authors compute
several weighting maps (based on luminance, chromaticity and saliency), that they
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use to fuse a white-balanced and a contrast enhanced version of the original degraded
image. In [48], the depth map is obtained by a fusion procedure in a probabilistic
framework.

When inverting models like the one in Eq. (2.1), there is a risk of enhancing both
the underlying signal and the noise. Some works have also studied this issue. For
example, in [18], a variational formulation is proposed, in which a distance-dependent
and edge-preserving regularization term is introduced, resulting in a numerical scheme
that is able to dehaze the input image while denoising far away regions. The varia-
tional point of view has also been recently exploited in [7], where Fang et al. proposed
a variational formulation intended to dehaze a degraded image while denoising it. Af-
ter estimating the depth information using a variation of the dark channel prior,
the authors formulated an image energy, that they minimized using the primal-dual
Chambolle-Pock algorithm [5]. Existence of a minimizer and convergence of the nu-
merical schemes were also discussed.

A special mention deserves the dark channel methodology [17], probably the most
successful technique to date, due to its simplicity and effectiveness. This method is
based on the statistical observation that haze-free images are colorful and contain
textures and shadows, therefore lacking locally the presence of at least one of the
three color components. On the contrary, hazy images present less contrast and
saturation. As depth increases and the haze takes over the image, the contrast and
saturation further decrease, providing an estimate of the depth information based on
which it becomes possible to invert Eq. (2.1), obtaining high-quality results.

Several methods that are independent of an initial estimation of the scene depth
have also been devised. Tan [42] observes that a haze-free image must have more
contrast than a hazy one, and also that the amount of haze varies smoothly. Consid-
ering that nearby pixels tend to lie in the same depth layer of the scene, and thus are
equally affected by haziness, he formulates a cost function attempting to maximize
contrast while preserving depth smoothness locally. This cost function is optimized
within a Markov random field framework, yielding a haze-free image. In [8], Fattal
estimates scene depth by extending the image formation model to take into account
both transmission and surface shading. He then looks for a haze-free solution of the
model in which the resulting shading and transmission functions are locally uncor-
related in an statistical sense. In a subsequent work [9], the same author builds on
the concept of color-lines, establishing that for natural images, pixels exhibit a local
one-dimensional distribution in the RGB space. A local image formation model is
derived to adapt the color-lines concept to hazy images, and transmission in the scene
is estimated by means of a Markov random field that also allows to control noise. A
substantially different approach is adopted by Nishino et al. in [34]. Rather than
attempting to estimate depth in an initial stage, the authors resort to a Bayesian
probabilistic framework, in which they are able to jointly estimate the albedo and the
depth, by considering them as two statistically independent latent layers.

3. Enhanced Variational Image Dehazing (EVID) method. The majority
of current dehazing algorithms are based on an estimation of the image depth (or
transmission). Therefore, these methods are susceptible to fail when the physical
assumptions underlying Eq. (2.1) are violated. This is a common phenomena both
in real life, for example, when there is a source of light hidden by the haze, and
in virtually-generated images that add different types of fog. Methods that do not
estimate the model depth do not suffer from this problem, but they usually result in
over-enhanced images due to the special characteristics of the degradation associated
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with haze. More conventional contrast enhancement algorithms, such as histogram
equalization, are not suitable either. Fortunately, recent spatially-variant contrast
enhancement techniques can be adapted to perform well for image dehazing tasks. In
the following, we develop a variational framework for image dehazing that enforces
contrast enhancement on hazy regions of the image throughout an iterative procedure
allowing us to control the degree of restoration of the visibility in the scene.

3.1. Variational contrast enhancement. In 2007, Bertalmı́o et al. [3] pre-
sented a perceptually-inspired variational framework for contrast enhancement. Their
method is based on the minimization of the following functional for each image channel
I:

(3.1) E(I) =
α

2

∑

x

(

I(x)− 1

2

)

+
β

2

∑

x

(I(x)− I0(x))
2 − γ

2

∑

x,y

ω(x, y)|I(x)− I(y)|,

where I is a color channel (red, green or blue) with values in [0, 1], I0 is the origi-
nal image, x, y are pixel coordinates, α, β, γ are positive parameters, and ω(x, y) is
a positive distance function with its value decreasing as the distance between x and
y increases. This method extends the idea of variational contrast enhancement pre-
sented by Sapiro and Caselles [37] and it also shows a close connection to the ACE
method [36]. Bertalmı́o and co-authors have later revealed connections between this
functional and the human visual system: they generalized it to better cope with per-
ception results [35], and they established a very strong link with the Retinex theory
of color [2].

The minimization of the image energy in Eq. (3.1) presents a competition between
two positive terms and a negative one. The two positive terms prevent the solution
from departing too much from the original image (second term) and preserve the gray-
world hypothesis (first term). The negative competing term attempts to maximize
the contrast. By focusing on this negative term of Eq. (3.1), we can observe a very
useful relation with dehazing methods. It can be written as:

(3.2)
∑

x,y

ω(x, y)|I(x)− I(y)| =
∑

x,y

ω(x, y) (max(I(x), I(y))−min(I(x), I(y))) .

We see from the above equation that the contrast term is maximized whenever the
minimum decreases or the maximum increases, corresponding to a contrast stretching.
Notice that minimization of local intensity values is one of the premises of a haze-free
image, according to the Dark Channel prior [16]. The second premise of this prior is
the presence, locally, of a low intensity of Red, Green or Blue. We will extend our
method to handle also this hypothesis is subsection 3.3.

