
Citation: Turaka, S.; Bandaru, A.K.

Enhancement in Mechanical

Properties of Glass/Epoxy

Composites by a Hybrid

Combination of Multi-Walled Carbon

Nanotubes and Graphene

Nanoparticles. Polymers 2023, 15,

1189. https://doi.org/10.3390/

polym15051189

Academic Editor: Raluca-Nicoleta

Darie-Nita

Received: 16 January 2023

Revised: 13 February 2023

Accepted: 14 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Enhancement in Mechanical Properties of Glass/Epoxy
Composites by a Hybrid Combination of Multi-Walled Carbon
Nanotubes and Graphene Nanoparticles
Seshaiah Turaka 1 and Aswani Kumar Bandaru 2,*

1 Department of Mechanical Engineering, QIS College of Engineering and Technology, Ongole 523002, India
2 Bernal Institute, School of Engineering, University of Limerick, V94 T9PX Limerick, Ireland
* Correspondence: aswani006@gmail.com

Abstract: In this work, an attempt was made to improve the mechanical performance of glass fibre-
reinforced polymer composites by adding multi-walled carbon nanotubes (MWCNT) and graphene
nanoparticles (GNP) and their hybrid combination at different weight fractions (0.1 to 0.3%). Com-
posite laminates with three different configurations (unidirectional [0◦]12, cross-ply [0◦/90◦]3s, and
angle-ply [±45◦]3s) were manufactured using the compression moulding method. Characterisation
tests such as quasistatic compression, flexural, and interlaminar shear strength properties were
carried out per ASTM standards. Failure analysis was carried out through optical and scanning
electron microscopy (SEM). The experimental results showed a substantial enhancement with the
0.2% hybrid combination of MWCNTs, and GNPs showed 80% and 74% in the compressive strength
and compressive modulus, respectively. Similarly, flexural strength, modulus, and interlaminar shear
strength (ILSS) increased by 62%, 205%, and 298%, respectively, compared to neat glass/epoxy resin
composite. Beyond the 0.2% of fillers, the properties started to degrade due to the agglomeration of
MWCNTs/GNPs. The order of layups per mechanical performance was UD, followed by CP and AP.

