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Abstract

Background: Ribonucleic acid (RNA) molecules play important roles in many biological processes including gene

expression and regulation. Their secondary structures are crucial for the RNA functionality, and the prediction of

the secondary structures is widely studied. Our previous research shows that cutting long sequences into shorter

chunks, predicting secondary structures of the chunks independently using thermodynamic methods, and

reconstructing the entire secondary structure from the predicted chunk structures can yield better accuracy than

predicting the secondary structure using the RNA sequence as a whole. The chunking, prediction, and

reconstruction processes can use different methods and parameters, some of which produce more accurate

predictions than others. In this paper, we study the prediction accuracy and efficiency of three different chunking

methods using seven popular secondary structure prediction programs that apply to two datasets of RNA with

known secondary structures, which include both pseudoknotted and non-pseudoknotted sequences, as well as a

family of viral genome RNAs whose structures have not been predicted before. Our modularized MapReduce

framework based on Hadoop allows us to study the problem in a parallel and robust environment.

Results: On average, the maximum accuracy retention values are larger than one for our chunking methods and

the seven prediction programs over 50 non-pseudoknotted sequences, meaning that the secondary structure

predicted using chunking is more similar to the real structure than the secondary structure predicted by using the

whole sequence. We observe similar results for the 23 pseudoknotted sequences, except for the NUPACK program

using the centered chunking method. The performance analysis for 14 long RNA sequences from the Nodaviridae

virus family outlines how the coarse-grained mapping of chunking and predictions in the MapReduce framework

exhibits shorter turnaround times for short RNA sequences. However, as the lengths of the RNA sequences

increase, the fine-grained mapping can surpass the coarse-grained mapping in performance.

Conclusions: By using our MapReduce framework together with statistical analysis on the accuracy retention

results, we observe how the inversion-based chunking methods can outperform predictions using the whole

sequence. Our chunk-based approach also enables us to predict secondary structures for very long RNA sequences,

which is not feasible with traditional methods alone.
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Background

RNA molecules

Ribonucleic acid (RNA) is made up of four types of

nucleotide bases: adenine (A), cytosine (C), guanine (G),

and uracil (U). A sequence of these bases is strung

together to form a single-stranded RNA molecule. RNA

plays important roles in many biological processes includ-

ing gene expression and regulation. RNA molecules vary

greatly in size, ranging from nineteen nucleotide bases in

microRNAs [1] to long polymers of over 30,000 bases in

complete viral genomes [2]. Although an RNA molecule is

a linear polymer, it tends to fold back on itself to form a

3-dimensional (3D) functional structure, mostly by pairing

complementary bases. Among the four nucleotide bases, C

and G form complementary base pairs by hydrogen bond-

ing, as do A and U; in RNA (but not DNA), G can also

base pair with U residues. The overall stability of an RNA

structure element is determined by the “minimal free

energy” defined as the amount of energy it would take to

completely unpair all of the base pairs that hold it together

(e.g., by denaturing it with heat).

The 3D structure of an RNA molecule is often the key

to its function. Because of the instability of RNA mole-

cules, experimental determination of their precise 3D

structures is a time-consuming and rather costly process.

However, useful information about the molecule can be

gained from knowing its secondary structure, i.e., the col-

lection of hydrogen-bonded base pairs in the molecule [3].

RNA secondary elements can be classified into two basic

categories: stem-loops and pseudoknots (see Figure 1).

Both kinds of secondary structure elements, which have

been implicated in important biological processes like

gene expression and gene regulation [4], must contain at

least one inversion, i.e., a string of nucleotides followed

closely by its inverse complementary sequence. Figure 2

shows an example of an inversion, with the 6-nucleotide

string “ACCGCA” followed by its inverse complementary

sequence “UGCGGU” after a gap of three nucleotides.

RNA secondary structure predictions

Secondary structures are crucial for the RNA functional-

ity and therefore the prediction of the secondary struc-

tures is widely studied. Development of mathematical

models and computational prediction algorithms for

stem-loop structures began in the early 1980’s [5-7].

Pseudoknots, because of the extra base-pairings involved,

must be represented by more complex models and data

structures that require large amounts of memory and

computing time to obtain the optimal and suboptimal

structures with minimal free energies. As a result, devel-

opment of pseudoknot prediction algorithms began in

the 1990’s [8,9].

Most existing secondary structure prediction algorithms

are based on the minimization of a free energy (MFE)

function and the search for the most thermodynamically

stable structure for the whole RNA sequence. Searching

for a structure with global minimal free energy may be

memory and time intensive, especially for long sequences

with pseudoknots. To overcome the tremendous demand

on computing resources, various alternative algorithms

Figure 1 Basic elements in RNA secondary structures. The stem loop (a) and pseudoknot (b).
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have been proposed that restrict the types of pseudoknots

for possible prediction in order to keep computation time

and storage size under control. Yet, most programs avail-

able to date for pseudoknot structure prediction can only

process sequences of limited lengths on the order of sev-

eral hundred nucleotides. These programs, therefore, can-

not be applied directly to larger RNA molecules such as

the genomic RNA in viruses, which may be thousands of

bases in length. At the same time, minimal energy config-

urations may not be the most favorable structures for car-

rying out the biological functions of RNA, which often

require the RNA to react and bind with other molecules

(e.g., RNA binding proteins). Our current work suggests

that local structures formed by pairings among nucleotides

in close proximity and based on local minimal free ener-

gies rather than the global minimal free energy, may better

correlate with the real molecular structure of long RNA

sequences. This hypothesis has yet to be supported by

more detailed experimental evidence. If proven correct,

our approach will open the door to a new generation of

programs based on segmenting long RNA sequences into

shorter chunks, predicting the secondary structures of

each chunk individually, and then assembling the predic-

tion results to give the structure of the original sequence.

In our previous work, we had proposed to predict sec-

ondary structures for long RNA sequences using three

steps: (1) cut the long sequence into shorter, fixed-size

chunks; (2) predict the secondary structures of the

chunks individually by distributing them to different pro-

cessors on a Condor grid; and (3) assemble the prediction

results to give the structure of the original sequence [10].

