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a  b  s  t  r a  c t

The framework of this  paper is robot  localization  inside buildings  by  means  of wireless localization

systems.  Such kind of systems make  use of the  Wireless  Fidelity (WiFi) signal strength  sensors  which  are

becoming more  and  more useful  in the  localization  stage  of several robotic platforms. Robot  localization

is  usually made up  of two  phases:  training and  estimation  stages.  In  the  former, WiFi signal strength  of

all visible  Access Points (APs)  are collected  and  stored in  a database or  WiFi map.  In the  latter,  the  signal

strengths received  from  all APs  at a certain  position are  compared  with  the WiFi  map  to estimate  the

robot  location. Hence, WiFi  localization  systems  exploit  the  well-known  path loss  propagation  model  due

to  large-scale  variations  of WiFi  signal  to  determine  how  closer  the  robot  is to  a certain AP. Unfortunately,

there  is  another kind of signal variations  called small-scale  variations  that have to be  considered. They

appear  when robots  move under  the  wavelength  �.  In  consequence,  a  chaotic noise is added  to the

signal strength  measure  yielding  a lot of uncertainty  that  should  be  handled  by  the localization  model.

While lateral  and orientation  errors in the  robot  positioning  stage are  well  studied  and  they  remain

under  control thanks  to the  use  of robust  low-level controllers,  more studies  are needed  when  dealing

with small-scale  variations.  Moreover,  if  the  robot can  not use  a  robust  low-level  controller  because,

for example, the  environment  is not organized  in  perpendicular  corridors,  then  lateral  and  orientation

errors can  be  significantly  increased  yielding  a bad  global  localization  and navigation performance.  The

main  goal  of this work  is  to strengthen  the  localization  stage of our  previous WiFi Partially  Observable

Markov Decision  Process (POMDP)  Navigation  System with  the  aim of dealing  effectively  with  small-scale

variations.  In  addition, looking  for  the  applicability  of our system  to  a  wider variety  of environments,  we

relax  the  necessity of having a  robust  low-level controller.  To  do  that,  this  paper proposes  the  use of a

Soft  Computing based  system to tackle  with  the  uncertainty  related  to both  the  small-scale variations

and  the  lack of a robust  low-level controller.  The proposed  system is actually  implemented in the  form

of a  Fuzzy  Rule-based System  and  it has been  evaluated  in two  real  test-beds  and robotic  platforms.

Experimental  results show how our system is easily  adaptable  to new environments where  classical

localization techniques  can  not be  applied  since the  AP  physical location  is  unknown.

© 2011  Elsevier B.V. All rights  reserved.

1. Introduction

Several applications like surveillance tasks require a  priori

knowledge of the user location. This position can be determined

by the user’s device or by  the environment itself. By knowing the
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user position it is possible to interact with him, guiding it through

the environment and implementing some tasks depending on the

area of interest.

Localization is currently applied at several areas. For instance,

there are projects that use localization systems in  hospitals which

can locate doctors and equipment. Other systems are used for med-

ical assistance [21],  inventory control at warehouses, robotics [40],

etc.

In  the last years, applications of localization systems are grow-

ing by means of using different technologies [27]. A great example

is GPS (Global Positioning System) [12], which is  the most extended

technology for devices localization. As an example of  the localiza-

tion importance car drivers usually use GPS to be guided through
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cities. This technology can locate devices with an error that varies

from centimeters to one hundred meters, but it does not  work prop-

erly in indoor environments or even in  cities with high buildings.

Thus, it is necessary to find a complementary system for such

environments. There are some proposals for indoor localization

using infrared [42], computer vision [19],  ultrasound [34], laser [7],

radio frequency (RF) [6],  or even cellular communication [33] based

systems. Moreover, there is  an increasing interest in WiFi local-

ization for these environments using different algorithms, even

looking for complementary characteristics of both GPS (outdoor

environments) and WiFi (indoor environments) [13].

One of the main advantages of WiFi technology is  its quickly

growing degree of coverage. There are WiFi Access Points (APs) in

most public buildings like hospitals, libraries, universities, muse-

ums, etc. In addition, measuring the WiFi signal level (without

transmitting-receiving data) is free even for private WiFi networks.

Consequently, WiFi technology is  a  good choice for global indoor

localization systems.

WiFi localization systems use 802.11b/g network infrastructure

to estimate a device position. This fact makes WiFi localization

systems appropriate to  be used in indoor environments where

traditional techniques do not work properly. With the aim of esti-

mating a device position, a  WiFi localization system measures and

processes the received signal level (SL) from each AP  by means of

a WiFi interface. Notice that, SL depends on the distance and the

obstacles between APs and the receiver. Looking for indoor local-

ization, the so-called signal strength approaches are very attractive

because they can be applied to  wireless networks without needing

additional specific hardware [11].

There are two main techniques to  estimate an unknown

position: deterministic and probabilistic. In the first one,  the envi-

ronment is usually divided into cells and the position is  obtained

in the estimation stage comparing the measures with the stored

pattern [6,44].  On the other hand, probabilistic techniques keep a

probabilistic distribution over all positions [15,20].  The last tech-

nique gets a better accuracy but with a  higher computational

cost.

In work [24], the authors estimate the distance to each AP  using

only odometric calculus and the received SL.  They consider trilat-

eration with a propagation model and also a  probabilistic approach

that applies the Bayes rule to accumulate localization probability.

Unfortunately, RF signal is affected by  reflection, refraction and

diffraction in indoor environments. This effect, known as multipath

effect, turns the SL into a  complex function of the distance [11]. In

addition, classical trilateration algorithms can not be  applied when

the exact AP physical location is unknown.

Looking for a solution to  this problem, authors of [6] proposed a

WiFi localization system based on a  priori radio map, which stored

the received SL of each AP belonging to  interest locations. This sys-

tem has two stages: training and estimation stages. In the first one,

a manual radio map  is  built. While in the estimation stage a  vector

with received SL of each AP is created and compared with the radio

map to obtain the estimated position.

Notice that WiFi technology works at a 2.4 GHz frequency, which

is closer to the water resonant frequency, therefore SL is  affected

by so many variations. One of these variations, studied by the

authors in a previous work [40],  is the small-scale one and it occurs

when the robot moves in  a  small distance under the wavelength

� = 12.5 cm.  As a result, there are significant changes in the average

SL and make difficult to estimate the correct location because they

can be up to 10 dBm around the same position. To deal with this,

authors proposed the use of a  robust low-level controller which

integrates WiFi and ultrasound measures in a global navigation sys-

tem. It is able to handle small-scale problems but only when the

environment is organized in  perpendicular corridors. Otherwise,

the uncertainty level with respect to  the measures is  so huge that

many  localization errors appear yielding a  bad global navigation

performance.