Keywords: glass; epoxy; carbon nanotubes; graphene; flexural; interlaminar shear

1. Introduction

Fibre-reinforced polymer matrix composites have been widely used in applications
such as structural, aerospace, naval, wind, high-pressure pipes, etc. Glass fibre is one of
the extensively used reinforcements due to its low cost, lightweight, high strength under
static/dynamic loads, and because it is less corrosive [1]. For high-strength applications,
the mechanical characteristics of the conventional laminated structures can be increased by
adding graphene (GNP) [2–5] and inorganic or organic fillers to the epoxy resin [6,7]. Nu-
merous studies revealed that adding nano- and micro-scale particles enhance the properties
and effectiveness of composites [8–13]. Several methods have used filler materials such as
nanoclay, nanorods, nanodiamonds, single/multi-walled carbon nanotubes (MWCNT) etc.,
to alter the properties of composite materials [14–22]. The uniform distribution of nanoclay
into the epoxy resin increases the fatigue strength and modulus of elasticity while slightly
decreasing the tensile strength with the increase in nanoclay beyond a certain percent-
age [23,24]. Dispersing small quantities of carbon nanotubes and nanodiamonds in neat
polyester resin increases the mechanical properties of the composites [25–27]. Prabhakaran
et al. [28] also reported improvements in mechanical properties such as compression, shear,
bending, and toughness of unstitched plain weave/polyester resin with carbon and biaxial
non-crimp/polyester composites over neat polyester resin-based composites [28]. Adding
3–8% nanoparticles, i.e., MWCNT/carbon nanofillers (CNF), into the neat epoxy matrix
enhanced the mechanical properties. It was found that 5% of MWCNT/CNF increased the
fracture toughness, flexural strength, and electrical conductivity by 18%, 28%, and 22%,
respectively, in hybrid nanocomposites [29].
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The manufacturing processes used to fabricate the laminated composite and the ad-
ditions of nanofillers influence the mechanical properties. Guo et al. [30] reported that
using a mechanical shear mixer followed by a sonicator with in situ polymerisation for
carbon/vinyl ester composites with nanoclay improved the mechanical properties and
interface. Mechanical properties can also be enhanced through the uniform distribution
of nanoparticles in the virgin polymeric epoxy matrix using acoustic ultrasonication [31].
Infusion of AR10 and AR50 CNFs improved the specific strength, specific modulus, and
flexural strength of two-phase and three-phase carbon fibre/epoxy composites [32]. The
dispersion of Al2O3 nanoparticles within the epoxy also showed little influence on the
mechanical properties [33]. The single-walled carbon nanotubes, double-walled carbon
nanotubes, and MWCNTs with epoxy composites showed significant improvement in
mechanical properties with 0.5% fillers [34]. The influence of hybrid kenaf-aramid/epoxy
composite with CNFs for defence applications exhibited increased tensile strength and
impact loads [35]. The strength, stiffness, and toughness of particulate nanocomposites can
be enhanced by the appropriate dispersion of CNTs through acoustic cavitation [36]. The
intertwined E-glass/polyester nanocomposites with 0.1–0.4% CNFs significantly increased
the flexural and elastic modulus compared to the conventional E-glass/polyester compos-
ite [37]. The aluminium alloy reinforced with particulate nano Al2O3 revealed significant
development in mechanical properties [38]. Dispersion of micro glass fibres at 0.1, 0.2, and
0.3% to the geopolymer composites improved the compressive strength, Young’s modulus,
fracture toughness, and rigidity [39]. Using a high-speed mechanical mixer to disperse
polypropylene to glass fabric improved the flexural and impact strength [40], Chatterjee
et al. [41] reported that the hybrid combination of GNP and MWCNT improved fracture
toughness and the flexural modulus by 82% and 9% for 2% and 1% of GNPs. Recently,
Zhang et al. [42] reported that the hybrid combination of MWCNT and GNPs enhanced the
quasi-static fracture toughness and dynamic compressive strength by 75% and 82%, respec-
tively. However, these properties were improved when 0.5% fillers were added. Beyond
this percentage, the properties started decreasing. In addition to the mechanical properties,
other properties such as physiochemical, heat release rate, and electrical properties were
improved by CNT, MWCNT and GNP [43–47]. There are other authors [48,49] who studied
the bending and in-plane compressive properties of self-sensing sandwich structures using
graphene-coated glass fibre for aerostructures [48]. The reduced graphene oxide (rGO)
coated on glass fabric enhanced the dominant loading modes experienced by composite
aerostructures at various load rates. Table 1 presents the summary of various nanofillers
and corresponding improvements in properties.

The above-mentioned literature reported that the composite’s performance could
be improved with micro and nanofillers at specific weight fractions. Most of the stud-
ies concentrated on using either MWCNT, GNP, or nanoclay. These studies proved that
adding these nanofillers improves composites’ mechanical performance. However, very
few studies reported the hybridisation of nanofillers with a combination of MWCNT and
GNP [41,42,47]. These studies were limited to static fracture toughness, dynamic com-
pressive strength, and electrical properties. Therefore, this study presents a compressive
report on the GFRP composites filled with MWCNT, GNP, and a hybrid combination of
MWCNT + GNP at different weight percentages. Composite laminates with different
layups, such as unidirectional (UD), cross-ply (CP), and angle ply (AP), were manufactured.
During manufacturing, MWCNT and GNP were added to the epoxy resin at different
wt%, explained in Section 2. The quasistatic compression, flexural, and interlaminar shear
strength (ILSS) tests were performed. Failure analysis was performed using optical and
scanning electron microscopy (SEM) (Section 3).
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Table 1. Nano additives and their influence on improving the mechanical properties.

