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Abstract—This paper goes beyond the current state of the
art related to Wasserstein distributionally robust optimal power
flow problems, by adding dependence structure (correlation) and
support information. In view of the space-time dependencies
pertaining to the stochastic renewable power generation uncer-
tainty, we apply a moment-metric-based distributionally robust
optimization, which includes a constraint on the second-order
moment of uncertainty. Aiming at further excluding unrealistic
probability distributions from our proposed decision-making mo-
del, we enhance it by adding support information. We reformulate
our proposed model, resulting in a semi-definite program, and
show its satisfactory performance in terms of the operational
results achieved and the computational time.

Index Terms—Distributionally robust optimization, space-time
dependencies, optimal power flow, out-of-sample analysis.

I. INTRODUCTION

The power system operators across the world are still
using a deterministic variant of an optimal power flow (OPF)
problem to determine the energy and reserve schedule of
generators in a day-ahead time stage, i.e., 24-36 hours ahead of
the real-time operation. This implies that the system operators
naively rely on a single-point forecast value of renewable
power generation in the day-ahead stage to schedule the power
system while resorting to thumb rules to set the required
amount of reserve capacity. The recent literature suggests in-
corporating the probabilistic forecast information into the OPF
problem in the form of, e.g., intervals, scenarios, uncertainty
set, or probability distribution functions [1]. The key point is
that the uncertainty stemming from renewable power gene-
ration exhibits space-time dependencies, and it is in general
difficult to represent this uncertainty by a unique distribution
function. For the sake of the most representative and realistic
way to incorporate the uncertainty into the OPF problem, we
apply a distributionally robust optimization framework which
hedges against any misrepresentation of uncertainty and space-
time dependencies.

Distributionally Robust Optimization (DRO) has recently
emerged as a new paradigm for modeling uncertainty by consi-
dering a set of potential distributions, the so-called ambiguity
set [2]. The rationale behind this paradigm is that the exact true
distribution function describing the underlying uncertainty is
almost never known [3]. Distributionally robust OPF problem
minimizes the total operational cost of the power system in
expectation under the worst-case distribution within the am-
biguity set. It is worth noting that the worst-case distribution
is not known a priori, and is endogenously determined. In the

current technical literature on DRO, two different methodolo-
gies have been mainly suggested to construct the ambiguity
set, resulting in metric-based [4] and moment-based [5] DRO
frameworks. In the metric-based DRO, the ambiguity set is
composed of all distributions in the neighborhood (in the sense
of a selected probability distance metric) of a central empirical
distribution function, e.g., based on a number of historical
observations [6]. In contrast, the moment-based DRO uses
moment information, e.g, mean and covariance, to build the
ambiguity set. The appealing benefit of the metric-based DRO
is that it could perform in a similar way as a scenario-based
stochastic program or a robust optimization by properly tuning
the size of the ambiguity set, and even outperform them
in some cases. However, it is known to be computationally
more intensive than the moment-based counterpart, although
its computational burden is still comparable to the scenario-
based stochastic programming.

Both moment- and metric-based distributionally robust OPF
problems may consider unrealistic distributions within the
ambiguity set to describe the renewable power generation
uncertainty, which would lead to making erroneous operational
decisions. Therefore, it is crucial to exclude those unrealistic
distributions from the ambiguity set. This challenge can be
leveraged by incorporating additional information about the
renewable power generation uncertainty, such as support infor-
mation [7] as well as dependence structure [8], into the design
of the ambiguity set. The support information imposes the
lower and upper bounds for the renewable power generation. In
addition, the potential spatio-temporal correlation of renewable
power generation [9] can be added to the ambiguity set,
making it aware of the dependence of random variables. There
are only very few works in the literature of distributionally
robust OPF problem that include additional information about
renewable uncertainty, see Table I for a survey. In particular,
[10] introduces a moment-metric-based ambiguity set for the
distributionally robust OPF problem, which combines the
benefits of the metric-based DRO with a constraint imposing
the value of the second-order moment. The resulting ambiguity
set therefore includes all distributions in the neighborhood of
a central empirical distribution with a fixed covariance matrix.
By doing so, the ambiguity set shrinks to distributions with a
dependence structure defined by the given covariance matrix.