Since we  would like to  apply our  localization system to  a wider

variety of indoor environments, we should relax the necessity of

having a  robust low-level controller. In  consequence, we have to

look for another way  of tackling with the intrinsic uncertainty

attached to the system. To do so, this work proposes the use of

a Fuzzy Rule-based System (FRBS) able to improve the localiza-

tion stage of our previous navigation system [30] when the robust

low-level controller can not be used.

The rest of the paper is  organized as follows. The next section

introduces the localization system we  want to enhance, highlight-

ing its main advantages and drawbacks. In addition, Section 2

presents several related works regarding the applicability of Soft

Computing approaches in  the context of WiFi localization systems.

Then, Section 3 describes our proposal of fuzzy system for dealing

with small-scale variations during the localization stage. Section

4 presents the results obtained in  experiments carried out with

two real prototypes in  two different test-bed environments. Finally,

Section 5 draws some conclusions and future works.

2. Related works

The main goal of this work is  to  strengthen the localization

stage of our previous WiFi Partially Observable Markov Decision

Process (POMDP) Navigation System with the aim of dealing effec-

tively with small-scale variations even in challenging environments

where the use of our robust low-level controller is  not feasible or

it yields really bad performance. Let us summarize our previous

proposal which represents the starting point for this work.

2.1. Advantages and drawbacks of our previous work

For a global navigation system, in which the objective is to  guide

a robot to  a  goal room in  a  semi-structured environment, a  topo-

logical discretization is appropriate to facilitate the planning and

learning tasks. It is especially indicated when the environment is

very large because it uses a discretization of the environment and

divides it in  a priori known nodes. With this kind of representation,

POMDP models provide solutions to  localization, planning, and

learning in  the global robotics navigation context. These models

use probabilistic reasoning to deal with sensor and action uncer-

tainties. It is important to highlight, that robot needs a  low-level

controller to move across the nodes and perform local navigation

actions commanded by the POMDP planner. In this context, using

sensors with high uncertainty, like WiFi signal strength sensors,

Markov models become the most extended models in order to build

a robust global navigation system.

When a  robot moves across an environment executing several

actions (at), in  execution step t,  and the environment observation

is  free of uncertainty, the system can be modelized as a  Markov

Decision Process (MDP). The MDP  is  a mathematical model that

allows the characterization of robotic systems without noise in the

environment observation. The MDP  considers that only the effect

of actions has uncertainty. In addition, when a  MDP achieves some

execution steps and it goes along different states (s0, s1,  . . .,  sn)

executing some actions (a0, a1,  . . .,  an), the probability of  being in

a state (st+1) in the execution step t +  1 is  computed by Eq. (1).

p(st+1|s0, a0, s1,  a1,  . . .  , st, at) = p(st+1|st,  at) (1)

The action uncertainty model represents the real errors or  fail-

ures in the execution of the actions. The transition function T

incorporates this information to the MDP. In the discrete case, T

is a  matrix that represents the probability of reaching the state st+1

when the robot is in the state st and it has executed the action at.

There is a  reward function R for each state s and action a. The robot
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gets the maximum value of the reward function when it reaches the

target state travelling through the ideal trajectory and executing

the ideal actions.

Although MDP  considers that the environment observation is

free of uncertainty, in  real robotic systems, there are some uncer-

tainties associated to their sensors observations. They are more

significant when the observations are provided by  the noisy WiFi

sensor and when robots move under wavelength. An MDP able to

characterize systems with noisy sensors or partial observability is

called POMDP. In our  previous work [30],  we used two different

kinds of partial observations: WiFi signal strength and ultrasound

sensor. A POMDP is a  mathematical model defined by  the following

elements:

• The same elements included in an MDP: S  (states set), A (actions

set), T (transition function), and R (reward function).
• The following additional elements: O  (observations set (o  ∈ O))

and � (observation function).

Due to the uncertainty of the observations, a POMDP does not  know

what its real state is. It maintains a Belief Distribution (Bel) to solve

it. The distribution Bel(s) assigns to  each state s a probability which

reports the possibility of being the real state. This is the main reason

to  divide the control stage of a  POMDP in  two stages:

• State estimator: The input of this block is  the current Observation

and its output is the Bel distribution. This block calculates the

probability over all possible states.
• Policy: The input of this block is  the current Bel and its output

is the Action to perform. This block obtains the optimal action to

perform in the next execution step to  maximize the reward (R).

The state estimator block corresponds to the global localization

system. It updates the Bel distribution when a  new action or obser-

vation is carried out. In the robotics context, these conditions

usually are simultaneous. When an action a is executed then a  new

observation o is  taken. Thus, the new probabilities are  computed

by Eq. (2).

Belt(s′) = � · p(o|s′) ·
∑

s∈S

p(s′|s, a) ·  Belt−1(s), ∀s′ ∈ S (2)

To achieve a high performance of the global navigation system

we developed a  robust low-level controller [40] with three main

goals: (1) Execute the action commanded from the POMDP; (2)

inform it when a state transition is detected; and (3) place the robot

in  the optimal location to measure the WiFi signal.

As a result of using the robust low-level controller, when the

robot is placed under a  half wavelength (small-scale range), the

uncertainty of the signal measure is significantly reduced. How-

ever, the robust low-level controller is effective only when there is

a mathematical model that robustly reconstructs the geometry of

the environment. Unfortunately, such model is only available for

environments which are organized in the form of perpendicular

corridors. In that case, an H-shape model is  adequate to represent

the real geometry of each corridor. For that  purpose, the width of

the corridor W needs to be a priori known (based on the map) or

on-line estimated (see Fig. 1).

When the environment is organized in perpendicular corridors

of known width, the robust low-level controller is able to obtain a

positioning error under a half of the wavelength in  almost 70%  of the

cases. But sometimes, there are environments, like the European

Centre for Soft Computing (see Section 4.1), where it is not possible

to use this robust low-level controller. In this kind of environments,

it is needed to improve the global navigation system by mean of

strengthening the global localization system.

Fig. 1.  H-shape corridor model.

In  the next section, we explore some Soft Computing approaches

for WiFi localization with the aim of finding out a method able to

get good results in all kind of environments, so relaxing the need

for running a sophisticated low-level controller.