We used this approach on the genome sequences of the

virus family Nodaviridae, leading to the discovery of sec-

ondary structures essential for RNA replication of the

Nodamura virus [11]. However, the study also identified

the necessity of having a more effective segmentation

strategy for cutting the sequence so that the predicted

results of the chunks can be assembled to generate a rea-

sonably accurate structure for the original molecule.

Indeed, the selection of cutting points in the original

RNA sequence is a crucial component of the segmenting

step. In this paper, we propose to approach the problem

by identifying inversion excursions in the RNA sequence

and cutting around them. We consider two alternative

inversion-based segmentation strategies: the centered

and optimized chunking methods. Both methods identify

regions in the sequence with high concentrations of

inversions and avoid cutting into these regions. In the

centered method, the longest spanning inversion clusters

are centered in the chunks, while in the optimized

method, the number of bases covered by inversions is

maximized. Preliminary results have been presented in

the authors’ work [12,13].

MapReduce and Hadoop

The prediction of RNA secondary structures for long RNA

sequences based on sequence segmentation can be per-

formed in parallel, thus benefiting from parallel computing

systems and paradigms. We use the well-known MapRe-

duce framework Hadoop for our parallel predictions. The

MapReduce paradigm is a parallel programming model

that facilitates the processing of large distributed datasets,

and it was originally proposed by Google to index and

annotate data on the Internet [14]. In this paradigm, the

programmer specifies two functions: map and reduce. The

map function takes as input a key k1 and value v2 pair, per-

forms the map function, and outputs a list of intermediate

key and value pairs which may be different from the input

list 〈k2, v2〈 - i.e., Map 〈k1, v1〉 ® list 〈k2, v2〉. The runtime

system automatically groups all the values associated with

the same key and forms the input to the reduce function.

The reduce function takes as input a key and values pair

〈k2, list(v2)〉, performs the reduce function, and outputs a

list of values - i.e., Reduce 〈k2, list(v2)〉 ® list 〈v3〉. Note

that the input values to reduce is the list of all the values

associated with the same key.

MapReduce is appealing to scientific problems, includ-

ing the one addressed in this paper, because of the sim-

plicity of programming, the automatic load balancing and

failure recovery, as well as the scalability. It has been

widely adapted for many bioinformatics applications. For

example, Hong et al. designed an RNA-Seq analysis tool

Figure 2 Example of an inversion. An inversion with stem length 6 and gap size 3.
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for the estimation of gene expression levels and genomic

variant calling [15], and Langmead et al. designed a next-

generation sequencing tool based on MapReduce Hadoop

[16]. To the best of our knowledge, our work is the first

one to adapt MapReduce into secondary structure predic-

tions of long

RNA sequences. Preliminary work on the reasoning

behind adapting RNA secondary structure predictions to

the MapReduce paradigm can be found at [17].

Method

Workflow for parallel chunk-based predictions

Rather than predicting the RNA sequence as a whole, we

cut each sequence into chunks and predict each chunk

independently before merging the predictions into the

whole secondary structure. As the cutting process can be

performed in different ways, the search for effective ways

to cut sequences can require a large search space and

generate a large number of independent prediction jobs

that can potentially be performed in parallel. The work-

flow for a parallel chunk-based RNA secondary structure

prediction and accuracy assessment consists of the fol-

lowing four steps: (1) chunking: each RNA sequence is

cut into multiple chunks (or segments) according to

various chunking algorithms and parameters; (2) predic-

tion: the secondary structure for each chunk is predicted

independently by using one or more prediction pro-

grams; (3) reconstruction: the whole secondary structure

of a sequence is reconstructed from predicted structures,

one for each chunk; and (4) analysis: reconstructed struc-

tures are compared against known structures to assess

prediction accuracies.

Figure 3.a shows the prediction workflow. Note that the

chunks do not necessarily have the same length: the

lengths depend on the chunking method and parameters

used. Also note that the chunk’s prediction time and

memory usage can vary based on the number of nucleo-

tides in the chunk and the prediction program used. In

most prediction programs the time and memory used do

not grow linearly but exponentially with the number of

nucleotides, with the exponential factor depending on

the program complexity and its capability to capture

complex RNA secondary structures such as pseudoknots.

Chunking process based on inversions

Given a long RNA sequence, we identify regions with

high concentrations of inversions by using an adapted

version of the “Palindrome” program in the EMBOSS

Figure 3 Workflow of chunk-based RNA predictions. Workflow of the chunk-based RNA secondary structure prediction framework (a) and

example of searching path (b).
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package [18], which is a free open source software analy-

sis package. Two main reasons for adapting the EMBOSS

Palindrome program are as follows: the original program

works correctly on DNA but not RNA sequences and

does not support G-U pairing that we plan to include in

our adaptation. Our adapted program, InversFinder, is

written in Java and is available for download at http://

rnavlab.utep.edu. InversFinder requires a text file con-

taining the RNA sequence in FASTA format as input.

The minimum stem length L and maximum gap size G

of the inversion are parameters specified by the user.

The chunking step relies on a general excursion

approach first formulated in [19], which has already been

applied to a variety of sequence analysis problems but

not to RNA secondary structure predictions. In many

bioinformatics applications, the problem calls for identi-

fying high concentration regions of a certain property in

the nucleotide bases of biomolecular sequences. For

example, replication origins in viral genomes have been

predicted by looking for regions that are unusually rich

in the nucleotides A and T in DNA sequences [20]. In

this paper, we follow the same approach for RNA

sequences, but our focus is whether or not the nucleotide

base is found inside an inversion. We refer to the excur-

sions generated by this property as “inversion excur-

sions.” The excursion method requires assigning a

positive score to each nucleotide if it is a part of an inver-

sion (including the two stems and the gap between

them), and a negative score if it does not. We go through

the entire nucleotide sequence accumulating the scores

to form inversion excursions.