Our contribution in this paper is to develop an enhan-
ced moment-metric-based distributionally robust OPF model
by incorporating both support information and dependence



TABLE I: Relevant features of works reported in the literature and
the model proposed in this paper

Reference Type of
ambiguity set

Dependence
structure

Unimodality
information

Support
information

Resulting
model

[11] Moment 7 7 7 LP1

[12] Moment 7 7 7 QCQP2

[13] Moment 7 3 7 SOCP3

[14] Metric 7 3 7 SOCP
[4], [15] Metric 7 7 3 LP
[8], [10] Moment-metric 3 7 7 SDP4

This paper Moment-metric 3 7 3 SDP
1 LP: Linear program 2: QCQP: Quadratically-constrained quadratic program
3 SOCP: Second-order cone program 4: SDP: Semi-definite program

structure of random variables. To the best of our knowledge,
as highlighted in Table I, this is the first research work
that develops this improved variant of the distributionally
robust OPF problem. We use a Wasserstein function as our
probability distance measure. Our resulting model is a semi-
definite program (SDP). We provide a thorough numerical
analysis to illustrate the benefits of our proposed enhanced
distributionally robust OPF model.

The remainder of this paper is structured as follows. Section
II presents the distributionally robust OPF model and provides
three different types of ambiguity sets, including our proposed
set which is aware of support information and dependence
structure. Section III reformulates the model. Section IV
provides a numerical study. Section V concludes the paper.
Finally, a mathematical proof is provided in the appendix.

II. MODEL

Vectors and matrices are represented by bold lower cases
and by bold upper cases, respectively. Vector 1 is a vector of
ones. The set of real numbers is represented by R. The operator
|.| returns the cardinality of the underlying set, and (.)> is the
transpose operator. Finally, EQ[.] refers to the expected value
with respect to the probability distribution Q.

A. Distributionally Robust OPF
The distributionally robust OPF problem to be solved in the

day-ahead stage writes as
min

p,r,r,B
c>p + c>r + c>r + max

Q∈A
EQ
[
c>Bξ̃

]
(1a)

s.t. p + r ≤ pmax (1b)
p− r ≥ 0 (1c)
0 ≤ r ≤ rmax ; 0 ≤ r ≤ rmax (1d)

1
>p + 1

>Wµ− 1>d = 0 (1e)

1
>B + 1

>W = 0 (1f)

min
Q∈A

Q
(
−rg ≤ Bg ξ̃

)
≥ 1− εg ∀g ∈ G (1g)

min
Q∈A

Q
(
Bg ξ̃ ≤ rg

)
≥ 1− εg ∀g ∈ G (1h)

min
Q∈A

Q
(
ZGl

(
p + Bξ̃

)
+ ZWl W

(
µ+ ξ̃

)
−ZDl d

)
≤ fmax

l

)
≥ 1− εl ∀l ∈ L.

(1i)

Objective function (1a) minimizes the day-ahead scheduling
cost of generators (the first three terms) as well as the recourse
operational cost (the last term). The first term refers to the total
production cost of the system, where c ∈ R|G| is the vector
of production cost of conventional generators, and p ∈ R|G|
is the vector of their production schedules. The second and

third terms in (1a) correspond to the cost for booking the
capacity of conventional generators for upward and downward
reserve services, respectively. Vectors c ∈ R|G| and c ∈ R|G|
give the upward and downward reserve procurement costs,
whereas vectors r ∈ R|G| and r ∈ R|G| refer to the upward
and downward reserve schedules. Finally, the last term in (1a)
provides the worst-case expectation of the recourse operational
cost of the system. Vector ξ̃ ∈ R|W| is the forecast error of
renewable energy sources, which is the sole source of uncer-
tainty in our OPF problem, and its true probability distribution
is not necessarily known. In addition, B ∈ R|G|×|W| is a
matrix of participation factors, representing the contribution
of conventional generators towards balancing the production
deviation of renewable energy sources in the real-time ope-
ration with respect to their day-ahead forecast. The recourse
cost is calculated in expectation with respect to the worst-case
probability distribution Q, which is endogenously selected
within the ambiguity set A. This set will be described later in
Section II-B.