3.2. Modifying the Gray World assumption. In the image dehazing con-
text, the Gray World hypothesis implemented in Eq. (3.1) is not adequate, since
we want to respect the colors of the haze-free image, not to correct the illuminant
of the scene. Different modifications of this hypothesis have already been proposed
for several problems [10, 50]. Here, to approximately predict which should be the
mean value of a dehazed scene, we rely on the model of Eq. (2.1), that is written
channel-wise as:

(3.3) Ij = Jjt + (1− t)Aj ,

where j ∈ {R,G,B}. By rearranging and taking the average of each term, we can
write:

mean(Jj · t) = mean(Ij)−mean((1− t)Aj).
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Now, we make the following two assumptions:
1. On a hazy image, color of a pixel is depth-dependent. On a haze-free image,

however, we can expect colors to be independent of where the object is located
in the scene. Thus, we can assume that Jj and t are uncorrelated, allowing
us to write:

mean(Jj · t) = mean(Jj) ·mean(t)

2. We assume also that t has a uniform distribution across the image, i.e., depth
values are equally distributed. This can be expressed simply as mean(t) =
1/2.

Using the above assumptions, we can estimate mean(Jj) as:

mean(Jj)/2 ≈ mean(Ij)− (1/2) mean(Aj).

The airlight A takes a constant value for each channel that can be roughly approxi-
mated by the maximum intensity value on each component, since haze regions have
usually higher intensity. Thus, a reasonable approximation for the mean value of the
haze-free scene, and in consequence a new gray-world value, is given by:

(3.4) µj = mean(Jj) ≈ 2 mean(Ij)−Aj .

We can now rewrite the energy functional as:

(3.5) E(Ij) =
α

2

∑

x

(Ij(x)−µj)2+
β

2

∑

x

(Ij(x)−Ij0(x))
2− γ

2

∑

x,y

ω(x, y)|Ij(x)−Ij(y)|.

To minimize the above energy, we first need to compute its Euler-Lagrange deriva-
tive. In [3], the authors found that a minimizer of (3.5) must satisfy:

(3.6) ∇E(Ij) = α(Ij(x)− µj) + β(Ij(x)− Ij0(x))− γR(Ij)(x) = 0, j ∈ {R,G,B}

where the function R(I) is a contrast enhancement operator:

(3.7) R(I)(x) =

∑

y ω(x, y)s(I(x)− I(y))
∑

y ω(x, y)
,

and s is a smooth approximation of the sign function, that accounts for the first
derivative of the absolute value. Details can be found in [3]. In the next subsection,
we formulate an extended version of the energy given in (3.5). We also give in the Ap-
pendix a proof of the computation of its variational derivative. This proof generalizes
the one included in [3].

We can now apply a gradient descent strategy. To this end, we solve
δI

δt
=

−∇E(I), being t the evolution parameter. For the case of the energy given by Eq.
(3.5), with the modified gray world assumption, after an explicit discretization in
time, we have:

(3.8) Ijk+1 = Ijk(1−∆t(α+ β)) + ∆t(αµj + βI0) + ∆tγR(Ijk), j ∈ {R,G,B}

The initial condition for this descent is Ijk=0 = Ij(x). The computation of operator R
is reformulated in terms of convolutions by means of Fast Fourier Transforms. This
brings a significant computational improvement to the method, since the effort to
compute expression (3.7) falls down from O(N2) to O(N log(N)). Details of this
argument for complexity reduction can be found in [3, 13].
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3.3. Controlling the saturation. The variational framework has several ad-
vantages over traditional closed-form solutions. First, it provides an iterative proce-
dure that allows the user to stop the iterations as soon as the image meets a desired
degree of quality. Also, the effect of the modification of the parameters governing the
evolution of Eq. (3.8) is simple to understand and has a clear meaning. Furthermore,
the energy-based formulation eases the combination of different image processing ob-
jectives. For example, we can combine Eq. (3.5) with a depth map coming from any
of the algorithms that are able to estimate a 3D structure in the scene, to enforce
denoising or deblurring tasks in far away areas of the scene. As an additional feature
of the proposed method, in this section we illustrate how we can add an extra term
to Eq. (3.5) allowing us to recover more vivid colors, in case the output image seems
too washed-out, or if the user considers there is too much saturation in the recovered
scene.

Hazy images are not only characterized by a loss of contrast, but they also exhibit
a low saturation that makes colors look faint. The degree of saturation of a pixel x
in a RGB image is defined by the following formula:

S(x) =
max(IR(x), IG(x), IB(x))−min(IR(x), IG(x), IB(x))

max(IR(x), IG(x), IB(x))

= 1− min(IR(x), IG(x), IB(x))

max(IR(x), IG(x), IB(x))
(3.9)

This implies that saturation of a pixel is augmented as long as the maximum increases
or the minimum decreases in the above formula. This idea complies in part with the
Dark Channel prior, which states that in a local neighborhood around a haze-free
pixel, we should find a low value of intensity in some of the RGB channels. We
have already included the spatial component of this assertion in Eq. (3.2). The
maximization of the expression there enforces locally the presence of low intensity
pixels. To incorporate the chromatic component, we simply modify the contrast
increase term given by Eq. (3.2) to account for the value of the pixel in the different
channels:

∑

x,y

ω(x, y)|Ij(x)− Il(y)| =
∑

x,y

ω(x, y)
(

max(Ij(x), Il(y))−min(Ij(x), Il(y))
)

,

where j 6= l, j, l ∈ {R,G,B}. This amounts to extending the energy in Eq. (3.5) by
introducing an inter-channel stretching term:

E(Ij) =
α

2

∑

x

(Ij(x)− µj)2 +
β

2

∑

x

(Ij(x)− Ij0(x))
2 − γ

2

∑

x,y

ω(x, y)|Ij(x)− Ij(y)|

−
(

η

2

∑

x,y

ω(x, y)|Ij(x)− Ij+1(y)|+ η

2

∑

x,y

ω(x, y)|Ij(x)− Ij+2(y)|
)

,(3.10)

where j ∈ Z3. In here, {R,G,B} is identified with the space of integers modulo 3,
Z3, meaning for instance that I2 = IB , and I3 = IR. The derivative of this extended
energy is given by the following expression:

∇E(Ij) =α(Ij(x)− µj) + β(Ij(x)− Ij0(x))

− γR(Ij , Ij)(x)− η[R(Ij , Ij+1) +R(Ij , Ij+2)], j ∈ Z3,(3.11)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3.1. (a) Hazy open scene. (b) Result of executing the method in Eq. (3.8). (c) Result of
executing the method in Eq. (3.13). (d)-(f) Detail of the castle on top of the image (g)-(i) Detail
of the buildings on the middle of the image.

where we have introduced an extension of the operator (3.7) by considering the oper-
ator R(I1, I2) defined as follows:

(3.12) R(I1, I2)(x) =

∑

y ω(x, y)s(I
1(x)− I2(y))

∑

y ω(x, y)
.