2.2. Soft Computing approaches for  wireless localization

Soft Computing (SC) is usually defined by its essential prop-

erties, as a  family of techniques (Fuzzy Logic, Neuro-computing,

Probabilistic Reasoning, Evolutionary Computation, and their

hybridizations), as a complement of hard computing, and/or as a

tool for coping with imprecision and uncertainty [22]. One of  the

main issues regarding SC techniques is their complementary and

cooperative nature. Each individual technique, even each individ-

ual  algorithm, has its own  advantages and drawbacks. Therefore,

designing hybrid systems made up of different techniques working

together let  us achieving more powerful systems, overcoming the

problems which turn up when dealing with the component tech-

niques alone. That is  why hybrid systems like for instance neuro

fuzzy systems (NFS) [28] and genetic fuzzy systems (GFS) [9] are

becoming more and more popular.

Over the last decade, an extensive research has been done on

wireless localization based on Soft Computing techniques. We  will

give a short overview by enumerating some of the most sounded

contributions.

Nerguizian et al. proposed the use of neural networks and fin-

gerprinting to deal with the well-known multipath effect in indoor

environments [29].  They introduced a  method for mobile robot

location following a distance-based approach, i.e., their system

output provides X–Y coordinates in a  two dimensional map. The

network learning is done off-line but  it may become computa-

tional costly (and even unfeasible) for very large environments.

More recently, Outemzabet et al. presented a  location system also

based on neural networks and fingerprinting. The main novelty

arises from the fact that the estimated X–Y position is  enhanced

first with Kalman filtering [31] and later with particle filtering and

a low-cost sensor [32].

On  the other hand, Dharne et al. advocated for the use of  fuzzy

logic [10].  They proposed a  FRBS  able to get good results while

reducing the computation time thanks to  the use of a grid-based

map  describing the environment under consideration. Moreover,

they reduce the computational cost by taking into account only sig-

nificant grid-points. Hence, they follow a  topology-based approach

instead of a  distance-based one. The goal is  not finding out the

exact X–Y coordinates but  giving an approximate position (related

to the most likely grid-point) with high confidence. Notice that,

fuzzy logic is  especially useful to handle problems where the avail-

able information is vague, which is  the typical situation when

working with WiFi signal strength sensors. Fuzzy logic lets us to

deal with the uncertainty in the environment and makes possible

estimate the device position without a high number of  samples

[4,5,8].

Finally, Yun et al. [45] proposed a  Soft Computing based local-

ization system for outdoor environments. To start with, they

generated a genetic fuzzy system for individual localization where

the edge weights of each anchor node is  first modeled by  a  fuzzy
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Fig. 2. Scheme of HILK fuzzy modeling methodology.

system and then optimized by a  genetic algorithm. Later, they gen-

erated a neural network for overall localization. Achieved results

were promising and they proved the suitability of considering Soft

Computing approaches to deal with wireless localization.

3. Enhancing our localization stage with a fuzzy classifier

This section provides a brief description of the new proposed

localization system. As explained in Section 2.1, our previous pro-

posal followed a topology-based approach. We  have selected fuzzy

logic among all the available Soft Computing techniques because it

has been proved to be a  good choice (on the light of our previous

literature survey) when considering a topological approach.

In classical logic only two crisp values are admissible (false/true,

negative/positive, etc), what is a  strong limitation when dealing

with real-world complex problems where there are many impor-

tant details which are usually vague. On the contrary, fuzzy logic

is a useful tool to handle these problems. In addition, the seman-

tic expressivity of fuzzy logic is well-known to be close to  expert

natural language yielding powerful tools for linguistic concept

modeling. The use of linguistic variables [47] and linguistic rules

[23,46] favors the interpretability of fuzzy models, at least from

the readability or structural transparency point of view. As a result,

fuzzy modeling [14],  i.e., system modeling with FRBSs, represents a

fruitful research line. Unfortunately, using fuzzy logic is not enough

for building interpretable models. The whole modeling process

must be  carried out carefully, paying special attention to  inter-

pretability from the beginning to the end and imposing several

constraints [25].  This is the only way for yielding comprehensible

models that may  be seen as gray boxes where every element of the

whole system can be checked and understood by a  human being.

We are going to design a  topology-based fuzzy system able to

handle the SL attenuation due to  large-scale variations of  WiFi

signal with the aim of estimating the robot location among a

predefined set of significant positions. Our system is actually imple-

mented in the form of a  Fuzzy Rule-based Classification (FRBC)

system applied to  WiFi localization that is  also able to deal with the

huge uncertainty derived from small-scale variations when robots

work under the wavelength range. Hence, thanks to the use of a

fuzzy modeling methodology the designed system will be ready to

tackle with the uncertainty related to  both the small-scale varia-

tions and the lack of a robust low-level controller.

The proposed FRBC has been designed and built using GUAJE

[1] a  free software tool for generating understandable and accu-

rate fuzzy models. It implements the Highly Interpretable Linguistic

Knowledge (HILK) methodology [2,3].  This fuzzy modeling method-

ology focuses on building comprehensible fuzzy classifiers, i.e.,

classifiers easily understandable by human beings. As illustrated

in Fig. 2,  applying fuzzy machine learning techniques HILK is  able

to  automatically extract useful pieces of knowledge from experi-

mental data. Such knowledge is represented by means of linguistic

variables and rules under the fuzzy logic formalism.
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In  short, the whole modeling process is  made up of three steps:

• Partition design.  The readability of fuzzy partitioning is  a  pre-

requisite to build interpretable FRBCs. It  includes automatic

generation of fuzzy partitions from data and partition selection.
• Rule base learning. Linguistic rules are automatically extracted

from data.
• Knowledge base improvement.  Iterative refinement process of

both partitions and rules.

The use of linguistic variables favors the readability of the model

and it becomes a  pre-requisite condition to build comprehensi-

ble rules. Each system variable is  described by a  set of linguistic

terms, modeled as fuzzy sets represented by membership func-

tions like the ones in  Fig. 3. As it can be seen the same value xi

is partially Low (0.2)  and Medium (0.8), but the addition of both

membership degrees equals one. This kind of partition is  called

Strong Fuzzy Partitions (SFPs) [38] and they are the best ones from

the  comprehensibility point of view because they satisfy all the

semantic constraints [25] (distinguishability, normalization, cover-

age, overlapping, etc.) demanded to be comprehensible. By default

we use SFPs uniformly distributed over the universe of discourse of

the variables. Moreover, psychologists [26,39] recommend to work

with an odd number of terms (it is  easier to  make reasoning around

a central term) and a  small (justifiable) number of terms (7 ±  2 is a

limit of human information processing capability).