Constraints (1b) to (1d) enforce capacity limits of conven-
tional generators. Vector pmax ∈ R|G| refers to the capacity
of conventional generators, whereas vector rmax ∈ R|G| cor-
responds to their maximum capability for upward/downward
reserve provision. Constraints (1e) and (1f) impose power
balance conditions in the day-ahead and real-time stages,
respectively. Note that W ∈ R|W|×|W| is a diagonal matrix
containing the installed capacity of renewable energy sources,
and µ ∈ R|W| is the vector of day-ahead renewable power
generation forecast in per-unit, such that 1>Wµ represents
the total renewable power generation forecast in the day-ahead
stage. According to (1e), the total production of conventio-
nal generators 1>p plus the total production of renewables
1>Wµ supply the total inelastic demand 1>d, where d ∈
R|D| is the vector of their consumption levels. The real-time
power balance constraint (1f) sets the participation factors B,
such that the recourse actions will adjust the power deviations
of renewable energy sources for all ξ̃ ∈ R|W|.

Finally, (1g)-(1i) are probabilistic constraints including ran-
dom variables ξ̃, modeled as individual distributionally ro-
bust chance constraints [16]. Each probabilistic constraint is
assigned with a pre-defined constraint violation probability
ε ∈ [0, 1]. With a probabilistic confidence of 1 − εg under
the worst-case distribution Q within the ambiguity set A, the
distributionally robust chance constraint (1g) ensures that the
downward recourse action of conventional generator g ∈ G
in the real-time operation, i.e., Bgξ̃, will not exceed the
downward reserve capacity rg booked in the day-ahead stage.
Note that the subscript in Bg selects the row corresponding
to generator g, and rg is the gth element of vector r. A
similar constraint for the upward reserve is enforced by (1h).
Finally, (1i) imposes the capacity of each transmission line
l ∈ L. Matrices ZG ∈ R|L|×|G|,ZW ∈ R|L|×|W| and ZD ∈
R|L|×|D| represent the power transmission distribution factors
for conventional generators, renewable energy sources and
demands, respectively. Subscript Z

(.)
l selects the row corres-

ponding to line l, and fmax
l gives its capacity.



B. Uncertainty Modeling

We define three different types of ambiguity sets that
will be used throughout this paper. For the ease of reading,
we denote them as metric-based, moment-metric-based and
enhanced moment-metric-based ambiguity sets, and define
them as follow:

1) Metric-Based Ambiguity Set: It collects all distributions
in the neighborhood of an empirical distribution function, say

Q̂N = 1
N

N∑
i=1

δξ̂i
, where δξ̂i

is the Dirac distribution centered

on ξ̂i. The latter is therefore constructed based on N historical
observations ξ̂i which are assigned with an equal probability
of 1

N . To measure the probabilistic distance between distri-
butions, we use the Wasserstein metric [17], for which we
provide a mathematical definition in the online companion
of this paper [18]. The Wasserstein distance corresponds to
the optimal transportation cost of a transportation problem
which aims at optimally transferring the probability from one
to another distribution function. We define the metric-based
ambiguity set A1 as

A1 =
{
Q ∈M

∣∣∣dW (Q, Q̂N ) ≤ ρ
}
, (2)

where M denotes the set of all distributions on R|W|. In
addition, ρ ∈ R corresponds to the maximum transportation
budget, the so-called radius, which limits the Wasserstein
distance dW (Q, Q̂N ) between each distribution Q within set
A1 and the empirical distribution Q̂N .

2) Moment-Metric-Based Ambiguity Set: This type of am-
biguity set, as defined in [8], is described by

A2 =

{
Q ∈M∩A1

∣∣∣∣ EQ
[(

ξ̃ − µ0

)(
ξ̃ − µ0

)>]
� Σ

}
, (3)

which contains only those distributions within the previously
defined set A1 that comply with the covariance matrix of
the empirical distribution. The newly added constraint in (3)
ensures that all distributions within A2 follow the empirical
covariance matrix Σ. Note that µ0 represents the empirical
mean. Thereby, set A2 contains the distributions that are close
to the empirical distribution Q̂N and satisfy the linear depen-
dence structure expressed in Σ. This additional feature enables
eliminating the unrealistic distributions from the ambiguity
set A1 when the underlying uncertainty (here, the renewable
power generation uncertainty) has a correlated structure.