To facilitate the analysis, we use a parsing program to

convert an RNA sequence into a binary sequence with

the same length. If a nucleotide base is included in an

inversion identified by the InversFinder program, it is

given a value of “1"; if not, it is assigned a value of “0,” as

illustrated in Figure 4. Each “1” in the binary sequence is

given a score of 1, and each “0” a negative score of s

which is determined as follows: we consider the binary

sequence as a realization of a sequence of independent

and identically distributed (i.i.d.) random variables, X1,

X2,..., Xn, where n is the length of the RNA sequence (i.e.,

number of bases). These random variables take values of

either 1 or s. Let p = Pr(Xi = 1) and q = 1 - p = Pr(Xi = s).

The parameter p is naturally estimated by the percentage

of bases contained in one or more inversions in the RNA

sequence, i.e., the percentage of “1"s in the binary

sequence. We require that the expected score per base

μ= p + q * s to be negative. This requirement prevents

the tendency of favoring long segments to be high scor-

ing segments. As done in [20] and other applications, the

value of s can be conveniently selected by giving μa value

of -0.5 and then determining the value of s according to

Equation 1.

s =

⌊

µ − p

q

⌋

(1)

The excursion score Ei at Position i of the sequence is

defined recursively as in Equations 2 and 3.

E0 = 0 (2)

Ei = max(Ei−1 + Xi, 0) for 1 ≤ i ≤ n (3)

An excursion starts at a point i where Ei is zero, con-

tinues with a number of rising and falling stretches of

positive values, and ends at j > i where j is the next posi-

tion with Ej = 0. The score then stays at zero until it

becomes positive again when the next excursion begins.

Plotting the excursion scores along the nucleotide posi-

tions of the RNA sequence offers an effective visualization

of how inversion concentrations vary along the sequence.

This plot can serve as a guide for choosing the cutting

points for the segmentation process. Figure 5 shows an

example of an excursion plot. Note that rising stretches in

the plot indicate the presence of inversions.

After generating the excursion plot, we identify the posi-

tions, called peaks, where the excursion scores are local

maxima. Then, the bottom of each peak, which is the last

position with a zero excursion score right before the peak,

is located. After that, the length of the peak (the location

difference between a peak and its peak bottom) is calcu-

lated. Note that since we require chunk lengths to be smal-

ler than a prescribed maximum c, peak lengths greater

than c have to be flagged and analyzed separately. Figure 5

also shows examples of peaks, peak bottoms, and peak

lengths. Peaks are sorted in decreasing order based on

their excursion scores. The sorted peaks are then used to

Figure 4 Binary sequence around an inversion. The binary sequence around an inversion. If a nucleotide base is included in an inversion

identified by the InversFinder program, it is given a value of “1"; if not, it is assigned a value of “0”.
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cut sequences in chunks by the centered and optimized

chunking methods.

Centered chunking method

The centered method cuts the sequence by identifying

inversions and building the chunks around them. The

objective is to segment the RNA sequence in such a way

as to avoid losing structural information as much as pos-

sible by centering the longest spanning inversion clusters

in the chunks. After peaks are identified, they are sorted

in decreasing order of their excursion values. The peak

with the highest excursion value is considered first, then

the second highest peak is considered, and so on. The

algorithm stops either when all the peaks are exhausted

or when all the inversion regions of the sequence (i.e., all

“1"s in the binary sequence) have been included in the

chunks, whichever occurs first. Overlapping chunks are

adjusted so that any nucleotide base is captured by only

one chunk, with priority given to the peak with a higher

excursion score.

For each of the selected peaks, the positions of the inver-

sions or peak length positions are centered within the

maximum chunk-length of c bases where c is defined by

the user. We start at the bottom of this peak and follow

the excursion until it returns to 0 the very next time and

locate the position of the very last peak before the excur-

sion returns to 0. We take the sequence segment between

the peak bottom and the position of the very last peak and

place the sequence segment in the center of the chunk as

illustrated in Figure 6. Suppose this centered segment

contains x nucleotide bases. If (c - x) is even, then the

resulting chunk will have (c - x)/2 bases on each side of

the centered segment. If (c - x) is odd, then we will adjust

the lengths on each side to the integers below and above

(c - x)/2, allowing one side (chosen at random) to have

one more nucleotide base than the other.

As an example, we applied the aforementioned method

to an RNA sequence, that is, the 379-base RNA sequence

RF00209_A in the RFAM database [21]. As shown in

Figure 7, the sequence is segmented into six chunks using

the centered chunking method. These six segments

cover the entire sequence. Labels 1 through 6 in Figure 7

represent the six segments with decreasing order of peak

excursion scores. After the peak scores are sorted, the

peak with the highest excursion score is considered first.

In this example, we use the maximum chunk-length c =

100. The highest peak is found at Position 297 with peak

bottom at 257. As there are other inversions after the

highest scoring peak, we follow the entire excursion to the

end at Position 356. After locating the last peak in this

excursion at 343, we center the sequence segment from

257 to 343 to produce the chunk covering the 100 posi-

tions from 250 to 349, then the second highest scoring

peak at Position 54 is considered and the above procedure

is repeated. This time, the peak bottom is at Position 19

and the last peak before the end of this excursion is at

Position 70. Centering the segment consisting of Positions

19 - 70 in a chunk of 100 would require 24 positions on

each side, extending the chunk beyond the beginning of

Figure 5 Peaks, peak bottoms, and peak lengths. An excursion plot with peaks, peak bottoms, and peak lengths. Rising stretches in the plot

indicate the presence of inversions.

Figure 6 Centered chunking method. Centered chunking method where x = peak length. We take the sequence segment between the peak

bottom and the position of the very last peak in the excursion, and place the sequence segment in the center of the chunk.
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the sequence; we therefore adjust the chunk to start at

Position 1 instead. Note that during the segmentation pro-

cess, we might get a chunk that overlaps with previously

established chunks. In those cases, we have to reconcile

the situation by reducing one of the chunk lengths. For

example, after establishing the first two chunks (labels 1

and 2 in Figure 7), the next highest peak to be processed

is at Position 114, with peak bottom at Position 89. Cen-

tering this peak produces a chunk from Positions 52 to

151, overlapping with Chunk 2. We resolve such conflicts

by giving priority to the chunk with the higher number of

bases within completely contained inversions. With this

rule, we give priority to Chunk 2, and reduce Chunk 3 to

Positions 101 - 151. The process continues for the remain-

ing Chunks 4 - 6.