Ref. No.
CNF/Nano Additives Strength Properties

AMNC MWCNT CNF NC SiC Tensile Compressive Flexural Shear Fatigue

[16] X X
[20] X X X
[23] X X
[25] X X X
[26] X X X X
[27] X X
[30] X X
[31] X X
[32] X X X
[33] X X
[34] X X
[36] X X
[38] X X
[44] X X X
[45] X X
[50] X X X X
[51] X X X
[52] X X

2. Materials and Methods
2.1. Materials

Unidirectional glass fibres (200 gsm), multi-walled carbon nanotubes (MWCNTs) and
graphene nanoparticles (GNPs) with a 5–10 nm average diameter were obtained from
Arun Fabrics Pvt. Ltd. and United Nano Tech Innovations Pvt. Ltd., Bangalore, India,
respectively. The epoxy resin (LY-556) and styrene (hardener) were supplied by Tirven
Industries Pvt. Ltd., Hyderabad, India. The physical and mechanical properties of the resin
and nanofillers are shown in Table 2.

Table 2. Physical and mechanical properties of nanofillers and LY-556 epoxy.

Type of Material Property Value

Graphene (GNP)

Purity >99%
Thickness 5–10 nm

Length 5–10 microns
Surface Area 190 m2/g

Thermal Conductivity 3000 w/m-K
Tensile Strength ~1100 GPa
Tensile Modulus >1000 GPa

Electrical Conductivity 107 Siemens/m

Multiwalled Carbon
nanotubes (MWCNTs)

Diameter 12–15 nm
Length 3–10 microns
Purity >97%

Surface Area 250–270 m2/g
Tensile Strength 30~180 GPa

Thermal Conductivity 6000 w/m-k
Electrical Conductivity 6000 S/cm

Modulus 1~2 TPa

LY-556 Epoxy matrix Viscosity at 25 ◦C 10,000–12,000 mPa s
Density at 25 ◦C 1.15–1.20 g/cm3

2.2. Manufacturing of Nanocomposites

Araldite (LY-556) 55%, hardener (HY-951) 49%, and accelerator (DY-080) 0.28% were
used to prepare epoxy resin. MWCNT/GNP fillers were used in different weight percent-
ages varying from 0.1 to 0.3. First, MWCNT, GNP, and MWCNT + GNP were dispersed
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as per the above-mentioned weight percentages. The suspension of epoxy and nanofillers
was mixed mechanically using a three roll mill (EXAKT 80E Technologies Germany), which
introduced very high shear forces (up to 200,000/s) throughout the suspension. After
the dispersion, the hardener and accelerator were added to a vacuum dissolver to avoid
trapped air in the suspension. Then, the mixture was placed in a vacuum chamber for
20 min to eliminate the bubbles introduced during the rolling process. The same process
was repeated for all the weight percentages.

Both conventional (MWCNT, GNP) and hybrid (MWCNT + GNP) composites were
manufactured by the compression moulding process. A schematic of the manufacturing
process is shown in Figure 1. The vacuum of one atmosphere was maintained for about
12–15 h until the end of the curing process at room temperature to constrain the void
formation through polymerisation. A mechanical convection oven was used for post-
curing at 110 ◦C for 3 h. Three different configurations of fibres were used: unidirectional
(UD), cross-ply (CP), and angle-ply (AP). The stacking sequence of these laminates is shown
in Figure 2.
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2.3. Mechanical Characterisation

The influence of nanofillers with the homogenous and hybrid combination on the
mechanical performance of GFRP composites was assessed through the quasistatic com-
pressive, flexural, and interlaminar shear (ILSS) tests. Five samples were tested, and their
average values were presented.
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2.3.1. Quasistatic Compression

Quasistatic compression tests through the thickness direction were performed as
per ASTM D3410 using Instron 785, a universal testing machine (UTM), controlled by a
hydraulic servo motor. The sample was tested with a 1.27 mm/min displacement rate, as
shown in Figure 3. All samples were sanded and polished, as per the standards to uphold
uniformly distributed compressive loading.
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2.3.2. Flexural Test

Three-point bend tests were performed to analyse the flexural behaviour of the lami-
nates, as per ASTM D7264. The test was performed on an Instron 785 UTM with a 20 kN
load cell, with a displacement rate of 2.0 mm/min under room temperature, as shown in
Figure 4. From the slope of the stress–strain curve, the flexural modulus was calculated. The
specimens were prepared to maintain a span-to-thickness ratio of 32:1. The flexural stress,
strain, and flexural modulus were calculated using the equations given in ASTM D7264.
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2.3.3. ILSS Test