3) Enhanced Moment-Metric-Based Ambiguity Set: As
our methodological contribution, we propose an enhanced
moment-metric-based ambiguity set described by

A3 =
{
Q ∈M∩A2

∣∣∣ Q(ξ̃ ∈ U) = 1
}
, (4)

which contains only those distributions within the previously
defined set A2 that satisfy an additional constraint coming
from the support information. This constraint restricts the pro-
bability distribution Q to take values strictly and only within
the support U . The support of uncertainty may correspond to
physical bounds of the uncertainty, e.g., minimum and maxi-
mum renewable power generation, or to probabilistic bounds,

e.g., quantile regression achieved by forecasting methods. By
adding this support information, we restrict the distributions
to take realistic values, thereby further eliminating unrealistic
distributions from the ambiguity set. For instance, the dis-
tributions in sets A1 and A2 may take non-realistic values,
e.g., negative renewable power generation, which will lead
to sub-optimality or infeasibility of the resulting program for
large values of ρ. This intuition is confirmed by our numerical
analysis to be provided later in Section IV. To add the support
information, we consider ellipsoidal support U , where the
random vector has to satisfy a constraint as(
ξ̃ 1

)
M

(
ξ̃
1

)
≤ 0,where M =

(
Σ0 −Σ0ξ0
−ξ>0 Σ0 ξ>0 Σ0ξ0 − 1

)
. (5)

Note that ξ0 ∈ R|W| corresponds to the center of the
ellipsoid, and Σ0 ∈ R|W|×|W| parametrizes the span of the
ellipsoid.

III. MODEL REFORMULATIONS

We provide the tractable reformulations of OPF problem (1),
such that it can be solved by existing off-the-shelf commercial
solvers. We need to get rid of the non-convex probability ope-
rator Q (.) in (1g)-(1i). For this purpose, we use conditional-
value-at-risk (CVaR) approximation to cast the distributionally
robust chance constraints in the form of min

Q∈A
Q (. ≤ 0) ≥ 1−ε

into CVaR constraints max
Q∈A

Q-CVaRε(.) ≤ 0 [19]. The CVaR

operator is defined as

max
Q∈A

Q-CVaRε(.) = min
τ∈R

τ +
1

ε
max
Q∈A

EQ [d.− τe+] , (6)

where τ ∈ R is an auxiliary variable, and operator d.e+ =
max (., 0). Using this definition, problem (1) now includes
the worst-case expectation not only in the objective function
but also in the constraints. Consider a generic worst-case
expectation problem maxQ∈A EQ

[
a (x)

>
ξ + b (x)

]
, where

x ∈ X gives the vector of decision variables and a> (x) ∈
R|W| and b (x) ∈ R represent the decision-dependent coeffi-
cients. For this generic worst-case expectation problem under
ambiguity sets A1, A2 and A3, we provide the equivalent
tractable reformulations in the online companion [18], Section
III-A and Section III-B of this paper, respectively.

A. Moment-Metric-Based Ambiguity Set

The worst-case expectation problem under the moment-
metric-based ambiguity set A2, as proposed in [8], writes as

max
Q∈A2

EQ
[
a (x)> ξ + b (x)

]
= (7a)

min
λ,σi,Λ�0,ζi

λρ+ 〈Λ,Σ〉F +
1

N

N∑
i=1

σi

s.t. Fi � 0 ∀i ∈ {1, ..., N}
||ζi||∗ ≤ λ ∀i ∈ {1, ..., N} ,

(7b)

where λ ∈ R, σ ∈ RN , ζi ∈ R|W| and Λ ∈ R|W|×|W| are

auxiliary variables. Operator 〈Λ,Σ〉F =
|W|∑
m=1

|W|∑
n=1

Λmn · Σmn



refers to the Frobenius inner product between matrices Λ and
Σ. In addition, operator ||.||∗ refers to the dual norm, which is
defined as ||v||∗ = max

||b||≤1
v>b. Problem (7) is an SDP, where a

constraint involving the � operator imposes that the matrix on
the left-hand side is semi-definite positive. We define matrix
Fi ∈ R|W|+1×|W|+1 as