Once all linguistic variables have been defined with a  set of

linguistic terms and their associated semantics, they can be used

to  express linguistic propositions like Signal received from APi is

High. Then, several propositions are combined to form fuzzy rules

describing the system behavior:

r :  If X1 is  Ai
1

︸ ︷︷  ︸

Partial Premise P1

AND . . . AND XI is  A
j
I

︸ ︷︷  ︸

Partial  Premise PI
︸ ︷︷  ︸

Premise

Then Yr is Cn

︸  ︷︷ ︸

Conclusion

where given rule r, rule premises are made up of tuples (input vari-

able,  linguistic term)  where Xa is the name of the input variable a,

while Ai
a represents the label i of such variable, with a belonging to

{1, . . ., I} and being I the number of inputs. In the conclusion part,

Cn represents one of the possible output classes, i.e., one position

in the case of WiFi localization.

For instance, If Signal received from APi is  High and Signal received

from APj is Low Then The robot is close to Position k. The semantic

expressivity of fuzzy logic makes easier the knowledge extraction

and representation phase. In addition, it lets us combine under the

same formalism knowledge extracted from data and knowledge

described by an expert in natural language.

Regarding the rule generation from data, there are lots of meth-

ods in the fuzzy literature [17]. However, keeping in mind the

comprehensibility goal we have chosen the two following ones to

generate rules from data with the previously defined fuzzy parti-

tions:

• Wang and Mendel (WM) [41]. It  starts by generating one rule

for each data pair of the training set but new rules will com-

pete with existing ones. As a result, WM  generates complete rules

(considering all the available variables) which are quite specific.
• Fuzzy Decision Tree (FDT)  [18]. It generates a neuro-fuzzy deci-

sion tree (directly from data) which is  translated into quite

general incomplete rules (only a subset of input variables is

considered). In addition, inputs are  sorted according to their

importance (minimizing the entropy). FDT is  a  fuzzy version

of the popular decision trees defined by Quinlan in [35] and

improved in  [37].

After defining linguistic variables and rules, HILK offers a power-

ful and flexible simplification procedure which affects to the whole

knowledge base including both rule base simplification and par-

tition reduction. The goal is  getting a more compact and general

FRBC, keeping high accuracy while increasing even more com-

prehensibility. It starts looking for redundant elements (terms,

variables, rules, etc.) that can be removed without altering the

system accuracy. Then, it tries to  merge elements always used

together. Finally, it forces removing elements apparently needed

but not  contributing too much to the final accuracy.

The output of the FRBC will be one position along with an acti-

vation degree computed as the result of a  fuzzy inference that takes

into account all defined variables and rules. We have selected the

usual fuzzy classification structure with the Max-Min inference

scheme, and the winner rule fuzzy reasoning mechanism.

First, given an input vector xp = {xp
1
, . . . , x

p
I },  the firing degree

(for each rule r) is computed as the minimum membership degree

of xp to all the attached A
j
i
fuzzy sets, for all the I inputs:

�r(xp)  = min
i=1,...,I

�
A

j

i

(x
p
i
) (3)

Then, the output class  Ci is  derived from the highest �Ci (xp) (look

at Eq. (4))  which is  the membership degree of xp to the class Ci. It

is computed as the maximum firing degree of all rules yielding Ci

as output class (look at Eq.  (5)).  Notice that, several output classes

can be  activated since several fuzzy rules can be fired at the same

time by the same input vector.

yFRBC (xp) =  C i ⇔ �Ci (x
p) =  max

n=1,...,c
�Cn (xp) (4)

�Cn (xp) =  max
r=1,...,R

�r(xp)  ⇔ Yr is Cn (5)

As an illustrative example, if the system output says that the

robot is in  position A  with degree 0.2 and in position B with degree

0.8, it can be concluded that it is  located somewhere between A

and B but closer to B.  However, we do  not know the exact location

because we follow a  topological approach but not a  distance-based

approach.

Thanks to its flexibility and adaptability the designed FRBC

can be used in whatever environment disregarding its specific

geometry. Moreover, the FRBC achieves good results whenever the

environment does not suffer a  great modification, i.e., when some

Access Points are switched off. In such case, the system should be

re-adjusted, but usually these things do not happen and the fuzzy

system is  able to deal with slight modifications like people moving

in  the environment or  changes in  the state of the doors (open/close).

4. Experimental analysis

Exhaustive experiments have been carried out with two dif-

ferent robotic platforms in  two different test-bed environments.

The interested reader is referred to Appendix A for more techni-

cal details about the robots. This section presents the main set-up
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Fig. 4. ECSC environment.

of the two test-beds along with the description of the experimen-

tal process and a  critical discussion regarding the main obtained

results.

4.1. Test-beds

Two different test environments were established at the

premises of the European Centre for Soft Computing (ECSC) and

the  Polytechnic School of the University of Alcalá (UAH):

• The layout of ECSC test-bed is  shown in  Fig. 4. It has a surface of

about 500 m2 with 15 offices, one main long corridor, and two

large open working areas. There are 6 APs distributed over the

whole environment which is  discretized into 16 significant topo-

logical positions (MPi) to be distinguished by  the designed fuzzy

localization system.
• The layout of UAH environment is  illustrated in Fig. 5.  It  has a

surface of 3600 m2 with four laboratories and 32 offices. There

are 54 APs distributed over the whole environment. For  simplic-

ity, since the layout is  symmetrical from the main diagonal as

depicted in the figure, the developed system will be tested in this

environment only in three corridors: main, third and fourth cor-

ridor. We  have considered only 6 APs visible over the analyzed

scenario which is  discretized into 9 significant topological posi-

tions (MPi) to be distinguished by the designed fuzzy localization

system.

4.2. Experimental process

First of all, we  have captured several SL measures (300 sam-

ples) corresponding to  each fix measurement position MPi  in ECSC

(look at Fig. 4). Such measures were collected in the center of each

topological position with the aim of building a  training data set.

Then, the methodology presented in Section 3 has been applied to

build the proposed fuzzy localization system. As it will be further

explained in the next section, we  built several systems with dif-

ferent configuration parameters in  order to find the best FRBC for

the analyzed environment. Of course, the goodness of the gener-

ated systems was  checked with an independent test set. Moreover,

with the aim of evaluating the robustness of the final fuzzy local-

ization system against small-scale variations, the test set is made

up  of samples collected according to the pattern shown in Fig. 6

which consists of a  12.5  cm × 12.5 cm testing grid divided by 1  cm

side squares.

This small-scale testing grid has been used in  the experiments

to  test the robustness of our localization system. To do so, the grid

was sequentially placed on top of each MPi and the same pro-

cess was  repeated. Namely, SL test samples were acquired around

each MPi  with distances in  the range of �.  The aim was  to  prove

Fig. 5. UAH environment.
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Fig. 6. Small-scale testing grid (robot at position A0).

that our system is  able to identify as belonging to the topological

location MPi  all samples taken around (in the range of small-scale

distances) even though training and test samples were not captured

exactly in the same X–Y coordinates. As explained before and it can

be appreciated in the illustrative example plotted in  Fig. 7, small-

scale variations may  yield differences up to 10 dBm for very close

positions (under the wavelength �, in the range of cm)  around the

same MPi. Notice that, a difference about 10 dBm is large enough to

induce a misclassification between two distinct locations MPi  and

MPj  separated in  the range of 13 meters. Such situation is not desir-

able and it should be avoided with a  robust localization system.