The ILSS test was performed as per the ASTM D2344 standard, as shown in Figure 5.
The specimen was placed on a horizontal shear test fixture and applied transverse loading
was at a rate of 1.27 mm/min until the failure of the specimen. The tests were performed
on an Instron 785 UTM with a 20 kN load cell. The upper roller diameter was 10 mm and
the diameter of the lower rollers was 5 mm.
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2.3.4. Failure Analysis

Optical microscopy was used to identify the failure of the samples at the macro scale.
The SEM micrographs of failed laminates were investigated through SEM using a JEOL
JSM 5800. For easier understanding, the morphology of fractured samples was studied
using higher-resolution SEM micrographs. The samples are as per the standards and
coated accordingly.

3. Results and Discussion

The following sections presented the quasistatic compression, flexural, and ILSS prop-
erties of GE composites filled with different MWCNT, GNP, and hybrid combinations of
MWCNT + GNP. The influence of nanofillers on the GE composites with different fibre ori-
entations such as UD, CP, and AP was presented. In the case of failure analysis, due to a huge
number of figures, only the failure of UD laminates was presented in the main manuscript.
The SEM failure of CP and AP laminates was provided as a supplementary file.

3.1. Dispersion of Nanofillers

The dispersion of nanofillers in the matrix is shown in Figure 6 through SEM micro-
graphs. Micrographs in Figure 6g–i with 0.2% MWCNT, 0.2% GNP, and 0.2% (MWCNT +
GNP) dispersion showed good and uniform dispersion with no noticeable agglomeration.
The MWCNT and GNP fillers interlocked and entangled with the polymer chains of the
resin; some MWCNT and GNP were broken in a brittle manner and pulled out at the
ends of the surface. The 0.3% MWCNT and GNP fillers showed agglomeration in the
solution, which caused the van der Waals interactions. Agglomeration of MWCNT and
GNP reduces the strength of the nanocomposites by the stress concentration effect. To
overcome the attraction of van der Waals forces, many researchers suggested maintaining
proper ultrasonicator and high-speed shear mixing [52]. However, optimum loading and
uniform dispersion of nanofillers are key input parameters to promote interfacial bonding
between CNF matrix interfaces to carry the efficient load between the two constituents of
nanofillers [36].
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3.2. Quasistatic Compression Properties

The load deflection results data were logged and converted to the stress–strain plot by
dividing the load by the original cross-sectional area of the specimen and deflection by the
thickness of the specimen. The modulus was calculated from the proportional limit zone
slope of the stress–strain curve. The quasistatic compression stress–strain response of UD,
CP, and AP laminates with different weight fractions of nanofillers are shown in Figure 7.

From the compressive stress–strain response (Figure 7a–c), it was found that the
incorporation of fillers in hybrid form (MWCNT + GNP) enhanced the strength and
modulus of the UD laminate. Depending on the layup of the composite, the response was
different for different composites. After reaching the maximum stress, the samples failed
in all the cases in all the composites. Brittle failure was observed in each type of laminate,
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and no obvious yield point was found. There was a slight improvement in the strain at the
peak stress due to the addition of hybrid nanofillers. The 0.2% (MWCNT + GNP) laminate
showed the best compressive stress and modulus improvement. The combination of
MWCNT + GNP provided resistance against crack propagation. The addition of nanofillers
reduced the voids and improved the strength and modulus of the laminates. However, the
percentage of nanofillers added plays a role in deciding the interfacial strength between the
matrix and fibre. From 0.1% to 0.2% addition of the nanofillers, the response was improved
with the load. However, beyond 0.2% of the nanofillers, i.e., at 0.3%, the response was
decreased due to possible agglomeration of filler materials.
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Figure 8 compares GE’s compressive strength, modulus, and nanocomposites with dif-
ferent layups. From the comparison, it was understandable that the addition of nanofillers
significantly enhanced the compressive strength and modulus. In the case of 0.1% and
0.2% filled MWCNTs, the compressive strength was increased by 17–362%, 84–117%, and
39%, respectively, for UD, CP, and AP laminates. Similarly, the addition of 0.1–0.2% GNP,
86–499%, 104–158%, and 83–145% led to an increase in compressive strength observed
for UD, CP, and AP laminates, respectively. However, the hybrid combination of 0.2%
(MWCNT + GNP) showed superior improvement in compressive strength by 510%, 216%,
and 205%, respectively, for UD, CP, and AP laminates. Beyond 0.2%, i.e., at 0.3% addi-
tion of the nanofillers, the properties were degraded due to agglomeration. Hence, the
hybrid combination of 0.2% (MWCNT + GNP) significantly improved GE composites’
compressive properties. The summarised quasistatic compressive properties of GE and its
nanocomposites with UD, CP, and AP configurations are given in Table 3.