Fi =


Λ − 1

2
a (x) + 1

2
ζi −Λµ0(

− 1
2
a (x) + 1

2
ζi −Λµ0

)> σi − ζ>i ξ̂i

− b (x) + µ>0 Λµ0

 .
(8)

The complete reformulation of the distributionally robust
OPF problem (1) under ambiguity set A2 is available in our
online companion [18].

B. Enhanced Moment-Metric-Based Ambiguity Set

As our main methodological contribution, this section pro-
vides the reformulation of the worst-case expectation problem
under the enhanced moment-metric-based ambiguity set A3.

Theorem 1. The worst-case expectation problem under am-
biguity set A3 described by (4) with an ellipsoidal support of
uncertainty U given by (5) is equivalent to

max
Q∈A2

EQ
[
a (x)> ξ + b (x)

]
= (9a)

min
λ,σi,Λ�0,ζi,βi≥0

λρ+ 〈Λ,Σ〉F +
1

N

N∑
i=1

σi

s.t. Fi � −βiM ∀i ∈ {1, ..., N}
||ζi||∗ ≤ λ ∀i ∈ {1, ..., N} .

(9b)

Proof. See the appendix.
Using Theorem 1, we reformulate the distributionally robust

OPF problem (1) under ambiguity set A3. The resulting SDP
is available in the online companion [18].

IV. NUMERICAL STUDY

In this section we provide a numerical study to illustrate the
benefits of the distributionally robust OPF problem with the
proposed ambiguity set A3 over existing sets A1 and A2 in
the literature. First, we present our case study and input data
in Section IV-A. Then, we provide a computational analysis in
Section IV-B. Finally, we discuss the superiority of ambiguity
set A3 in terms of the expected operational cost of the system
in Section IV-C.

A. Case study and Input Data

We use an adapted version of the IEEE 24-node reliability
test system [20], which is composed of 12 conventional
generators, 2 wind farms, and 17 loads, all connected through
a network with 34 transmission lines. We consider a single-
hour time period, as inter-temporal constraints are excluded.
The total conventional generating capacity is 2,362.5 MW,
whereas the total installed capacity of wind farms is 1,600
MW. In addition, the total demand is 2,207 MW. Full details
of network parameters are available in our online companion
[18].
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Fig. 1: Examples of wind power generation datasets for two wind
farms with (a) independence and (b) dependence structures

Ambiguity sets A1, A2 and A3 require the knowledge of
empirical distribution of wind power deviations in the real-
time operation with respect to the day-ahead forecast. In
this paper, aiming at showing the benefits of the proposed
uncertainty modeling technique under dependent uncertainty,
we generate two different and synthetic datasets, namely
independent and dependent sets. For this purpose, we use
package DatagenCopulaBased v1.3.0 coded with Julia pro-
gramming language v1.4.2. This package allows us to ran-
domly draw samples from a copula, i.e., a distribution function
with uniformly distributed marginals that embeds dependence
information without any marginal information 1. We draw
samples from the independent copula and the Gaussian copula
parametrized with covariance matrix ΣGauss. = [1 0.5; 0.5 1].
The uniformly distributed marginal samples are passed through
the Weibull inverse cumulative distribution (scale parameter
λ = 1 and shape parameter k = 2), resulting in two final sets
of samples following a multivariate distribution function with
a known copula (i.e., an independent or a dependent one) and
known marginals. These two datasets are illustrated in Fig. 1.