Optimized chunking method

In the optimized method, cutting points are decided by

choosing a segment containing the peak in an optimal

position that yields the highest inversion scores for the seg-

ment. The score is defined as the total number of nucleo-

tide bases contained in the inversions that are entirely

within the chunk. For example, consider a peak with peak

length spanning the nucleotide bases between i and j and

then all the chunks of size c covering this peak, that is, all

segments with length c between Positions j - (c - 1) and i +

(c - 1) are considered (see Figure 8). The chunk with the

maximum inversion score is then selected. Beginning with

the highest peak, the above process is repeated until either

all the peaks are utilized or all the inversions of the

sequence are contained in established chunks, whichever

Figure 7 Example of chunking with centered method. Six chunks are obtained using the centered method for the 379-base RNA sequence

RF00209_A in the RFAM database.
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occurs first. When chunks overlap, the cutting points are

adjusted in a similar way as described for the centered

method. The optimized method ensures that peak length

positions are included within a chunk but not necessarily

in the center of the chunk.

As an example, we applied the optimized method to the

same RF00209_A RNA sequence file from the RFAM

database, as shown in Figure 9. The optimized method

produced only 5 chunks covering all except the first 18

positions of the sequence. It can be seen from Figure 9

that this method avoids cutting into those sequence seg-

ments with rising excursion scores preceding the peaks.

Also, the chunks produced by the optimized method

cover only 96.3% of the sequence, leaving out those parts

of the sequence where no inversions are found; therefore,

the wasting of computing resources is minimal in the opti-

mized method.

Regular chunking method

The regular chunking method is the simplest method of

segmentation and is used as a reference method in this

paper. This method cuts the nucleotide sequence regularly

into chunks of a specified maximum chunk-length c until

the sequence is exhausted.

For example, with c = 100, the sequence RF00209_A

from the RFAM database with 379 bases will be cut into

four chunks made up of nucleotide Positions 1 - 100, 101

- 200, 201 - 300, and 301 - 379 (Figure 10). Obviously, ris-

ing stretches in an excursion plot, which indicate the pre-

sence of inversions and are likely to be part of secondary

structures, can often be cut by this method. As a result, it

is relatively easy to lose important structural information.

Intuitively, one expects that both the centered and

optimized methods, which take the inversion locations

into account when placing the chunks, perform better in

retaining the secondary structure information in the

sequences.

Prediction based on well-known algorithms

After the RNA sequence is cut into chunks, the structure of

each chunk is predicted independently using well-known

algorithms and their programs. We use the same prediction

algorithms to predict the entire sequence without chunk-

ing. We employ seven commonly used prediction programs

to test the chunking methods. The programs that predict

structures only for non-pseudoknotted sequences are

UNAFOLD (2008) and RNAfold (1994). The programs

that predict both pseudoknotted and non-pseudoknotted

sequences are IPknot (2011), pknotsRG (2007), HotKnots

(2005), NUPACK (2004), and PKNOTS(1998). These pre-

diction programs, which typically involve some form of

minimization of free energy, maximization of expected

accuracy, or dynamic programming models in their algo-

rithms, are all publicly available.

Reconstruction based on concatenation

The results of the chunk predictions are assembled to

build a whole secondary structure. Currently, our frame-

work simply concatenates all these predicted secondary

structures to give the secondary structure for the whole

sequence. This is possible because the cutting does not

allow any overlap between two consecutive chunks.

More sophisticated reconstruction methods that include

partial chunk overlaps can be used with minor changes

to our framework.

Figure 8 Optimized chunking method. Chunks by optimized method with peak spanning Positions i-j. All segments with length c between

Positions j - (c - 1) and i + (c - 1) are considered. The chunk with the highest inversion score is selected.
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Accuracy analysis based on comparisons with known

structures

Both the whole and the assembled predicted structures

are compared to the known structure to obtain their

respective prediction accuracies so that we can assess to

what degree the chunking method can preserve the pre-

diction accuracy of the program when applied without

any segmentation. Figure 11 shows the RF00209_A

nucleotide sequence along with the bracket view of

its experimentally known secondary structure. In the

bracket view representation, bases that are hydrogen

bonded with other bases are represented by a “(” or a “)”,

and a matching pair of “(” and “)” indicates that the bases

at those positions are paired to be part of a secondary

structure. Unpaired nucleotide bases are represented by

a “:” (colon).

Various statistical tests are applied to the accuracy ana-

lysis for the different chunking methods including t-tests,

Pearson correlation analysis, and the non-parametric

Friedman tests. We use the statistical functions provided

by MATLAB [22]. Metrics of interests include: (1) accu-

racy chunking (AC), which is the accuracy of the predicted

structure assembled from the chunks when compared with

the known secondary structure; (2) accuracy whole (AW),

which is the accuracy of the predicted structure obtained

from the whole sequence when compared with the known

secondary structure; and (3) accuracy retention (AR),

which is the ratio between AC and AW. While AC and

Figure 9 Example of chunking from optimized method. Five chunks are obtained using the optimized method for the 379-base RNA

sequence RF00209_A in the RFAM database. The chunks covering all except the first 18 positions of the sequence.
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AW reflect accuracies of the particular prediction in use

with and without chunking, AR tells us how well a parti-

cular chunking method retains the accuracy of the original

prediction program.

AC and AW are given by the percentage agreement of

the predicted structure with the known real structure

calculated as:

100 ∗
[a + 2 ∗ b]

n
(4)

where a and b represent respectively the number of

unpaired bases and the number of base pairs in common

between the two structures, and n is the length of the

RNA sequence. Large AC and AW values (close to 100%)

for a predicted structure mean that it is highly similar to

the real structure.

The accuracy retention (AR) is defined as:

AR =
AC

AW
(5)

AR provides a comparison of the prediction accuracies

with chunking versus without chunking. Intuitively, we

expect that a good chunking method would cause only a

minimal loss of prediction accuracy after cutting the

sequence and would have AR values somewhat less than

but close to 1. However, we will see in the result section

that in many cases the AR values turn out to be greater

than 1, meaning that secondary structure predicted using

chunking is more similar to the real structure than it is the

secondary structure predicted by using the whole sequence.