Notice that when I1 = I2, this reduces to the mono-channel contrast enhancement
operator defined in (3.7). Thus, the energy in Eq. (3.10) includes the one in Eq. (3.5)
as a particular case, and so does its derivative. We include a proof of equation (3.11)
in the appendix.

Now, a complete numerical gradient descent that increases local contrast and
saturation can be written as:

Ijk+1 =Ijk(1−∆t(α+ β)) + ∆t(αµj + βI0)(3.13)

+ ∆t(γR(Ijk, I
j
k) + η[R(Ijk, I

j+1
k ) +R(Ijk, I

j+2
k )]),

where j ∈ Z3. Parameter η controls the degree of saturation increase. If necessary, a
change of sign in the last term of (3.13) would accomplish a local saturation decrease.

The iteration of Eq. (3.13) until steady-state configures our proposed Enhanced
Variational Image Dehazing (EVID) method. EVID provides the user with a mech-
anism to control the amount of saturation on the recovered colors. As an example,
in Fig. (3.1a) we display a hazy open scene. The enhanced versions of the input
image appearing in Fig. (3.1a) have been obtained by using Eqs. (3.8) and the EVID
method, respectively. The convenience of applying EVID over the method of Eq.
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(3.8) is demonstrated in the close-up details appearing in Figs. (3.1d) to (3.1i). We
can appreciate how the addition of the inter-channel saturation term produces more
intense colors both in far away regions of the scene and in middle-range areas.

4. Experimental results. In this section, the dehazing capability of our EVID
method is tested qualitatively and quantitatively by comparing it with several existing
techniques. To qualitatively evaluate our method, we have executed it over various
hazy images that are quite popular in the literature of image dehazing for evaluation
purposes, as well as in other realistic scenarios, in which the illumination affecting the
scene is non-uniform and the physical model in Eq. (2.1) becomes invalid. Likewise,
for the quantitative evaluation of the experimental results, we make use of real depth
data provided by [41] to produce both homogeneous and heterogeneous haze layers
over real-world scenarios. We then compare the ability of our method to remove that
haze layer by means of several standard full-reference metrics, comparing also against
various state-of-the-art approaches.

Regarding the parameter configuration, we have considered Eq. (3.13) with the
following baseline values: α = 0.5, β = 0.5, γ = 0.2, and η = 0.02. Both distance
functions were defined as Gaussians with kernel of standard deviation equal to 50 pix-
els. The time step was set to ∆t = 0.15, and we considered that a steady-state of the
gradient descent was achieved when the difference between the images of two consec-
utive iterations was below 0.020. A sensitivity study with respect to the parameters
of our methods is provided in Section 4.1.3.

4.1. Qualitative evaluation. To evaluate the performance of a dehazing tech-
nique, the most popular criteria are often the amount of retrieved visibility for far
away details, together with the plausibility of the colors that appear in the recovered
scene. In this section, we consider also these subjective measurements to comment on
the performance of our method when compared with other existing approaches.

4.1.1. Comparisons to state-of-the-art methods. Fig. 4.1 displays a hazy
scene typically used as a benchmark for testing a dehazing method. In this case, all
methods effectively recover visibility of hidden details at the bottom of the scene,
being the technique of Meng et al. [26] the one that retrieves slightly more structure
than the rest. Unfortunately, this seems to happen at the price of introducing some
color artifacts at the leftmost part of the image. The rest of the methods are free
from these artifacts.

On the other hand, the image in Fig. 4.1a is a particularly interesting test case,
since the headlights of the train are useful to evaluate the way each method handles
other light sources different from the ambient light. We can appreciate how only our
EVID method and the one of Tarel et al. [43] are capable of correctly preserving the
shape of the three lights. However, in this case our method recovers more vivid colors
than [43], as can be seen by observation of the red wagon at the left of Figs. (4.1c)
and (4.1f).

Figure 4.2 displays an image of New York City, also often considered for bench-
marking of dehazing algorithms. Therein, our EVID method is compared against the
works in [8, 42, 19, 9, 17, 43]. Visibility of distant objects is again recovered by every
method up to a reasonable degree. The recent method of Fattal [9] and the Dark
Channel method [17] are possibly the ones recovering most realistic colors, although
a close analysis reveals that they fail to recover the information underlying in the
horizon (see upper right corner in Figs. (4.1e) and (4.1f)). Also, the method by Tan
[42] suffers of noticeable over-saturation artifacts.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.1. (a) Typical benchmark image for dehazing algorithms. (b) to (f): Result of processing
with the following methods: (b) He et al. [17]. (c) Tarel et al. [43]. (d)Meng et al. [26]. (e)Gibson
et al. [14]. (f) Our proposed EVID method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.2. (a) New York City image (input).Result of processing with methods of:
(b) Fattal [8] (c) Tan. [42] (d) Kopf et al. [19] (e) Fattal [9] (f) He et al. [17] (g) Tarel et al. [43]
(h) Our proposed EVID method.
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The previous two examples demonstrate how for typical images, existing algo-
rithms (including ours) can handle haze effectively, recovering visibility up to some
extent. On the other hand, each of the methodologies restores chromatic information
in a different way, although the majority of the available techniques produce rather
plausible colors. Differences in the performance are subtle and only little details re-
veal whether a method is performing better than another in particular regions of the
image.