In short, the collection of test samples has been done as detailed

below:

1. Initially, the device was placed at position A0 (Fig. 6) and 300

samples were collected. This position is taken as the reference

position (R).

2. New samples were carried out in three different directions:

(a) Horizontal: SL is measured on R  (A0), R  +  3 cm (A3), R  + 6 cm

(A6), R + 9 cm (A9), R  +  12 cm (A12) positions. These positions

are shown with circles.

(b) Vertical: SL is measured on R (A0), R  + 3 cm (D0), R  +  6 cm (G0),

R + 9 cm (J0), R  +  12 cm (M0) positions. These positions are

shown with diamonds.

Fig. 7. Example of SL  histograms for small-scale variations in horizontal direction.

(c) Diagonally: SL is measured on R (A0), R + 3
√

2 cm (D3), R +
6
√

2 cm (G6), R  + 9
√

2 cm (J9), R + 12
√

2 cm (M12) positions.

These positions are  shown with squares.

4.3. Discussion about experimental results

This section describes the experimental results obtained on the

designed trials. First, we have focused on the ECSC environment

where we have tried several FRBCs with different configuration

parameters in order to  find out the FRBC yielding the best results.

Then, conclusions derived from that preliminary experimentation

have been applied to build a  FRBC for the UAH premises. In this

manner, it is possible to check the extensibility of the proposed sys-

tem. It is  important to  highlight that, in  our topological approach, it

is not necessary to know where APs are exactly located to develop

the system. This aspect is  especially powerful regarding the deploy-

ment of our localization system for a new unknown environment.

Finally, a comparison of the best results for ECSC and UAH environ-

ments is  discussed.

Looking for the best FRBC, the influence of some parameters has

been analyzed in  the context of ECSC. These parameters are:

1. Number of input variables. We have taken measures from six

APs regarding both signal (SL) and noise (NL) levels. Thus, we

have considered two  different situations: 6 inputs (only SL), and

12 inputs (SL and NL).

2. Number of linguistic terms defined per input.  Following the

advices of most psychologists the number of terms should be an

odd number smaller or equal than nine. Therefore, with the aim

of looking for the most suitable number, four cases have been

analyzed: three, five, seven, and nine linguistic terms defined

for each input variable.

3.  Rule induction technique.  We  have considered the two  rule

induction algorithms, WM and FDT, introduced in Section 3.  The

first algorithm (WM)  has not any configuration parameters, but

for the second one (FDT) two  cases are evaluated, the whole tree

and the pruned tree (FDTP) with a loss tolerance threshold equal

to 0.1. Then, the HILK simplification algorithm (S) has been run

for the three analyzed cases (WM,  FDT, and FDTP). Hence, a  total

of six different methods have been tested: Three different rule

induction techniques before and after simplification.

4.  Number of averaged samples. Taking into account that the max-

imum acquisition frequency of our WiFi interface is 4Hz, the

robots are able to capture up to four samples per second. Six

cases are evaluated: 1 (raw data without averaging), 4,  12, 28,

40, and 60 averaged samples. The related pre-processing time is

not a problem during the training stage of the system because

it is made offline. However, it becomes a critical requirement

when thinking on the estimation stage which is  run online (in

real-time).

In summary, we  have built 288 (2 × 4 ×  6 × 6) FRBCs covering all

situations described above, and each of them is evaluated with

six test data sets yielding a total of 1728 experiments. Following

subsections analyze the best options for all the four parameters.

4.3.1. Number of inputs

Fig. 8 shows the achieved results during the training stage

regarding only SL (six inputs) or considering both SL and NL (12

inputs). All the eight pictures contained in  the figure share the same

format. On  the one hand, vertical axes include the accuracy of  the

analyzed FRBCs computed as the percentage of correctly classified

samples. On the other hand, horizontal axes show the number of

averaged samples.
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(a) SL - 6 inputs (three terms) (b ) SL an d NL - 12 inputs (thre e terms)

(c) SL - 6 input s (fi ve terms) (d ) SL an d NL - 12 inputs (fi ve terms)

(e) SL - 6 inputs (seven terms) (f) SL an d NL - 12 inputs (se ven terms)

(g) SL - 6 inputs (nin e terms) (h ) SL an d NL - 12 inputs (nin e terms)

Fig. 8. Comparison with respect to  the number of inputs during the  training stage. (a) SL – 6 inputs (three terms), (b) SL  and NL –  12 inputs (three terms), (c) SL  –  6 inputs

(five  terms), (d) SL and NL –  12 inputs (five terms), (e)  SL  –  6 inputs (seven terms), (f) SL  and NL –  12 inputs (seven terms), (g) SL  – 6 inputs (nine terms), and (h) SL  and NL –

12  inputs (nine terms).

From those pictures, comparing left and right columns, it is  easy

to appreciate that computed accuracy is slightly worse when work-

ing only with SL. However, results are better using only SL at the

test stage what suggests that adding NL there is a  kind of over-

fitting effect. This is  deduced from pictures in Fig. 9 where the

horizontal axes are slightly different since they include couples

of  train-test samples. For instance, 12–4 means that the classi-

fier is built considering blocks of twelve averaged samples for

training while the number of averaged samples are four for test-

ing.

The decrease in  accuracy is produced because NL  measures do

not follow a  particular pattern. That is  why the generalization
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(a) SL - 6 inputs (three terms) (b ) SL an d NL - 12 inputs (thre e terms)

(c) SL - 6 input s (fi ve terms) (d ) SL an d NL - 12 inputs (fi ve terms)

(e) SL - 6 inputs (seven terms) (f) SL an d NL - 12 inputs (se ven terms)

(g) SL - 6 inputs (nine terms) (h ) SL an d NL - 12 inputs (nin e terms)

Fig. 9. Comparison with respect to  the number of inputs during the  test stage. (a)  SL  – 6 inputs (three terms), (b) SL and NL –  12 inputs (three terms), (c) SL – 6 inputs (five

terms),  (d) SL and NL – 12 inputs (five terms), (e) SL  – 6 inputs (seven terms), (f) SL  and NL – 12 inputs (seven terms), (g) SL – 6  inputs (nine terms), and (h) SL and NL –  12

inputs (nine terms).

ability of the classifiers is strongly penalized and accuracy is

reduced regarding test data. Moreover, NL varies randomly. In con-

sequence, we observe that NL inputs usually disappear of the rules

after simplification for most of the designed classifiers. Therefore,

we can conclude that NL does not give any reliable information to

design a localization system. Furthermore, increasing the number

of inputs makes the system more complex without any advantages,

so we  can discard NL and build the FRBC regarding only the six

inputs for SL.