Table 3. Compressive properties of UD, CP, and AP nanocomposites.

Composite Compressive Strength (MPa) Compressive Modulus (GPa)

UD CP AP UD CP AP

GE 14.65 ± 5.12 12.45 ± 4.02 4.64 ± 2.13 10.27 ± 0.41 9.16 ± 0.71 4.65 ± 0.23

GE + 0.1% MWCNT 17.21 ± 2.47 22.89 ± 1.54 2.33 ± 0.23 7.37 ± 2.31 10.73 ± 0.22 1.15 ± 0.82
GE + 0.1% GNP 27.24 ± 9.33 25.45 ± 1.51 8.49 ± 2.43 12.46 ± 1.43 12.61 ± 3.11 2.38 ± 1.61

GE + 0.1% (MWCNT + GNP) 85.30 ± 18.21 30.07 ± 3.53 8.68 ± 6.21 14.51 ± 1.48 23.21 ± 2.71 2.65 ± 1.82

GE + 0.2% MWCNT 67.71 ± 5.21 27.07 ± 2.61 6.46 ± 2.72 13.14 ± 1.41 9.46 ± 2.43 0.94 ± 0.21
GE + 0.2%GNP 87.80 ± 0.55 32.11 ± 2.41 11.35 ± 2.82 14.27 ± 4.22 20.91 ± 3.42 1.75 ± 0.28

GE + 0.2% (MWCNT + GNP) 89.35 ± 18.21 39.34 ± 5.11 14.16 ± 2.61 18.33 ± 3.6 22.09 ± 5.12 5.53 ± 3.11

GE + 0.3% MWCNT 24.36 ± 2.62 21.34 ± 3.14 5.85 ± 2.43 8.11 ± 0.79 6.61 ± 1.22 1.32 ± 0.42
GE + 0.3% GNP 67.78 ± 37.6 26.01 ± 4.42 9.48 ± 3.63 12.52 ± 1.72 18.91 ± 2.84 2.53 ± 0.91

GE + 0.3% (MWCNT + GNP) 80.91 ± 21.32 30.62 ± 4.22 10.16 ± 2.62 12.8 ± 6.11 23.16 ± 3.12 2.85 ± 0.16
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The compressive failure in tested samples is shown in Figure 9 at 20× magnification.
Pure GE (Figure 9a) failed due to delamination and fibre failure. In the case of 0.1% of
fillers, the delamination was reduced, but fibre failure was evident in all samples. As the
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percentage of fillers increased from 0.1 to 0.3, the reduction in failure was insignificant
at the macroscopic level. Typically observed failure modes were matrix cracking, fibre
kinking, delamination, and fibre breakage. The hybrid combination of MWCNT and GNP
reduced the delamination compared to the virgin GE sample. In contrast, matrix cracking
and delamination were mostly observed in the 0.3% MWCNT and GNP-filled individual
neat glass epoxy composites. The dispersion process could not break the agglomeration of
the composites with 0.3% MWCNT and GNP composites.
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Figure 9. Compressive failure of GE and its nanocomposites (UD).