Unfortunately, little research has addressed the problem of image dehazing in a
more challenging and also realistic scenario, such as the one depicted in Fig. 4.3
or Fig. 4.4. Let us notice that most of the state-of-the-art methodologies rely on
the previous computation of a depth map of the scene. They usually resort to a
physical model of the image formation under haze and bad weather conditions, such
as Eq. (2.1). This model assumes constant illumination in the scene. When this
assumption is violated, the airlight cannot be considered to be constant. The result
is a transmission underestimate or overestimate in unevenly illuminated areas, and
color distortions characterized by dark blue regions appear in the restored images.

The method proposed in this work benefits from the advantage of depending only
mildly on physical considerations. The EVID method does not need to compute any
depth information prior to restoration. Thanks to this feature, unevenly illuminated
regions are handled properly, and scene structure can be recovered without introducing
excessive color distortion. Fig. 4.3 clearly demonstrates this point. The original image
in Fig. (4.3a) was extracted from [48]. The sun appears behind the haze at the upper
left part of the image, producing a non-uniform illuminant: the leftmost part of the
sky appears brighter than the rightmost side. The methods that rely on an accurate
estimate of the airlight and the depth are fooled by this non-uniformity, and generate
strong color artifacts. In this case, only our method is capable of retrieving some of
the buildings structure without producing a chromatic degradation.

The same challenging scenario is faced in Fig. 4.4. Again, the compared methods
cannot avoid the creation of color distortions in the effort to increase contrast in the
upper rightmost part of the original hazy image. In this case, the EVID method was
executed with a single parameter modification: γ was set to 1, forcing the solution to
stay closer to the original image. This represents another advantageous feature of the
variational approach, since the attachment to data term provides the user with an
intuitive way of controlling whether the contrast increase is excessive or insufficient.

The example in Fig. 4.5 shows another useful characteristic of our approach.
Most works rely on the presence of enough color information in the scene so as to
recover the depth structure. When this chromatic information is weak or missing,
the result is often also an image with unpleasant color artifacts. The EVID method
operates in a channel-wise manner, handling thus more robustly the lack of color cues
in the input image, as can be observed in the results obtained by the other physically-
based techniques when compared to our variational approach, see Fig. (4.5f). As in
the previous image, a single parameter variation was considered for this image: γ was
set to 1.5, forcing the solution to stay closer to the original image.

Fig. 4.6 presents another image suffering from poor chromatic information. As in
the previous case, our method seems to be the only one capable of restoring content
in far away areas of the scene without introducing a remarkable color degradation.

4.1.2. Comparisons with contrast enhancement approaches. The results
described in the previous section clearly illustrate the advantages of the EVID method
over other recent dehazing techniques. Most of these advantages come from the fact
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(a) (b) (c)

(d) (e) (f)

Fig. 4.3. (a) Unevenly illuminated hazy image extracted from [48]. Result of processing with
methods of (b) Wang et al. method [48]. (c) He et al. [17]. (d) Meng et al. [26]. (e) Nishino et
al. method [34]. (f) Our proposed EVID method.

Fig. 4.4. a) Unevenly illuminated hazy image of the Thames river Result of processing with
methods of b) Tarel et al. [43] c) He et al. [17] d) Gibson et al. ’13 [14] e) Nishino et al. ’12 [34]
f) Our proposed EVID method.

that EVID does not compute a transmission map of the hazy scene. On the other
hand, we do incorporate in the model a mild physical constraint, since our modified
Gray-World hypothesis relies on an estimate of the mean of the haze-free scene, and
this is obtained from the physical model given by Eq. (2.1). This also explains the
improvement of EVID with respect to other contrast enhancement methods that do
not consider any physical cue. To illustrate this point, we show in Fig. (4.7) the result
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(a) (b) (c)

(d) (e) (f)

Fig. 4.5. (a) An image of Paris, with a lack of chromatic information due to haze in the scene.
Result of processing with methods of (b) He et al. [17]. (c) Fattal [9]. (d) Nishino et al. [34]. (e)
Meng et al. [26] (f) Our proposed method.

of processing three hazy scenes with EVID, as well as with a conventional contrast
enhancement method (Histogram Equalization, HE) and the advanced variational
contrast enhancement model on which the EVID method builds, introduced in [3]
and described by Eq. (3.1). Notice that for a fair comparison, this model is run here
with a parameter configuration analogous to the one of EVID.

In the three examples shown, we can clearly appreciate how EVID produces more
vivid colors while increasing contrast. In Fig. (4.7a) we see the same hazy image of a
train as in Fig. (4.1a). HE saturates large parts of the image, in an attempt to obtain
a global uniform histogram. On the other hand, the method in [3] does not saturate
bright areas, but it seems unable to retrieve plausible colors in far-away regions of the
scene, such as the red wagon or the green bush next to the train.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.6. (a) An image of Moscow, with a lack of chromatic information due to haze in the
scene. Result of processing with methods of (b) He et al. [17]. (c) Meng et al. [26]. (d) Nishino et
al. [34]. (e) Fattal [9]. (f) Our proposed method.

In Fig. (4.7e), we have a natural landscape with a forest on it. Again, HE
burns dark regions while saturating to white on brighter areas. However, in this case,
the method in [3] is capable of retrieving a similar contrast when compared to EVID.
Unfortunately, due to the Gray World hypothesis implemented by [3], the model lacks
the ability to produce intense colors.