Several standard statistical tests, including t-tests, Pearson

correlation analysis, and the non-parametric Friedman

Figure 10 Example of chunking from regular method. With c = 100, the sequence RF00209_A is cut into four chunks positioned at 1 - 100,

101 - 200, 201 - 300, and 301 - 379.
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tests [23], are applied to analyze the AR values for the dif-

ferent chunking methods.

Adapting multiple searching paths to MapReduce

Given an RNA sequence, the search for the best set of

chunking parameters (i.e., maximum chunk length c,

chunking method, minimum stem length L, and maximum

gap length G) requires us to traverse or search a multi-

level tree (i.e. the chunking tree in Figure 3.b). In the

chunking tree, each path from the root (RNA sequence) to

the leaves (RNA chunks) represents a set of parameter

values of the chunking method (i.e., c, L, and G). The over-

all workflow (including the chunking, prediction, recon-

struction, and analysis steps) naturally adapts to fit into

the MapReduce (MR) paradigm and can be easily imple-

mented with Hadoop for which the chunking and predic-

tions can be solved by multiple mappers while the

reconstruction and the analysis are done by a single redu-

cer. In our framework, each MR job is designed to partially

traverse the multi-level tree. Multiple MR jobs can be exe-

cuted in parallel to explore the whole tree. The multiple

searching paths combine attributes of both breadth-first

search (performed by multiple MR jobs in parallel) and

depth-first search (performed by a single MR job). While

traversing the tree with multiple MR jobs, we can explore

the impact of different chunking methods as well as differ-

ent c, L and G values for a given sequence. An example of

an MR job is shown in the circled part of Figure 3.b, for

which we assume the centered chunking method, with

fixed c = 60 bases, and we vary L and G between 3 and 8

and between 0 and 8 respectively. As previously outlined,

for a sequence and a combination of parameters, the map-

pers perform the chunking and predictions. The input to

each mapper is a 〈k1, v1〉 value pair, in which k1 is the ID

of the sequence, and v1 is the chunking parameters’ values

(including the chunking method). Each mapper cuts the

sequence according to the chunking parameters values in

the chunking step by identifying a variable number of

chunks meeting the parameter requirements. Note that

each combination of parameters (each branch of the tree)

can result in a variable number of chunks. Each mapper

performs the prediction on one or more chunks using a

certain prediction program. Here we use five secondary

structure prediction programs capable of predicting pseu-

doknots (IPknot [24], pknotsRG [25], HotKnots [3],

NUPACK [26], and PKNOTS [8]) and two programs that

do not include this capability (i.e., UNAFOLD [27] and

RNAfold [28]). Other programs can be easily used in our

framework as a plug-and-play software module. After the

prediction, each mapper outputs the list of 〈k2, v2〉 pairs as

the intermediate output to reduce. The k2 is the ID of the

whole secondary structure to which the predicted chunk

belongs and v2 is the predicted secondary structure of the

chunk. After the Hadoop runtime system groups all the

values associated with the same key and passes the 〈k2, list

(v2)〉 to the reducer, the reducer reconstructs the whole

Figure 11 RF00209_A sequence and secondary structure. RF00209_A sequence and its experimental secondary structure from RFAM

database. In the bracket view representation, bases that are hydrogen bonded with other bases are represented by a “(” or a “)” and a matching

pair of “(” and “)” indicates that the bases at those positions are paired to be part of a secondary structure. Unpaired nucleotide bases are

represented by a “:” (colon).
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secondary structure of the sequence using all the v2 (pre-

dicted chunk structures) associated with the same k2. If

required, the reducer analyzes the results in terms of their

accuracy. After the accuracy has been computed, the redu-

cer outputs the final results as a list(v3), in which v3 is the

AR for reconstructed structures.

Granularity of mappers

In general, a mapper is the process that runs on a proces-

sor which applies the map function to a specific key and

value pair. In our framework, each mapper runs the

chunking process on an RNA sequence with a given set

of parameter values and then predicts one or multiple

chunks. The granularity of the mapping can vary based on

the number of chunks each mapper is assigned to predict.

Our MR framework includes both a coarse-grained map-

ping and a fine-grained mapping as shown in Figure 12, in

which each box represents a mapper. With the coarse-

grained mapping, each mapper explores one branch of the

chunking tree: it cuts the sequence into a set of segments

based on a combination of L and G values and predicts all

the segments it generates locally in order. With the fine-

grained mapping, multiple mappers explore one branch of

the chunking tree: each mapper cuts the same sequence

into the same set of segments, but this time it predicts

only one chunk that it generates. This means that if, for

example, the sequence is cut into five segments, then

there will be five mappers exploring the same branch of

the chunking tree, replicating the chunking process but

predicting only one distinguished segment of the five

chunks available. The mappers determine which segment

to predict based on a hash function; thus the mappers do

not need to synchronize their work or directly agree on

what chunk to predict. The hash function uses the ASCII

value of the chunk identifier as the key and the identifier

of each mapper as the value. The function selects the

segments to mappers in a round robin fashion.

Results and discussion

Datasets and hardware platform

For the study of both accuracy and performance, we plug

seven RNA secondary structure prediction programs into

our framework for both the chunk-based predictions and

the predictions of the same sequences without chunking

(the whole sequence is taken). Five of the programs,

Figure 12 Example of coarse-grained and fine-grained mapping. Each mapper explores one branch of the tree and generates the set of

segments as the output of the chunking program. The mapper predicts one or more segments generated based on the number of segments each

mapper is assigned. Coarse-grained mappers explore one whole branch of the tree at the time. Fine-grained mappers predict one chunk at a time.
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IPknot [24], pknotsRG [25], HotKnots [3], NUPACK

[26], PKNOTS [8] can predict both stem-loops and pseu-

doknots. The remaining two programs, UNAFOLD [27]

and RNAfold [28], can predict stem-loops only. We con-

sider both the centered (C) and optimized (O) chunking

methods and compare them against the naïve regular

method (R) as a reference. We also consider a wide range

of parameter settings with maximum chunk length c

from 60 to 150 bases, minimum stem length L from 3 to

8, and maximum gap length G from 0 to 8.