4.3.2. Number of linguistic terms and rule induction techniques

Figs. 8 and 9 contain much more information than only the num-

ber of inputs. The number of linguistic terms varies from three

(pictures at the top of the figures) to nine (pictures at the bottom
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(a) WM (b ) WM-S

(c) FDT (d ) FDT-S

(e) FDTP (f) FDTP-S

Fig. 10. Comparison of the selected rule induction methods for the training stage. (a) WM,  (b) WM-S, (c) FDT, (d) FDT-S, (e) FDTP, and (f) FDTP-S.

of the figures). In addition, we have plotted the accuracy for all the

three selected induction methods (WM,  FDT, and FDTP).

It is possible to  outline some preliminary conclusions. During

the training stage, the accuracy is increased when adding more lin-

guistic terms per input what is  due to the fact that input space is

split into smaller cells thanks to the larger granularity yielding a

finer analysis. As a  side effect the number of rules is increased. Fur-

thermore rules are more specific and the generalization ability of

the FRBCs is reduced depending on the available data as well as

on the selected rule induction technique (fuzzy trees provide more

general rules than WM  for example). That is why  accuracy with

respect to test data is clearly smaller than regarding training data.

For the sake of clarity and taking advantage of the conclusions

derived from the analysis made in the previous section, a more

detailed analysis for both number of terms and rule induction algo-

rithms can be made by  focusing only on FRBCs with six inputs. The

goal is to find out the best combination of both number of terms (3,

5,  7, or  9) and rule induction method with or without simplification

(WM,  WM-S, FDT, FDT-S, FDTP, and FDTP-S). Figs. 10 and 11  show

the comparison of all generated FRBCs regarding both training and

test data, for all analyzed combinations. As expected, during the

training stage accuracy increases when the number of terms grows

up, but results are  almost steady from seven labels on. This behavior

is not always held on  test data where an overfitting effect some-

times appears when passing from seven to nine terms. Such effect

is due to the excessive specification of rules when working with a

large number of linguistic terms.

After comparing left and right pictures in Fig. 10 it can be

deduced that the simplification procedure gets more compact

FRBCs keeping (and sometimes increasing) the achieved accuracy

during the training stage. Nevertheless, this statement is not  always

true when looking at test results plotted in Fig. 11.  Simplifica-

tion does not alter accuracy when dealing with WM,  but it slightly

gets worse accuracy for the fuzzy trees which usually exhibit good
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(a) WM (b ) WM-S

(c) FDT (d ) FDT-S

(e) FDTP (f) FDTP-S

Fig. 11. Comparison of the selected rule induction methods regarding test data. (a) WM,  (b) WM-S, (c) FDT, (d) FDT-S, (e) FDTP,  and (f) FDTP-S.

generalization ability. Notice that, accuracy and comprehensibil-

ity are contradictory goals. The simplification procedure enhances

the comprehensibility of the final model but  at the cost of losing

some accuracy. Of course, depending on the application require-

ments some accuracy reduction can be admissible in exchange for

comprehensibility.

Assuming that all generated FRBCs are comprehensible by

superimposing several constraints (SFPs, global semantics, linguis-

tic rules, etc.), the selection of the best FRBC is going to be made

giving priority to the accuracy results. Thus, we observe that FDT

provides the most accurate FRBCs for both training and test. More-

over, the best results are obtained with nine terms. There are two

main reasons for not  using more than nine linguistic terms per input

variable. First, according to psychologists nine is  the largest num-

ber of concepts that a  human is  able to manage at the same time,

representing a  limit of the human processing capability. Second, a

large number of terms leads to  overtraining and it may  decrease

the generalization ability of the model, making more difficult its

application to new unknown environments, but it also would be

less tolerant to slight modifications (for instance people moving)

in  the environment where the FRBC was trained.

4.3.3. Number of averaged samples for  both training and test

This section is  devoted to  analyze the influence of  the number

of averaged samples for both the off-line training stage and the

subsequent on-line estimation stage when the localization system

is used in a real-time application.

Keeping in mind the previously drawn conclusions, we focus on

the best FRBC, i.e., the one built considering six input variables, nine

linguistic terms with their associated uniformly distributed strong

fuzzy partitions, and linguistic rules automatically generated from

training data by means of FDT. Fig.  12 shows how obtained results

vary depending on the number of averaged samples at training

stage. As  expected, the larger the number of averaged samples, the

higher accuracy is  achieved. The accuracy gets 100% for a  number of

samples greater or equal to 40.  As an effect of averaging, the mea-

sured variations are smoother and accuracy is  higher but at the cost

of a longer acquisition time. Fifteen seconds is the time needed for

acquiring 60 samples since the acquisition frequency is  equal to

4 Hz. This time can be acceptable for training but it would be too

much for testing.

Results on testing are illustrated in  Fig.  13.  We  have compared

results achieved by the FRBC trained with 4 averaged samples, and
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Fig. 12. Effect of the number of averaged samples during the  training stage.

then tested against six  data sets made up  of averaged samples vary-

ing from 60 to 1. In this case, it is  easy to appreciate that accuracy on

testing gets worse when decreasing the number of averaged sam-

ples. The most accurate solution is  the one obtained when testing

with 40 averaged samples, what means 10 s for acquisition time.

From a practical point of view, it is  desirable an acquisition time as

small as possible. Looking at Fig. 13 it seems reasonable to consider

only 4 averaged samples, what decreases the acquisition time to  1

second while still keeping a high accuracy around 90 %. It yields a

really good trade-off between accuracy and acquisition time.

4.3.4. Evaluation of the final system

In the light of the previous results we have selected the following

configuration of parameters as the best one for building the FRBC

to be used as part of our localization system: Training with four

averaged samples, only considering SL as inputs, with nine terms

per input, and fuzzy trees without pruning (FDT) for rule induction.

Table 1 shows results achieved by  our localization system (FRBC)

after testing it on both ECSC and UAH environments, consider-

ing blocks of four averaged test samples. In order to  show how

simplification jeopardizes accuracy with the aim of improving

interpretability, we have also included achieved results by  the sim-

plified system (FRBC +  S). After simplifying accuracy on training

remains almost the same while interpretability is clearly improved

since total rule length (computed as the total number of premises

in all the rules) drops dramatically. However, the improvement of

interpretability is obtained at the cost of a  huge reduction of accu-

racy regarding the test set what is  not  admissible in the context of

our application.