Finally, in Fig. (4.7i) we include a hazy view of the city of Taipei. We can
appreciate similar drawbacks for HE, which forces dark areas to become black and
handles incorrectly the sky areas, saturating to white the top part of the image. Also,
the method in [3] recovers some contrast, but again it produces grayish colors due to
the Gray World assumption it incorporates, further supporting the idea that a smart
contrast enhancement is not enough to approach the problem of haze removal. In this
case too, the EVID method is able to recover contrast while producing richer colors.
All these observations can be better appreciated in Fig. 4.8, where we have included
close-up details of the image areas marked by blue, red, and yellow rectangles on Figs.
(4.7a), (4.7e), and (4.7i).

4.1.3. Parameter Sensitivity. In this section, we study the influence of the
different parameters presented in the model (degree of contrast, attachment to initial
input, and saturation enhancement).

Let us first analyse the influence of the parameter γ, which controls the degree
of contrast enhancement provided by the method. Fig. (4.9a) shows a hazy scene of
the city of Bilbao. The restored version displayed in Fig. (4.9c) has been obtained
with the configuration of parameters recommended above, namely α = 0.5, β = 0.5,
γ = 0.2, and η = 0.02. The images appearing in Figs. (4.9b) and (4.9d) have been
produced by varying parameter γ. Specifically, we have set γ = 0.1 and γ = 0.3.
We can appreciate how this modification produces a smooth variation of contrast in
the scene, with an insufficient increase in contrast for γ = 0.1, and a slightly over-
enhanced output for γ = 0.3. This can better appreciated in the close-up details of
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4.7. Result of applying a conventional and an advanced contrast enhancement method
compared with the result obtained by EVID. (a), (e), (i) Different hazy scenes. (b), (f), (j) Result
of applying Histogram Equalization. (c), (g), (k) Result of applying the method in [3]. (d), (h), (l)
Our proposed EVID method.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4.8. Zoomed details from Fig. (4.7). (a)-(d) Detail of the red wagon in the left of the
image for the original image, and the output produced by HE, [3], and EVID. (e) - (f) Detail of the
trees in the top part of the scene for the original image, and the output produced by HE, [3], and
EVID. (i)-(l)Detail of the crane in the middle of the scene for the original image, and the output
produced by HE, [3], and EVID.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.9. A hazy view of the city of Bilbao, and the result of varying contrast parameter γ. (a)
Original hazy scene. (b) γ = 0.1 (c) γ = 0.2 (d) γ = 0.3. (e)-(h) Detail of the Guggenheim museum
facade.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.10. A hazy view of the city of Bilbao, and the result of varying attachment-to-data
parameter β. (a) Original hazy scene. (b) β = 0.25 (c) β = 0.5 (d) β = 0.75. (e)-(h) Detail of the
Guggenheim museum facade.

the museum’s facade displayed on Figs. (4.9e) to (4.9h).

To assess the effect of a varying attachment-to-data parameter, we have executed
again EVID on the hazy image (4.9a), varying β in the set {0.25, 0.5, 0.75} and keeping
fixed the other parameters on its baseline configuration, i.e. γ = 0.2, β = 0.5 and η =
0.02. The effect produced by increasing parameter β is opposite to the one produced
by increasing the contrast parameter γ, as expected. We can observe the result of this
on Fig. 4.10. There, we can appreciate how the variation of the attachment-to-data
parameter influences the degree of separation of the output image from the original
one, allowing the user to control the degree of enhancement provided by the method.

The gray-world parameter captures the degree of confidence we have on the esti-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.11. A hazy view of the city Bilbao, and the result of varying gray-world parameter β.
(a) Original hazy scene. (b) α = 0.25 (c) α = 0.5 (d) α = 0.75. (e)-(h) Detail of the Guggenheim
museum facade.

mate of the mean of the haze-free image in accordance to Kochsmieder model. The
effect of varying this parameter can be appreciated on Fig. (4.11), where we have
executed the EVID method with the parameter reference configuration, and with
α ∈ {0.25, 0.5, 0.75}. A slight color shift can be noted in the different outputs. This is
a global effect that can be better appreciated with a close look into the high resolution
versions of the processed images.

Finally, the effect of modifying parameter η affects to the amount of saturation
that colors in the scene experiment. This is illustrated on Fig. (4.12), where he have
executed the EVID method with the baseline parameter configuration, and setting
η ∈ {0.01, 0.02, 0.03}. Color saturation gradually grows as η increases. We can also
appreciate in the far away buildings and trees the effect produced by a large value of
η, leading to the appearance of color artifacts on large uniform areas.

4.2. Quantitative Evaluation. Evaluating the performance of a dehazing method
is always a hard task due to the inherent lack of ground-truth. To overcome this dif-
ficulty, some previous works have resorted to the generation of a synthetic fog layer
[45, 44, 21]. However, to be able to generate a realistic haze, we first need depth data
on the scene. To this end, we employ in this work the LIVE Color+3D Database pro-
vided in [41]. This database includes twelve different scenes together with real depth
data. Data was acquired using an advanced range scanner with a digital camera
mounted on top of it.

To incorporate realistic fog layers on top of these images, we employed the ap-
proach of Tarel et al. [44]. The authors provide software to generate up to four
different kinds of fog. This is achieved by slightly modifying Eq. (2.1) to introduce
some variability, adding Perlin’s noise to both transmission t and airlight A. The only
parameter required by the method was the visibility distance, which was set to 60 me-
ters for all the experiments. An example of an original image in the LIVE Color+3D
Database, together with its ground-truth depth data, and the different hazy versions
of the input image can be seen in Fig. (4.13).

We have therefore a total of 48 images (12 scenes under 4 different fogs). We
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.12. A hazy view of the city of Bilbao, and the result of varying saturation parameter η.
(a) Original hazy scene. (b) η = 0 (c) η = 0.02 (d) η = 0.04. (e)-(h) Detail of the park next to the
museum.

have compared EVID versus current state-of-the-art methods, namely the ones of He
et al. [17], Meng et al. [26], Nishino et al. [34], Tarel and Hautière [43], and Gibson
and Nguyen [14]. Our method was computed with the same fixed parameters for all
scenes, as pointed out at the beginning of section 4.