To study the framework accuracy, we use two datasets

of sequences which have previously established secondary

structures. The first dataset, compiled from the RFAM

database, consists of 50 non-pseudoknotted sequences

and the lengths of sequences range from 127 to 568

bases. The second dataset, compiled from the RFAM and

Pseudobase++ [21,29] databases, consists of 23 pseudo-

knotted sequences, and the lengths of the sequences in

this dataset range from 77 to 451 bases. Note that there

are no large datasets of experimentally determined RNA

secondary structures including pseudoknots, and to the

best of our knowledge the one used in this paper is one

of the few available to the public for free.

To study the framework performance, we use a smaller

dataset of longer sequences (i.e., 14 RNA sequences from

the virus family Nodaviridae) for which the secondary

structures are not known. We assume pseudo-knots may

be present and use the above-mentioned five prediction

programs that are capable of capturing pseudoknots and

we report only performance values but not accuracy.

Because these RNA sequences are long (each has about

1300 to 3200 bases) and contain possible pseudoknots,

none of the available programs can predict the secondary

structures for the entire sequences. The use of the

MapReduce framework is vital for the exhaustive, effi-

cient exploration of the tree branches.

We ran the MapReduce framework on a cluster com-

posed of 8 dual quad-core compute nodes (64 cores), each

with two Intel Xeon 2.50 GHz quad-core processors. A

front-end node is connected to the compute nodes and is

used for compilation and job submissions. A high-speed

DDR Infiniband interconnect for application and I/O traf-

fic and a Gigabit Ethernet interconnect for management

traffic connects the compute and front-end nodes. Our

implementation is based on Hadoop 0.20.2.

Accuracy

There are three main questions that we want to answer in

regard to the effects of our chunk-based approaches on

the accuracy of various established secondary structure

prediction programs. First, we want to evaluate to what

extent chunk-based predictions retain the prediction accu-

racy. Second, we want to identify whether the capability of

a chunking method to retain the prediction accuracy

might decline with increasing sequence lengths. Third, we

want to assess the extent to which the inversion based

chunking methods (C and O) outperform the naïve

chunking method (R), and whether there is any difference

in accuracy between the C and O chunking methods.

To assess how well the predictions based on chunking

agree with known RNA structures, we measure the maxi-

mum AC (MAC) values of the sequences in the two data-

sets. Figures 13 and 14 present the box-and-whisker

diagram for the two datasets and the three chunking

methods - i.e., Figures 13.a,b, and 13.c show the box-and-

whisker diagram for the regular, centered, and optimized

methods respectively for the dataset of 50 non-pseudo-

knotted sequences. Figures 14.a,b, and 14.c show the

box-and-whisker diagram for the regular, centered, and

optimized methods respectively for the dataset of 23

pseudoknotted sequences. In the figures, the lower and

upper quartiles are at the top and bottom boundaries of

the box for the kernels; the median is the band inside the

box; the mean is the black square; the whiskers extend to

the most extreme data points or outliers; and outliers are

plotted individually as “+” symbols.

As described in the Method section, the AC value for a

predicted RNA structure is the percentage of agreement

between the known structure and the structure obtained

by concatenating the predicted structures of the chunks.

Likewise, the AW value is the percentage of agreement

between the known structure and the predicted structure

when the whole sequence is used. These values indicate

how closely the predicted structure resembles the real

structure. A larger AC value means that the chunk-based

predicted structure is more similar to the real structure.

For a given dataset, prediction program, and chunking

method, our MR framework collects multiple predicted

structures associated with different c, L, and G para-

meters. The MAC value for a sequence is the maximum

AC value, which gives the highest accuracy that can

be attained for that sequence by the chunking method

and the specific prediction program employed. In

Figures 13.d and 14.d, the AW of the sequences in the

two datasets are presented respectively. From these fig-

ures, it appears that most of the prediction methods have

similar accuracy ranges regardless of the chunking

method used and whether the prediction was obtained

with the whole sequence or with the chunks; however,

the PKNOTS program produces somewhat lower accura-

cies. This lower accuracy is quite expected because

PKNOTS is actually the earliest algorithm allowing for

pseudoknot prediction. The other prediction programs

with pseudoknot prediction capability that have devel-

oped afterwards have incorporated improvements over

the original PKNOTS.

From Figures 13 and 14, the prediction accuracies with

chunking (MAC values in (a) - (c)) appear to be higher
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than those without (AW values in (d)), suggesting that

the prediction accuracy, on average, can be enhanced by

sequence segmentation. To get a clearer characterization

of the effect of sequence segmentation, we carry out sta-

tistical tests on the maximum accuracy retention (MAR)

obtained for each RNA sequence over the c, L, and G

parameters. In the majority of the sequences in our data-

set, the MAR turns out to be greater than 1. With a one-

sample t-test, we test whether the mean MAR is signifi-

cantly greater than 1 with p-value > 0.05. Tables 1 and 2

display the means, standard deviations, and p-values for

the non-pseudoknotted and pseudoknotted sequences

respectively.

For non-pseudoknotted sequences, the mean MAR is

significantly greater than 1 for all three chunking methods,

whereas the mean MAR values for the pseudoknotted

sequences are greater than 1 for the C and O chunking

methods. With the R chunking method, one of the mean

MAR values (with NUPACK) falls below 1 to 0.93. Look-

ing at all the p-values, one can conclude that the average

prediction accuracy attained with segmentation is not

significantly less than that without. With the inversion

based C and O chunking methods, we can conclude that

the average prediction accuracies attained with segmenta-

tion are at least as good as, and often even better than,

those without segmentation.