3.3. Flexural Properties

The flexural stress–strain response for the neat UD, CP, and AP laminates with variable
weight fractions of nanofillers is shown in Figure 10. Up to a strain of almost 0.2%, the
response of all composites was similar, except for the difference in slopes. The flexural
stress increased in all composites up to the first drop in the load, beyond which plastic
deformation occurred. After the elastic limit, damage evolution varied according to the
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constituents of the laminates. In Figure 10a–c, it was observed that the UD laminate showed
superior flexural performance over CP and AP samples. The response showed the peak
stress of the specimen with substantial nonlinear deformation. The flexural performance
response was improved from the neat laminate to laminates with nanofillers, irrespective
of their stacking sequence.
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The flexural response showed a similar trend in the individual and combined effect
of MWCNT and GNP, which increased the flexural strength and flexural modulus in all
GE composites, as shown in Figure 11. The flexural strength of UD, CP, and AP laminates
was increased by 39–53%, 51–57%, and 25–37% with the addition of 0.1–0.2% MWCNTs.
Additionally, adding 0.1–0.2% GNP increased the flexural strength by 35–54%, 52–69%,
and 18–37% for UD, CP, and AP laminates, respectively. The hybrid combination of
0.1–0.2% (MWCNT + GNP) exhibited 39–62%, 51–80%, and 28–49% higher flexural strength
for UD, CP, and AP laminates, respectively. The improvement in flexural properties of
0.2% (MWCNT + GNP) filled GE-CP loading composites could be attributed to the high
mechanical properties and an improved fibre/matrix interface bonding due to the addition
of 0.2% (MWCNT + GNP) to the epoxy. However, properties were increased only up
to 0.2% (MWCNT + GNP), and a further increase in percentage showed degradation of
properties. This may be due to the agglomeration of MWCNT + GNP in the epoxy matrix
at higher concentrations, as confirmed by the SEM images. The neat GE composite, due to
the addition of MWCNT, GNP, and MWCNT + GNP, had a more significant aspect ratio,
leading to the prevention of crack initiation and dissemination in the epoxy matrix. The
combination of 0.2% (MWCNT + GNP) displayed the highest flexural strength over the
other combinations, as shown in Figure 11a. Table 4 shows the flexural properties of UD,
CP, and AP laminates with different wt.% of nanofillers.
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Figure 11. Flexural properties of UD, CP, and AP composites: (a) flexural strength and (b) flexu-
ral modulus.

Table 4. Flexural properties of neat and nanofillers reinforced UD, CP, and AP nanocomposites.

Composites

UD CP AP

Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

GE 431.27 ± 8.10 9.75 ± 0.81 393.25 ± 6.37 3.70 ± 0.72 264.53 ± 5.36 4.66 ± 1.41

GE + 0.1% MWCNT 597.92 ± 9.40 21.54 ± 1.14 594.83 ± 15.30 6.29 ± 0.54 361.92 ± 6.02 6.64 ± 2.22
GE + 0.1% GNP 583.78 ± 9.90 17.36 ± 0.11 598.09 ± 8.25 7.25 ± 1.22 312.43 ± 8.40 6.83 ± 1.84

GE + 0.1% (MWCNT + GNP) 597.96 ± 9.10 24.64 ± 2.50 592.41 ± 7.21 8.50 ± 2.81 338.73 ± 9.61 7.70 ± 1.02

GE + 0.2% MWCNT 669.60 ± 7.10 25.21 ± 0.12 617.36 ± 4.77 8.77 ± 2.44 330.93 ± 7.84 6.90 ± 1.31
GE + 0.2% GNP 666.13 ± 9.20 23.55 ± 0. 5 665.49 ± 3.64 9.80 ± 3.52 361.39 ± 4.65 7.82 ± 2.41

GE + 0.2% (MWCNT + GNP) 697.20 ± 9.10 29.81 ± 0.44 709.67 ± 9.34 10.32 ± 3.92 394.93 ± 9.58 7.98 ± 1.94

GE + 0.3% MWCNT 608.55 ± 9.80 17.55 ± 1.82 554.30 ± 5.08 7.23± 1.62 363.50 ± 3.72 7.89 ± 1.52
GE + 0.3% GNP 587.16 ± 5.10 14.13 ± 0.41 572.48 ± 5.75 7.05± 1.43 302.49 ± 6.80 6.77 ± 1.42

GE + 0.3% (MWCNT + GNP) 379.25 ± 8.10 10.80 ± 0.44 354.99 ± 3.04 4.70± 1.31 317.73 ± 6.47 7.66 ± 1.51

Figure 12 shows the flexural failure of samples through optical micrographs. Although
the damage initiation occurred on the compression side (loading side), the failure on the
tension side was less evident, as the specimen showed almost negligible deformation. In
all the laminates, on the compression side (top surface), failure was due to fibre failure,
delamination, matrix cracking, and fibre kinking. The reported failure modes were based
on observing failure in the through thickness direction of the sample. There could be other
failure modes that might have occurred earlier than those identified. The identified failure
modes are highlighted in Figure 12.
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Figure 12. Flexural failure of GE and its nanocomposites (UD).