We have used five different measures, three mainly based on the Mean Square
Error (MSE), and two mainly based on the correlation. The first considered MSE
based measure consists of the computation of the MSE between the images for each
particular channel, and then, the combination of the results of the three channels by
the l2 norm, numerically

(4.1) MSEsplit =
√

MSE(IGT
r , Imr )2 +MSE(IGT

g , Img )2 +MSE(IGT
b , Imb )2,

where IGT stands for the ground-truth image, Im stands for the method used, the
subindexes represent each color channel and

(4.2) MSE(I1, I2) =

∑M

i=1(I
1(i)− I2(i))2

M
,

being M the number of pixels.
The second error measure is the MSE between the luminance of the two images.

Let us define IGT
lum = 0.2126IGT

r + 0.7152IGT
g + 0.0722IGT

b and Imlum = 0.2126Imr +
0.7152Img + 0.0722Imb . Therefore, the error measure becomes:

(4.3) MSElum = MSE(IGT
lum, Imlum).

We have also defined a new error measure in order to also account for the relation
between the three color channels. We denote this error measure as l2 − color and we
define it as
(4.4)

l2 − color =

∑M

i=1

√

(IGT
r (i)− Imr (i))2 + (IGT

g (i)− Img (i))2 + (IGT
b (i)− Imb (i))2

M
.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.13. Scene from the LIVE Color+3D Database. (a) Original scene. (b) Its corresponding
range data (c)-(f) Input image with different synthetic heterogeneous fog added on it by following
the method in [44].

For measures based on the correlation, the considered measures are similar to the
first two defined measures, by replacing the MSE measure by the correlation between
the channels. Mathematically,
(4.5)

Corrsplit =
√

Correlation(IGT
r , Imr )2 + Correlation(IGT

g , Img )2 + Correlation(IGT
b , Imb )2,

and

(4.6) Corrlum = Correlation(IGT
lum, Imlum),

where Correlation gives us the correlation coefficient between the two images.
Results are shown in Table 4.1. Our EVID method outperforms all the others

in the five different measures when the full set of images is considered (table rows
labeled ’All’). When dividing the images depending on the fog model, EVID also
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Table 4.1

Quantitative results under the five different measures using the four different types of fog.

Error measure Fog model [14] [43] [34] [26] [17] EVID
het. air. 4.8639 5.2898 6.824 6.3354 5.5232 4.8699

het. air. and att. 4.0625 3.7592 6.3964 5.9873 4.193 4.0129
l2 − color het. att. 4.9991 4.4006 6.1187 6.2086 5.0711 4.4687

homo. 6.7278 7.2462 6.8091 6.9326 6.6519 5.857
All 5.1633 5.174 6.5371 6.366 5.3598 4.8021

het. air. 0.0249 0.0271 0.0484 0.0513 0.0355 0.023
het. air. and att. 0.0168 0.0135 0.0434 0.0494 0.0202 0.0162

MSElum het. att. 0.0269 0.0202 0.0394 0.0513 0.0305 0.0209
homo. 0.0519 0.0573 0.0481 0.0566 0.0532 0.0365
All 0.0301 0.0295 0.0448 0.0522 0.0349 0.0242

het. air. 0.2691 0.281 0.3608 0.3328 0.3117 0.2582
het. air. and att. 0.221 0.1956 0.3391 0.3123 0.2379 0.2113

MSEsplit het. att. 0.2785 0.2393 0.3249 0.3276 0.2929 0.2377
homo. 0.3825 0.4042 0.3611 0.3701 0.3851 0.3191
All 0.2878 0.28 0.3465 0.3357 0.3069 0.2566

het. air. 1.2215 1.1914 0.738 0.9422 1.0925 1.2199
het. air. att. 1.442 1.3639 0.8806 1.0961 1.3315 1.4163

Corrsplit het. att. 1.2529 1.2573 0.9301 1.0125 1.2379 1.2884
homo. 1.028 1.045 0.8417 0.8959 1.0498 1.0765
All 1.2361 1.2144 0.8476 0.9867 1.1779 1.2503

het. air. 0.6958 0.6826 0.3937 0.5203 0.6144 0.6991
het. air. att. 0.8297 0.7839 0.4779 0.6299 0.7627 0.8180

Corrlum het. att. 0.7147 0.7198 0.5036 0.5811 0.7062 0.7395
homo. 0.5598 0.5825 0.4547 0.4848 0.5742 0.5970
All 0.7 0.6922 0.4575 0.554 0.6644 0.7134

outperforms the remaining ones for the homogeneous, heterogeneous attenuation and
heterogeneous airlight fogs in most of the measures, being very close to the best
method (Tarel and Hautiere method [43]) for the remaining fog types.

4.3. In-camera processing for physical-based approaches. Kochsmieder’s
law is physical and, therefore, it is directly linked with the information that reaches
the camera sensor. Cameras, however, do not directly display this information due
to camera limitations (such as glare [24], color gamut [28]) and camera processing
options (white balance, type of scene). Even more, camera output is not in linear,
but in gamma corrected form [46, 47].

Having said this, we want to point out that in the image dehazing literature the
goal is obtaining visually pleasant images without the presence of haze or fog, i.e.,
when dehazing an image we do not aim to obtain the real color values of the scene,
but a representation where we can observe the maximum information while having a
visually pleasant look. And, to achieve this goal, the information given by the physical
law (even if some corruption has been inserted by the in-camera processing) is shown
to be essential. A clear example was given in section 4.1.2 where our method is shown
to dehaze the images in a better form than other contrast enhancement methods that
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(a) (b) (c) (d) (e)

Fig. 4.14. Scene obtained from [47]. (a) Original scene. (b) Foggy-RAW image (c) Foggy-
processed image (d) Dehazing of Foggy-RAW image (e) Dehazing of Foggy-processed image

Table 4.2

Comparison of dehazing results pre- and post- camera processing.