While the above results show that sequence segmenta-

tion will not reduce prediction accuracy on average, we

still need to examine whether the MAR values would

decline as the whole sequence length grows, because a

declining trend would imply that the accuracy retention

will deteriorate when the segmentation approaches are

applied to longer RNA sequences. To this end, for each

dataset, chunking method, and prediction program, we

perform the Pearson correlation analysis on the MAR

values of the sequences [30]. For each dataset, we report

both the correlation coefficient r and corresponding

p-value between MAR and sequence length. If the r value

is close to -1, it means that MAR and sequence lengths

are negatively correlated, implying a decline in accuracy

retention of the chunking method. If the associated

p-value is less than 0.05, we consider the correlation

Figure 13 MAC and MAW for chunking methods (R,C,O) for 50 sequences. MAC and MAW values obtained using the prediction programs

IPknot, pknotsRG, HotKnots, NUPACK, PKNOTS, RNAfold, and UNAFOLD for the dataset of 50 non-pseudoknotted sequences.

Figure 14 MAC and MAW for chunking methods (R,C,O) for 23 sequences. MAC and MAW values obtained using the prediction programs

IPknot, pknotsRG, HotKnots, NUPACK, and PKNOTS for the dataset of 23 pseudoknotted sequences.
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statistically significant; otherwise the correlation is not

significant.

Figure 15 is a scatter plot of MAR values versus

sequence lengths for one of the prediction programs,

IPknot. Similar scatter plots for the other prediction

programs have also been examined and no statistically

significant negative correlation has been detected in any

of these plots. Table 3 presents the correlation coeffi-

cients r and their corresponding p-values when the null

hypothesis of no correlation is tested against the alterna-

tive hypothesis of having a negative correlation. These

p-values indicate that no significant negative correlation

has been detected for any of the prediction programs

and chunking methods. We therefore do not expect any

substantial decline in accuracy retention of our chunk-

ing methods while sequence length increases.

Given the three chunking methods considered (i.e., reg-

ular, centered, and optimized) we also want to determine

which among them is better at retaining the accuracies of

the various prediction programs. For this purpose, we

examine each sequence in our two datasets and keep

track of which chunking method produces the highest

MAR. Table 4 gives the total counts of sequences attain-

ing the highest MAR for each of the chunking methods.

If more than one chunking method gets the same highest

MAR for one sequence, we split the count of this

sequence equally among the methods. We can see that

the sequence counts in Table 4 for the centered and

optimized (C and O) methods are higher than those for

the regular method (R).

To see if there are any differences among the accuracy

retention capabilities among the three cutting methods, we

perform the Friedman test for each dataset and each pre-

diction program. The Friedman test is a non-parametric

statistical test based on rank sums [23] and requires rank-

ing the MAR attained by each chunking method for each

prediction program and each sequence in our data sets.

The method producing the lowest MAR is given a rank of

1 and the method producing the highest MAR is given a

rank of 3. Again, the ranks are averaged for ties. Table 5

shows the p-values of the Friedman tests in the “R-C-O”

columns. From these very low p-values, we can conclude

that there are significant differences among the three

methods.

Because the Friedman test does not reveal whether any

one method is significantly better than another, we also

perform the post-hoc pairwise comparison test on each

pair of the three chunking methods in order to confirm

that the inversion based centered and optimized chunking

methods are indeed superior to the naïve regular method.

The p-values, shown in the “R-C,” “R-O,” and “C-O” col-

umns, indicate that both the centered and optimized

methods are better than the regular method. Furthermore,

there are no significant differences between the centered

and optimized chunking methods except when PKNOTS

is applied to the pseudoknotted sequences.

Table 1 MAR statistics for 50 non-pseudoknotted sequences.

Cut Regular Centered Optimized

Prediction Mean Stdev p Mean Stdev p Mean Stdev p

IPknot 1.13 0.32 0.002 1.23 0.36 0.000 1.21 0.36 0.000

pknotsRG 1.19 0.50 0.005 1.27 0.49 0.000 1.27 0.47 0.000

HotKnots 1.19 0.48 0.003 1.32 0.50 0.000 1.33 0.50 0.000

NUPACK 1.12 0.34 0.010 1.23 0.41 0.000 1.24 0.41 0.000

PKNOTS 1.33 0.19 0.000 1.65 0.35 0.000 1.70 0.35 0.000

UNAFold 1.19 0.49 0.003 1.31 0.47 0.000 1.31 0.46 0.000

RNAfold 1.19 0.46 0.002 1.31 0.48 0.000 1.30 0.45 0.000

Mean and standard deviations of MAR for regular, centered, and optimized chunking methods over 50 non-pseudoknotted sequences, and the corresponding

p-values of the t-test for mean MAR >1.

Table 2 MAR statistics for 23 pseudoknotted sequences

Cut Regular Centered Optimized

Prediction Mean Stdev p Mean Stdev p Mean Stdev p

IPknot 1.19 0.48 0.037 1.33 0.62 0.009 1.40 0.64 0.004

pknotsRG 1.21 0.84 0.116 1.39 0.99 0.036 1.48 1.00 0.016

HotKnots 1.11 0.41 0.098 1.32 0.71 0.021 1.43 0.80 0.009

NUPACK 0.93 0.18 0.955 1.14 0.39 0.071 1.17 0.35 0.032

PKNOTS 1.16 0.20 0.003 1.29 0.26 0.000 1.38 0.29 0.000

Mean and standard deviations of MAR for regular, centered, and optimized chunking methods over 23 pseudoknotted sequences, and the corresponding

p-values of the t-test for mean MAR >1.
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The results above demonstrate that, for a variety of sec-

ondary structure prediction programs, our segmentation

approach for handling the long RNA sequences can

retain and even enhance the average prediction accuracy.

Furthermore, using the inversion based C and O methods

to cut the sequence will produce better prediction accu-

racy than the naïve R method. More questions remain to

be answered and are part of our current research.