We generate 1,050 samples from each distribution, 50 of
which are in-sample data (depicted in Fig. 1) used for sol-
ving the proposed distributionally robust OPF problem under
different ambiguity sets A1, A2 and A3. These 50 samples
define the empirical distribution function. The remaining 1,000
samples are used later for an ex-post out-of-sample simulation.
In addition, as the input data for the enhanced moment-metric-
based ambiguity set A3, we design an ellipsoidal support of
uncertainty with parameters 2

Σ0 =

(
2.20 −0.25
−0.25 2.20

)
and ξ0 =

(
0.2046
0.2046

)
. (10)

We consider an identical violation probability of ε = 0.05 for
all constraints (1g)-(1i). Finally, we take into account different
values for radius ρ, ranging from 10−4 to 10−1.

1. A copula allows to split the information on dependence structure
and marginal distributions of a multivariate distribution function, i.e., any
multivariate distribution function with k dimensions may be completely
described by one copula and k marginals.

2. These parameters have been selected by trials and errors in the scope
of this paper, with limited impact on the final results of our proposed model.
A more accurate design of the support is left for the future work.
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(b) Gaussian-dependent dataset: Out-of-sample to-
tal expected operational cost of the system as a
function of ρ. Fixed parameters: N = 50 and ε =
0.05.
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(c) Independent dataset: Out-of-sample total expec-
ted operational cost of the system as a function of
ρ. Fixed parameters: N = 50 and ε = 0.05.

Fig. 2: Numerical study. The shaded area around each curve represents the corresponding standard deviation.

B. Computational Study

Recall that our resulting OPF model under ambiguity set
A1 is a linear program (LP), while it is an SDP under sets A2

and A3. We solve these programs using the solver Mosek 9.2
with the modeling language JuMP 0.21.3 and the programming
language JuliaPro 1.4.2, on a computer clocking at 2.2 GHz
with 16 GB installed RAM capacity. All source codes are
publicly available in the online companion of this paper [18].

We retrieve the computational time corresponding to each
model with different number of in-sample scenarios N , ran-
ging from 10 to 100. The computational times are reported
in Fig. 2(a). As expected, we observe that the computational
time for the model with the metric-based ambiguity A1 is
the lowest due to its linearity. In addition, these results show
that the computational time related to the OPF model with
the moment-metric-based and the enhanced moment-metric-
based ambiguity sets are comparable. The reason for this is
that the scale of problems (7) and (9) under ambiguity sets
A2 and A3 are almost equivalent — only one supplementary
scalar variable βi appears in (9) compared to (7). These
results further suggest that the computational time in both SDP
models grows linearly when N increases.

C. Expected Operational Cost Based on Unseen Realizations

We use the remaining 1,000 samples of each dataset (inde-
pendent and dependent) as unseen realizations of uncertainty
that mimic the wind power generation in real-time. We first
carry out the in-sample simulation by solving problem (1) with
50 samples. Given the optimal day-ahead schedule of conven-
tional generators obtained, i.e., p, r, and r, we run a real-
time optimization problem 1,000 times, one per each unseen
realization. This real-time optimization problem is given in the
online appendix [18]. By solving this problem, we compute
the cost in the real-time operation for the recourse actions
(including involuntarily load shedding and wind spillage). We
calculate the expected operational cost of the system and
its standard deviation over 1,000 simulations, and report the
results in Fig. 2(b) and 2(c), respectively, for the independent
and Gaussian-dependent cases.

From Fig. 2(b), we observe that the system operator may
achieve a lower expected operational cost when using the
moment-metric-based ambiguity set A2, compared to A1. This
interesting result stems from the smart design of A2 that
imposes the dependence structure of probability distributions
within the ambiguity set. Nevertheless, we observe that after
a threshold value of radius ρ, i.e., 0.001 for A1 and 0.02 for
A2, the expected operational cost drastically increases. The
program even fails to be feasible after a threshold value of
0.005 for A1 and 0.05 for A2. The reason for this is that the
worst-case distribution within the ambiguity set is not bounded
by the support of uncertainty. For example, it may give a non-
zero probability to a negative value of wind power generation.
This may lead to infeasibility when the amount of available
reserve is not sufficient for the system under the worst-case
distribution. Our proposed technique relying on the enhanced
moment-metric-based ambiguity set A3 that embeds the sup-
port information allows to recover feasibility when ρ takes
a comparatively high value. By bounding distributions within
the ambiguity set to lie within the support, the values taken
by the worst-case distribution remain realistic. Eventually, our
proposed technique achieves a lower expected operational cost
when ρ is greater than 0.01, compared to a moment-metric-
based approach. In each of the three explored models, the
standard deviation decreases when the radius ρ increases.