The SEM micrographs of flexural failure for the UD samples with 0.1%, 0.2%, and
0.3% nanofillers are shown in Figure 13a–j. Pure GE (Figure 13a) showed fibre cuts with
delamination, visible matrix cracks at multiple locations, and matrix ploughing. In the
case of GE samples filled with 0.1% fillers (Figure 13b–d), delamination, matrix ploughing,
and fibre cuts were typical failure modes. However, shear cracks were observed only in
samples filled with MWCNT, i.e., in GE + MWCNT and GE + 0.1% (MWCNT + GNP). This
might indicate that adding GNP particles prevent crack propagation under flexural loading.
The micrographs of GE filled with 0.2% and 0.3% fillers (Figure 13e–g) showed excellent
dispersion of nanofillers. Some of the MWCNT and GNP were broken in a brittle manner,
and some were pulled out from the surface of the GE. Micrographs in Figure 13c,f,i showed
an excellent bridging effect in the interfacial region of the glass fibre, nanofillers, and epoxy
matrix. Due to the increase in the wt.% of nanofillers, crack propagation was prevented,
showing improved performance. Finally, from these micrographs, a combined effect of
0.2% MWCNT + GNP nanofillers suggested with both resin and fibre suggested a better
improvement in the flexural performance of the nanocomposites.



Polymers 2023, 15, 1189 16 of 23

Figure 13. SEM micrographs of flexural failure in GE and its nanocomposites (UD).

3.4. ILSS Properties

The ILSS response of neat GE laminates and their nanocomposites is shown in
Figure 14. In Figure 14, it was evident that the addition of MWCNT and GNP fillers
improves the ILSS response of GE composites. However, the response was changed based
on the constituents of the composites and their configuration. Among all the configurations,
UD composites exhibited better performance than the CP and AP composites. In the case
of pure GE composite, the response increased linearly and reached maximum stress with
strain and then failed abruptly, indicating the brittle nature of the sample. When nanofillers
were added, the stress increased linearly almost halfway and then exhibited nonlinearity,
indicating plastic deformation. Beyond the nonlinearity, the response reached a peak load
and dropped suddenly. The ILSS response increased up to a filler percentage of 0.2%;
beyond this, it decreased. The ILSS response of CP configurations with nanofillers was
better than the UD and AP composites.
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Figure 15 shows the ILSS values of GE composites with different nanofillers and
configurations. The ILSS values were compared in this figure. Adding 0.1–0.2% of MWCNT
and GNP separately improved the ILSS of UD, CP, and AP laminates by 21–160%, 41–165%,
and 18–131%, respectively. The hybrid combination (MWCNT + GNP) greatly enhanced the
ILSS of UD, CP, and AP by 142–298%, 179–206%, and 90–181%, respectively. The decrease
in ILSS at 0.3% was due to the agglomeration of nanofillers. Table 5 shows the ILSS values
of UD, CP, and AP laminates with different wt.% of nanofillers.
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Figure 15. Comparison of ILSS for different laminates.

Table 5. ILSS of GE and its nanocomposites.

ILSS (MPa)