Fig. 13. Effect of the number of averaged samples during the estimation stage.

Table 1

Comparative results.

FRBC FRBC + S FURIA MP C4.5

ECSC

Accuracy-test (%) 87.89 76.82 78.19 83.61 68.69

Accuracy-training (%) 97.67 98.19 100  99.83 99.83

Total  rule length 837 60 39  – 72

UAH

Accuracy-test (%)  89.36 79.15 72.23 84.19 74.73

Accuracy-training (%)  99.11 99.11 99.82 100 99.64

Total  rule length 251 43 19  – 30

In  addition, for comparison purpose, we have added to Table 1

results provided by other methods implemented in Weka1 [43]:

FURIA (Fuzzy Unordered Rule Induction Algorithm developed by

Hühn and Hullermeier [16]), MP (Multilayer Perceptron), and C4.5

algorithm (Qunilan’s crisp decision trees [36]). FURIA and MP

represent alternative Soft Computing techniques while C4.5 is  a

well-known classical algorithm recognized because it provides

good interpretability-accuracy trade-offs and it is usually taken as

baseline for comparisons.

FURIA is  a  method for building Fuzzy Rule-based Classifiers

without taking care of interpretability constraints. It  generates

compact unordered set of fuzzy rules difficult to  interpret in

comparison with the linguistic rules provided by HILK, the fuzzy

modeling methodology considered in  this paper. Anyway, if we

compare the reported total rule length then it is  obvious that FURIA

provides the most compact set of rules. Notice that, we are aware

that assessing interpretability is  a controversial issue that  strongly

depends on the subjective opinion of the end-user.

On  the other hand, MP  consists in a  black-box classifier designed

as a  feed-forward artificial neural network. Notice that, we took the

default parameters (learning rate equals 0.3, momentum equals

0.2) suggested by Weka. In consequence, we build neural networks

made up  of six neurons in  the input layer corresponding to the six

input variables (one per AP), one hidden layer with seven neurons

for UAH and eleven neurons for ECSC (the number of hidden neu-

rons is computed dividing by two  the total number of inputs and

output classes), and nine (UAH) or sixteen (ECSC) output neurons

in the output layer (one for each output class). Since our output

is  categorical, all the nodes in the generated neural networks are

sigmoid.

Looking at results reported in Table 1 we observe that MP  is

affected by overfitting since it provides the highest accuracy on

training set but not regarding test set. On the contrary, our system

(FRBC) exhibits the best generalization ability regarding accuracy

on test set. Thus, we can say the proposed system is  the most robust

to  small-scale variations since the test set is made up  of thousand

of samples taken in the small-scale range.

Regarding C4.5, it provides quite compact systems but they are

not  able to cope properly with small-scale variations. C4.5  gives

very low accuracy with respect to the test sets because it is  not well

fitted to deal with the huge uncertainty attached to test samples.

Although our  localization system is  based on a topological

approach where the system output is  aimed to find out the closest

MPi reference position instead of giving absolute X–Y coordinates

like other distance-based approaches usually do, we have also

reported (just for comparison purpose) the achieved results in

terms of cumulative distribution functions (CDF) what is  very pop-

ular in  the specialized literature. Figs. 14 and 15 illustrate the

computed CDF for both ECSC and UAH test environments. Notice

that, Appendix B  gives all details about physical Euclidean dis-

1 A free software tool for data mining available at:

http://www.cs.waikato.ac.nz/ml/weka.

http://www.cs.waikato.ac.nz/ml/weka
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Fig. 14. Cumulative distribution function (ECSC).

tances among MPi  for the two test-beds. The pictures should be

interpreted as follows. Given a  distance of L meters, only misclas-

sifications involving positions MPi  and MPj  separated by  a distance

greater than L meters are taken into account when evaluating the

error rate. Please, it is worthy to mention that only the trends

are important in  the figures and not the absolute values because

the error strongly depends on the granularity of the nodes in  the

environment. The global behavior is  similar in  both scenarios. As

expected, most misclassifications correspond to the closest posi-

tions. Thus, accuracy arises as the admissible distance for counting

a position error is increased. Our system (FRBC) overwhelms all the

other methods, especially regarding distances smaller than 5 m. Of

course, as the distance increases MP  gets closer to FRBC becoming

even to be the most accurate method for larger distances (above

10m in the case of ECSC and for more than 16m in  the case of UAH).

Anyway, the difference between FRBC and MP  is  almost negligible

for large distances. In fact, all methods report high accuracy when

considering large distances, but remind that the main goal of this

experimentation was checking the robustness of the localization

method with respect to small distances.

Finally, we can discuss the goodness of the proposed system in

comparison with results reported in [30] where a WiFi +  ultrasound

POMDP navigation system equipped with a  highly accurate and
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Fig. 15. Cumulative distribution function (UAH).

robust low-level controller (WUPOMDPLLC), like the one intro-

duced in  Section 2.1,  was  able to achieve a  localization error of only

8% in the UAH environment. From Table 1,  it is easy to appreciate

how such result clearly outperforms the lowest error rate (10.64%)

obtained by the new proposed system for the same environment.

Anyway, taking into account the simplicity and generality of the

designed FRBC, a  lost smaller than 3% may  be acceptable. Notice

that, the new system is  able to estimate the robot location by means

of taking only four averaged samples while the old one required

sixty averaged samples for the test stage. As  a  result, we have

reduced dramatically the acquisition time (from 15 to 1 s) what

makes feasible the use of the new proposed system in  real-time

applications. Moreover, remind that the new proposed system can

be apply no matter the geometry of the environment under study,

yielding similar error rates (around 10%) for both ECSC and UAH.

However, it is important to  remark that our previous WUPOMD-

PLLC can not be  applied to the ECSC environment where the highly

accurate and robust low-level controller introduced in [30] was not

able to work properly. ECSC contains open areas which are  really

difficult to characterize. As a result, finding out a mathematical

model that reproduces the geometry of the whole environment is

not feasible.

5. Conclusions

In  this paper, we  have presented a  new WiFi localization system

based on an interpretable Fuzzy Rule-based Classifier (FRBC) with

the aim  of enhancing a  previous localization system which was

taking as starting point. Our work demonstrates that the designed

FRBC is  a  very useful tool and it is  especially indicated to  solve

the traditional WiFi localization problems. Moreover, the proposed

FRBC is  able to deal successfully with the small-scale variations

that characterize the WiFi signal. These variations introduce a  large

uncertainty in  the received WiFi signal level and they represent the

main noise problem in  WiFi localization systems. To conclude, the

next key points should be  remarked:

• The proposed system has been developed with a real robotic

platform and test-bed environment and then the conclusions

extracted from it have been used for successfully adapting the

system to a different test-bed and robotic platform. The results

obtained in  both experiments have been similar and we have

demonstrated the generalization of the system for unknown

environments.
• The uncertainty generated by small-scale variations has been

overcome with the proposed system and we have obtained accu-

racy close to 90% with only 4 averaged samples in  the test stage.