Error measure Original RAW RAW dehazed Proc. dehazed Deterioration
l2 − color 12.3916 3.1547 3.4442 2.3365%
MSElum 0.1366 0.0083 0.0109 1.8944%
MSEsplit 0.6333 0.1697 0.1913 3.4192%
Corrsplit 1.4246 1.4358 1.4329 0.2021%
Corrlum 0.8277 0.8467 0.8412 0.6617%

do not consider the physical information.

To test the impact of these factors in our results we performed a last experiment.
We considered 8 non-camera processed, 12 bit RAW images from the dataset of [47]
(example image in Figure (4.14a)). For each of the images we computed a depth
map [52] and used this map to obtain a homogeneous foggy-RAW image (Figure
(4.14b)). We then applied to this foggy-RAW image the typical in-camera processing
pipeline: we multiplied it by a 3 × 3 matrix transform that randomly deviates 1

8
from the identity in each position to simulate the color compensation (white-balance,
picture style), we applied a contrast enhancement in the form of a gamma function,
and we added a channel-wise non-linearity to both the bright and dark pixels to
emulate gamut mapping. Finally, we quantized the image to 8 bits. The result of this
process can be seen in Figure (4.14c). Therefore, with this procedure we obtained a
ground-truth image, a foggy non-camera processed image (foggy-RAW), and a foggy
camera processed image (foggy-processed). Then, we dehazed the foggy-RAW and
the foggy-processed images with our method and obtained the results presented in
Figures (4.14d) and (4.14e). We can see that qualitatively, the result after the camera
processing steps is somewhat worse when compared to the ground-truth because it
considers the color compensation matrix as part of the non-foggy original image, but,
even in this case, it is still a very good solution to the dehazing problem. Quantitative
results in the form of the mean for the 8 images are presented in Table 4.2. There, we
compare the results of the original foggy image to the results of applying our method
to both the foggy-RAW and the foggy-processed images. A last column is added to
compute the percentage of deterioration in comparison to the foggy original image
introduced by the in-camera processing. As it can be seen, this deterioration reaches
its maximum at a 3.4197% for the MSEsplit.

Finally, let us also remark that our approach considers Kochsmieder’s law in
a softer manner than the rest of the dehazing methods also based in this law. In
particular, we employ this law to obtain an estimation of the mean of the clean
image, but, once that mean has been estimated, we do not compute the transmission
in order to dehaze the image; therefore, our method does not consider Kochsmieder’s
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law for the computation of the final result.

5. Conclusions. We have proposed two substantial enhancements for the well-
known perceptual color correction framework of [3] in order to perform image dehazing
and defogging. First, we have adapted the grey-world hypothesis to deal with hazy
scenes. Second, we have included a set of terms to maximize inter-channels con-
trast, leading to the formulation of an Enhanced Variational Image Dehazing (EVID)
method. Our numerical experiments demonstrate an excellent behavior of our EVID
method, which is qualitatively comparable versus state-of-the-art methods for nor-
mally degraded images while outperforming other methods in more challenging sce-
narios. We have also shown how the proposed method quantitatively outperforms
other state-of-the-art methods in various fog scenarios.

Even if the EVID method seems to be capable of handling uniform areas of
a hazy image, such as sky regions, in an equal or better manner when compared to
other recent algorithms, we have found that chromatic artifacts still appear sometimes
under very large uniform areas. This limits the appeal of our approach to be applied,
for instance, for artistic purposes. Further careful modifications of the energy in Eq.
(3.10) may possibly solve this issue.

Appendix. Proof of Eq. (3.11). Let us denote each of the different terms
appearing in the global energy in Eq. (3.10) as follows:

Emv(I
j , µj) =

∑

x

(Ij(x)− µj)2(A.1)

EA2D(I
j) =

∑

x

(Ij(x)− Ij0(x))
2(A.2)

EC(I
j , Ik) =

∑

x,y

ω(x, y)|Ij(x)− Ik(y)|.(A.3)

When j = k, Eq. (A.3) represents the mono-channel contrast enhancement term, and
when j 6= k, the inter-channel stretching term. With this notation, the full energy
can be written as:

E(Ij) =
α

2
Emv(I

j , µj) +
β

2
EA2D(I

j)− γ

2
EC(I

j , Ij)− η

2

(

EC(I
j , Ij+1) + EC(I

j , Ij+2)
)

.

Now, given a differentiable scalar function ϕ and an arbitrary energy:

E(I) =
∑

x

ϕ(I(x)),

the chain rule states that its derivative in the δI direction is:

δE(I, δI) =
∑

x

(

∂ϕ

∂I

∣

∣

∣

∣

I(x)

· δI(x)
)

,

which when applied to Emv and EA2D in Eqs. (A.1) and (A.2) yields:

δEmv((I
j , µj), δIj) =2

∑

x

(Ij(x)− µj) δIj(x),

δEA2D(I
j , δIj) =2

∑

x

(Ij(x)− Ij0(x)) δI
j(x).
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To compute the variation of EC(I
j , Ik) in the direction of Ij , we distinguish two

cases. We assume first j = k, and approximate the non-differentiable absolute value
by the function z 7→ |z|ǫ =

√
z2 + ǫ2, the derivative of which is the signǫ function:

d

dz
|z|ǫ =

z√
z2 + ǫ2

,

that, as ǫ tends to 0, approximates the sign function smoothly:

signǫ(z)
ǫ→0−−−→ sign(z) =











1 if z > 0,

0 if z = 0,

−1 if z < 0.