Composites UD CP AP

GE 21.56 ± 1.12 19.90 ± 1.18 11.77 ± 0.94

GE + 0.1% MWCNT 26.13 ± 1.32 27.88 ± 1.68 13.85 ± 1.20
GE + 0.1% GNP 27.13 ± 2.12 31.12 ± 1.76 15.30 ± 0.70

GE + 0.1% (MWCNT + GNP) 52.09 ± 1.13 55.61 ± 1.80 22.40 ± 1.55

GE + 0.2% MWCNT 40.60 ± 2.03 40.13 ± 2.35 22.69 ± 1.19
GE + 0.2% GNP 56.07 ± 2.00 52.72 ± 2.32 27.16 ± 1.89

GE + 0.2% (MWCNT + GNP) 85.83 ± 1.86 60.87 ± 1.26 33.04 ± 1.20

GE + 0.3% MWCNT 37.74 ± 1.13 29.45 ± 2.09 11.62 ± 1.22
GE + 0.3% GNP 49.18 ± 2.10 36.73 ± 2.62 12.5 ± 0.48

GE + 0.3% (MWCNT + GNP) 71.61 ± 1.93 55.61 ± 1.75 20.72 ± 1.68

The interlaminar shear failure of neat and nanocomposites are shown in Figure 16,
using optical micrographs. The GE composite (Figure 16a) clearly showed fibre failure
and delamination. However, in 0.1 and 0.2% GE nanocomposites (Figure 16b–g), there
was no evidence of delamination, which justifies the increased ILSS value. In the case of
GE nanocomposites with 0.1–0.2% of MWCNT and GNP nanofillers, minor delamination
with fibre failure was evident. However, the failure modes were insignificant in 0.1–0.2%
(MWCNT + GNP) laminates.
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The interlaminar shear failure of GE and its nanocomposites is shown in Figure 17
through SEM micrographs. In the neat GE sample (Figure 17a), the matrix fracture surface
was even, and a small number of cracks were identified at the fibre matrix interface. The
poor interface between the fibre and matrix was due to the void’s presence and the resin’s
non-uniform distribution. In the case of samples with 0.1% nanofillers (Figure 17b–d),
fibre cuts, delamination, and matrix ploughing were observed. In addition, samples
with MWCNT fillers (Figure 17b) exhibited cracks in different directions at multiple lo-
cations. As the filler percentage increased (Figure 17e–j), the failure in the samples was
reduced due to better interfacial bonding, which improved the ILSS values. The uniformly
distributed nanofillers were observed but randomly placed in the matrix. The bonding
between fibre surfaces with resin significantly improved plastic deformation due to the
addition of nanofillers, which subsequently enhanced the mechanical properties. These
nanofillers strengthen the elements that act as reinforcement and increase load carrying
capacity of the composite. The sample with a hybrid combination of MWCNT + GNP with
glass exhibited a bridging effect between fibre and resin, which enhanced the ILSS of the
composite structures.
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4. Conclusions

Nanofillers have recently attracted attraction as additives to composite laminates to
enhance their mechanical properties. In the current investigation, MWCNTs and GNP
nanofillers were used independently and as a hybrid combination at different weight
fractions (0.1–0.3%). The laminates were prepared with different configurations and tests
were conducted per ASTM standards. Based on the outcomes, the following conclusions
were made:

• The addition of MWCNT, GNP, and a hybrid combination of these enhanced the com-
pressive strength by 17–499%, 84–158%, and 39–145%, respectively, for UD, CP, and AP
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laminates. The configuration hierarchy for compressive strength was UD > CP > AP
for all nanofill combinations.

• The addition of MWCNT and GNP increased the flexural strength of UD, CP, and
AP laminates by 39–54%, 51–69%, and 37%, respectively. The hybrid combination of
0.1–0.2% (MWCNT + GNP) exhibited superior flexural strength by 39–62%, 51–80%,
and 28–49% higher flexural strength for UD, CP, and AP laminates, respectively.

• MWCNT and GNP combined enhanced the ILSS of UD, CP, and AP laminates
142–298%, 179–206%, and 90–181%, respectively.

• The weight fraction of the nanoadditive played a significant role in the performance
enhancement, and a 0.2% weight fraction was found to be optimal for strong bonding
between the fibres.

• The combination of MWCNT + GNP yielded better performance over the independent
constituents at a 0.2% weight fraction. It found better interfacial bonding due to the
combined birding effect.

• Morphological (SEM and optical microscopy) studies revealed the bridging effect of
MWCNT. GNP promoted good adhesion between the glass fibre and matrix by modi-
fying the matrix adhesive properties, and hence properties of the composite increased.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15051189/s1. The supplementary file presents the flexural
and interlaminar shear failure of CP and AP laminates through SEM images. Figure S1: Flexural
failure of GE and its nanocomposites (CP). Figure S2: Flexural failure of GE and its nanocomposites
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