This yields one of the main advantages of this new system,

because taking only 4 samples in the test stage, real-time applica-

tions could be available since it is  not  too much time consuming.

It is important to remind that four samples imply spending only

one second of acquisition time while the fuzzy inference is made

in milliseconds.
• The designed system has been compared with the classical and

well-known C4.5 algorithm in two  environments. Results got for

FRBC in  both test-beds are better than C4.5 for all the cases.

Moreover, the proposed FRBC has turned up as the best one in

comparison against other Soft Computing techniques, namely

FURIA and MP.
• The proposed system is quite general and easy to  adapt to

unknown environments. First, it works properly without requir-

ing knowing the exact location of APs. Second, it achieves very

close error rates (around 10%) in two  very different environments.
• Although the new system is  slightly less accurate than the one

published in  our previous work [30] when dealing with UAH, an
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environment that is fully organized in  the form of perpendicular

corridors, it also gets good results in  other more open environ-

ments like ECSC where our previous work is not applicable.
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Appendix A. Details on  robotic platforms

In each test-bed environment, experiments have been carried

out with a different robot:

A.16. Real prototype used in the ECSC environment.

A.17. Real prototype used in the UAH environment.

• The robot used in the ECSC environment is called Sancho3. It is

shown in  Fig. A.16 and it was developed in the ECSC. This robot is

based on a  modular architecture whose first version was designed

in the Technical University of Madrid (UPM). It  has the following

configuration: Linux Debian 5.0 Lenny operating system, Orinoco

PCMCIA Silver wireless card, wireless tools v.28, two  ultrasound

sensor mounted over servos and one AXIS 213 pan-tilt-zoom

camera.
• The robotic platform used in the UAH is called BART (Basic Agent

for Robotics Tasks). This robot is  based on the 2AT platform of

Activmedia Robotics. It  is illustrated in  Fig. A.17 and it has the fol-

lowing configuration: Orinoco PCMCIA Gold wireless card, Linux

Red Hat 9.0  operating system, wireless tools v.28, a 16  ultrasound

sensor ring and a  SONY pan-tilt-zoom camera.

Appendix B. Distance among topological positions

Tables B.2 and B.3 show the distances (in meters) among the ref-

erence MPi  positions that are displayed in  Figs. 4 and 5. Remind that

such distances where used when computing the cumulative distri-

bution functions (CDF) plotted in  Figs. 14 and 15.  Please, notice

that our  localization system is based on a topological approach

so the system output yields the closer MPi  reference point (along

with a  confidence degree) but not  absolute X–Y coordinates like in

other distance-based approaches that can be found in  the literature.

Anyway, we include here the real physical distance to make feasi-

ble a quick comparison against other methods that  usually report

position errors in  the form of CDF.

Table B.2

Physical distances (measured in meters) among reference measurement points (ECSC).

MP1  MP2  MP3  MP4  MP5  MP6  MP7 MP8 MP9 MP10 MP11 MP12 MP13 MP14 MP15 MP16

MP1 0  4 10 18  21  25.5 31  36  43.5 48.2 48.5 49.82 6.93 16.7 24.47 46.82

MP2  4 0 6 14  17  21.5 27  32  39.5 44.2 44.54 45.96 4.9 12.92 20.57 42.85

MP3  10 6 0 8 11  15.5 21  26  33.5 38.2 38.59 40.22 6.93 7.68 14.8 36.91

MP4  18 14  8 0 3 7.5 13  18  25.5 30.2 30.7 32.72 13.86 5.2 7.68 29.02

MP5  21 17  11  3 0 4.5 10 15  22.5 27.2 27.75 29.98 16.7 6.93 5.66 26.09

MP6 25.5 21.5 15.5 7.5 4.5 0 5.5 10.5 18  22.7 23.36 25.96 21.05  10.64 5.03 21.71

MP7  31 27  21  13  10 5.5 0 5 12.5 17.2 18.06 21.32 26.44 15.75 8.49 16.45

MP8  36 32  26  18  15  10.5 5 0  7.5 12.2 13.38 17.54 31.37 20.57 12.92 11.85

MP9  43.5 39.5 33.5 25.5 22.5 18  12.5 7.5 0  4.7 7.23 13.45 38.8 27.92 20.08 6.26

MP10  48.2 44.2 38.2 30.2 27.2 22.7 17.2 12.2 4.7 0 5.5 12.6 43.46 32.56 24.67 5.76

MP11  48.5 44.54 38.59 30.7 27.75 23.36 18.06 13.38 7.23 5.5 0  7.1 44.41 33.81 26.3 11.13

MP12 49.82 45.96 40.22 32.72 29.98 25.96 21.32 17.54 13.45 12.6 7.1 0  46.57 36.6 29.81 18.18

MP13 6.93 4.9 6.93 13.86 16.7 21.05 26.44 31.37 38.8 43.46 44.41 46.57 0 11 19  41.51

MP14 16.7 12.92 7.68 5.2 6.93 10.64 15.75 20.57 27.92 32.56 33.81 36.6 11  0  8 30.51

MP15 24.47 20.57 14.8 7.68 5.66 5.03 8.49 12.92 20.08 24.67 26.3 29.81 19  8 0  22.51

MP16 46.82 42.85 36.91 29.02 26.09 21.71 16.45 11.85 6.26 5.76 11.13 18.18 41.51 30.51 22.51 0
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Table  B.3

Physical distances (measured in meters) among reference measurement points (UAH).

MP1 MP2  MP3  MP4 MP5  MP6 MP7  MP8  MP9

MP1  0 7.2  14.8 17.2 18.92 22.95 15.2 17.97 21.07

MP2 7.2  0 7.6 10 12.74 18.19 16.94 15.2 16.9

MP3 14.8 7.6  0 2.4  8.25 15.38 21.42 17.08 15.2

MP4  17.2 10 2.4 0 7.9 15.2 23.17 18.3 15.42

MP5 18.92 12.74 8.25 7.9  0 7.3  18.96 12.54 7.74

MP6  22.95 18.19 15.38 15.2 7.3 0 17.5 10.2 2.6

MP7  15.2 16.94 21.42 23.17 18.96 17.5 0 7.3  9.9

MP8  17.97 15.2 17.08 18.3 12.54 10.2 7.3 0 7.6

MP9 21.07 16.9 15.2 15.42 7.74 2.6  9.9 7.6  0
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