It is worth noting that we observe similar results in Fig.
2(c) for the independent case, although with different threshold
values. This counter-intuitive result shows that irrespective of
the dependence structure of the underlying uncertainty, the
ambiguity set A3 outperforms others. Eventually, our proposed
model allows to reduce the expected operational cost when ρ
increases. This happens by eliminating the unrealistic distri-
butions from the ambiguity set while keeping a smart insight
of the dependence structure of the underlying distributions,
resulting in the minimum expected operational cost achieved
for all values of radius ρ.

V. CONCLUSION

This paper explores distributionally robust optimization fra-
meworks for the day-ahead optimal power flow problem. We



propose an enhanced moment-metric-based ambiguity set that
accounts for the dependence among the uncertain variable as
well as the support of uncertainty to make informed scheduling
decisions. We provide the mathematical reformulations related
to this new type of ambiguity set and apply it within a
numerical study. We show the superiority of our proposed
technique in terms of the out-of-sample expected operational
cost of the system compared to the existing ambiguity sets,
i.e., metric-based and moment-metric-based ones.

As a potential future research path, it is of interest to explore
the implementation of ambiguity sets accounting for nonlinear
correlations, e.g., based on copula information. Furthermore,
the design of the ellipsoidal support of uncertainty could be
fine-tuned by machine learning techniques with the aim of
including more realistic distributions within the ambiguity set.

APPENDIX: PROOF OF THEOREM 1
We depart from Theorem 1 in [8], which is equivalently

stated for discrete empirical distributions as

max
Q∈A3

EQ
[
a (x)> ξ + b (x)

]
= (11a)

min
λ,σi,Λ�0

λρ+ 〈Λ,Σ〉F +
1

N

N∑
i=1

σi

s.t. max
ξ∈U

a (x)> ξ + b (x)− λ||ξ − ξ̂i||

− (ξ − µ0)
>Λ (ξ − µ0) ≤ σi ∀i ∈ {1, ..., N} .

(11b)

Constraint in (11b) requires further reformulations. First, we
use the dual norm to recast the norm ||ξ − ξ̂i|| as

max
ξ∈U

a (x)> ξ + b (x)− λ max
||ζi||∗≤1

ζ>i

(
ξ − ξ̂i

)
− (ξ − µ0)

>Λ (ξ − µ0) ≤ σi ∀i ∈ {1, ..., N} .
(12)

The inner maximization operator is brought back to the
left with a change in the optimization sense (i.e., −max =
min−). Next, we permute the order of the optimization
operators to result in a min-max structure; the permutation
is allowed since the optimization sets are convex and inde-
pendent. For the sake of simplicity, we realize a change of
variable λζi 7−→ ζi and drop the min operator inside the
“less or equal to” constraint, adding the variable ζi to the
decision variable, which allows us to equivalently reformulate
the constraint (12) as

max
ξ∈U

a (x)> ξ + b (x)− ζ>i

(
ξ − ξ̂i

)
− (ξ − µ0)

>Λ (ξ − µ0) ≤ σi ∀i ∈ {1, ..., N}
(13a)

||ζi||∗ ≤ λ. (13b)

Constraint (13a) corresponds to a quadratically-constrained
quadratic program (QCQP) when the uncertainty set U is
ellipsoidal and described by quadratic equations (5). By means
of S-Lemma [21], this QCQP can be equivalently reformulated
as SDP

Fi � −βiM ∀i ∈ {1, ..., N} (14a)
||ζi||∗ ≤ λ ∀i ∈ {1, ..., N} (14b)
βi ≥ 0 ∀i ∈ {1, ..., N} , (14c)

where βi ∈ R is an auxiliary variable and Fi is defined by
(8). Constraint (11b) can therefore be equivalently recast as
(14). This completes the proof.
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