Replacing the absolute value in Eq. (A.3) by | · |ǫ we obtain a modified energy
Eǫ
C(I

j , Ij), the variation of which is given by:

δEǫ
C((I

j , Ij), δIj) =
∑

x

(

∑

y

ω(x, y)signǫ(I
j(x)− Ij(y))

)

(δIj(x)− δIj(y))

=
∑

x

∑

y

ω(x, y)signǫ(I
j(x)− Ij(y))δIj(x)

−
∑

x

∑

y

ω(x, y)signǫ(I
j(x)− Ij(y))δIj(y).

Now, using the formula signǫ(z) = −signǫ(−z), we rewrite the second term in the
right hand side of the last equality:

δEǫ
C(I

j , δIj) =
∑

x

∑

y

ω(x, y)signǫ(I
j(x)− Ij(y))δIj(x)

+
∑

x

∑

y

ω(x, y)signǫ(I
j(y)− Ij(x))δIj(y)

=
∑

x

∑

y

ω(x, y)signǫ(I
j(x)− Ij(y))δIj(x)

+
∑

y

∑

x

ω(y, x)signǫ(I
j(x)− Ij(y))δIj(y).

In the above equality, we have interchanged the notation x ↔ y in the last term. Since
ω(x, y) is a symmetric function, and applying a discrete version of Fubini’s Theorem,
we can interchange the order of summation in the second term of the sum, and gather
both terms arriving at:

δEǫ
C(I

j , δIj) = 2
∑

x

(

∑

y

ω(x, y)signǫ(I
j(x)− Ij(y)) dy

)

δIj(x).(A.4)

The variation of EC(I
j , Ik) in the direction of Ij when j 6= k is a simplification

of the above. Since in this case Ik can be considered a constant, we simply need to
approximate the absolute value by | · |ǫ in order to directly apply the chain rule:

δEǫ
C((I

j , Ik), δIj) =
∑

x

(

∑

y

ω(x, y)signǫ(I
j(x)− Ik(y))

)

δIj(x).(A.5)
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By letting ǫ tend to zero in the Eqs. (A.4) and (A.5) and gathering together all
variations, we can write the variation of the full energy in the direction of δIj as:

δE(Ij) =
∑

x

[

α(Ij(x)− µj) + β(Ij(x)− Ij0(x))− γ
∑

y

ω(x, y)sign(Ij(x)− Ij(y))

−η

(

∑

y

ω(x, y)sign(Ij(x)− Ij+1(y)) +
∑

y

ω(x, y)sign(Ij(x)− Ij+2(y))

)]

δIj(x).

This shows that the gradient of the full energy amounts to the expression shown in
Eq. (3.11).
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[2] M. Bertalḿıo, V. Caselles, and E. Provenzi, Issues About Retinex Theory and Contrast
Enhancement, International Journal of Computer Vision, 83 (2009), pp. 101–119.
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for Single Image Dehazing, in Proc. of the 4th Color and Photometry in Computer Vision
Workshop (ECCV 2014), Zurich, Sept. 2014.

[13] Pascal Getreuer, Automatic Color Enhancement (ACE) and its Fast Implementation, Image
Processing On Line, 2 (2012), pp. 266–277.

[14] K.B. Gibson and T.Q. Nguyen, Fast single image fog removal using the adaptive Wiener
filter, in 2013 20th IEEE International Conference on Image Processing (ICIP), Sept. 2013,
pp. 714–718.

[15] N. Hautiere, J. P Tarel, and D. Aubert, Towards Fog-Free In-Vehicle Vision Systems
through Contrast Restoration, in IEEE Conference on Computer Vision and Pattern Recog-
nition, 2007. CVPR ’07, June 2007, pp. 1–8.

[16] K. He, J. Sun, and X. Tang, Single Image Haze Removal Using Dark Channel Prior, in IEEE
Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, June 2009,
pp. 1956–1963.

[17] , Single Image Haze Removal Using Dark Channel Prior, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33 (2011), pp. 2341–2353.

[18] R. Kaftory, Y.Y. Schechner, and Y.Y. Zeevi, Variational Distance-Dependent Image



Enhanced Variational Image Dehazing 25

Restoration, in IEEE Conference on Computer Vision and Pattern Recognition, 2007.
CVPR ’07, 2007, pp. 1–8.

[19] J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele,

and D. Lischinski, Deep Photo: Model-based Photograph Enhancement and Viewing, in
ACM SIGGRAPH Asia 2008 Papers, SIGGRAPH Asia ’08, New York, NY, USA, 2008,
ACM, pp. 116:1–116:10.

[20] H. Koschmieder, Theorie der horizontalen Sichtweite: Kontrast und Sichtweite, Keim & Nem-
nich, 1925.

[21] Y. Lai, Y. Chen, C. Chiou, and C. Hsu, Single-Image Dehazing via Optimal Transmission
Map Under Scene Priors, IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 25 (2015), pp. 1–14.

[22] J. Long, Z. Shi, W. Tang, and C. Zhang, Single Remote Sensing Image Dehazing, IEEE
Geoscience and Remote Sensing Letters, 11 (2014), pp. 59–63.

[23] A. Makarau, R. Richter, R. Muller, and P. Reinartz, Haze Detection and Removal in
Remotely Sensed Multispectral Imagery, IEEE Transactions on Geoscience and Remote
Sensing, 52 (2014), pp. 5895–5905.

[24] J. J. McCann and A. Rizzi, Veiling glare: the dynamic range limit of HDR images, vol. 6492,
2007, pp. 649213–649213–10.

[25] E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles, Wiley,
Jan. 1976.

[26] G. Meng, Y. Wang, J. Duan, S. Xiang, and C. Pan, Efficient Image Dehazing with Bound-
ary Constraint and Contextual Regularization, in 2013 IEEE International Conference on
Computer Vision (ICCV), Dec. 2013, pp. 617–624.

[27] W. E. K. Middleton, Vision through the atmosphere, University of Toronto Press, 1952.
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