Our current investigations focus on the following two

questions. First, we want to study how we should choose

the parameters c, L, and G to maximize the accuracy

retention. We have been conducting studies to identify

how the prediction accuracy correlates with these para-

meters. Some of the results have been reported in preli-

minary work of the group [12,13]. So far we have not

found any definitive criteria that work for all sequences in

general. Rather, the nucleotide base composition and

length of the individual sequence, as well as the sequence

length limitations imposed by the particular prediction

program, need to be taken into account. Second, the fact

that segmentation can in many cases improve the predic-

tion accuracy for an RNA sequence is somewhat counter-

intuitive. One possible explanation is that secondary struc-

ture prediction algorithms are generally based on global

minimal free energy, resulting in the most thermodynami-

cally stable isoforms. However, these structures may not

be most favorable for biological functions, which often

require RNAs to interact with other molecules or unfold

during replication. Our results suggest that local structures

formed by pairings of bases in close proximity, rather than

the global energies, may better correlate with the real

structures of large RNA molecules. This hypothesis is

being tested in coauthor Johnson’s molecular virology lab

using the virus family Nodaviridae.

The above idea also prompted us to initiate a study on

the correlation between accuracy and the free energy of

Figure 15 MAR values for IPknot on non-pseudoknotted sequences. Scatter plot of MAR values versus sequence lengths for the IPknot

program. Similar scatter plots for the other prediction programs have been examined and no statistically significant negative correlation has

been detected in any of these plots.
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our chunk-based predicted structures. Since there are no

straightforward mechanisms within the current predic-

tion programs to compute the free energy of a given

structure other than those outputted by the program,

we try to obtain the overall free energy of our chunk-

based predictions by simply summing the free energies

associated with the chunks. Among several examples

that we have studied to date, most do not show any sta-

tistically significant relationship to support the idea that

global structures with lower free energies are more simi-

lar to the known structure. One example scatter plot of

the prediction accuracy versus free energy of different

predicted structures of the sequence RF000_2A using

the centered and optimized chunking methods with dif-

ferent L and G parameters with maximum chunk length

of 100 is shown in Figure 16. The correlation coefficient

is found to be positive 0.11, which is against the expec-

tation of a negative correlation. We anticipate that this

line of investigation will require more coordinated

efforts with the developers of the various prediction

programs to establish appropriate ways of computing

the free energies of any given predicted-or experimen-

tally-determined structure.

Performance

For the performance analysis, we use a smaller dataset of

longer sequences from the virus family Nodaviridae

[31,32] and we explore a wider range of parameter values.

The virus family Nodaviridae is divided into two genera:

alphanodaviruses that primarily infect insects and beta-

nodaviruses that infect only fish. These viruses share a

common genome organization, namely a bipartite posi-

tive strand RNA genome (i.e., mRNA sense). The longer

genome segment RNA1 (ranging in size from 3011 to

3204 nucleotide bases) encodes the RNA-dependent

RNA polymerase that catalyzes replication of both gen-

ome segments, while the shorter RNA 2 (ranging in size

from 1305 to 1433 nucleotide bases) encodes the precur-

sor of the viral capsid protein that encapsidates the RNA

genome. The 14 sequences we analyze in this paper are

identified as follows: Boolarra virus (BoV) RNA2 (1305

nucleotide bases), Pariacoto virus (PaV) RNA2 (1311),

Nodamura virus (NoV) RNA2 (1336), Black beetle virus

(BBV) RNA2 (1393), Flock House virus (FHV) RNA2

(1400), Striped jack nervous necrosis virus (SJNNV)

RNA2 (1421), Epinephelus tauvina nervous necrosis virus

(ETNNV) RNA2 (1433), BoV RNA1 (3096), PaV RNA1

(3011), BBV RNA1 (3099), ETNNV RNA1 (3103), FHV

RNA1 (3107), SJNNV RNA1 (3107), NoV RNA1 (3204).

These sequences are sorted based on their increasing

lengths, and this order is preserved in all the figures and

tables presented below. There are three important ques-

tions that we want to answer when measuring perfor-

mance. First, we want to quantify the time spent for

exploring the several branches of the search trees for

these 14 sequences using each of the two chunking meth-

ods (centered or optimized) and for the granularity of the

mapping (coarse-or fine-grained). Second, we want to

identify how the time is spent for each search in terms of

map, reduce, and data shuffling among processors. Third,

we want to measure the efficiency of the search and

Table 3 MAR correlation coefficients (r) and p-values (p)

Non-pseudoknotted
sequences

Pseudoknotted
sequences

Prediction R C O R C O

IPknot r -0.2077 -0.2141 -0.1629 0.1379 0.1572 0.0841

p 0.1478 0.1354 0.2582 0.5303 0.4738 0.7028

pknotsRG r -0.1550 -0.0670 -0.0756 0.2030 0.1971 0.1987

p 0.2825 0.6437 0.6018 0.3528 0.3673 0.3634

HotKnots r -0.1434 -0.0476 -0.0732 -0.0360 -0.0669 -0.0855

p 0.3204 0.7428 0.6136 0.8705 0.7618 0.6982

NUPACK r -0.1622 -0.0137 -0.0059 -0.0532 0.0666 -0.1331

p 0.2604 0.9249 0.9676 0.8340 0.7928 0.5986

PKNOTS r 0.4598 0.7053 0.7045 -0.0233 0.1001 0.0597

p 0.0008 0.0000 0.0000 0.9294 0.7023 0.8199

UNAFold r -0.1449 -0.1055 -0.1311

p 0.3155 0.4658 0.3643

RNAfold r -0.1056 -0.0646 -0.0538

p 0.4654 0.6559 0.7104

Correlation coefficients (r) between MAR and sequence lengths and

corresponding p-values (p) when testing for a negative correlation.

Table 4 Count and rank sum of sequences

Non-pseudoknotted sequences Pseudoknotted sequences

Prediction R-co R-rs C-co C-rs O-co O-rs R-co R-rs C-co C-rs O-co O-rs

IPknot 7.7 74.0 24.7 115.5 17.7 110.5 2.0 32.0 7.0 47.0 14.0 59.0

pknotsRG 6.3 71.5 22.3 115.5 21.3 113.0 2.0 30.0 7.0 50.0 14.0 58.0

HotKnots 4.0 68.0 22.0 115.5 24.0 116.5 1.0 32.0 6.0 47.0 16.0 59.0

NUPACK 4.0 68.5 17.0 115.5 29.0 120.0 1.3 24.5 7.3 40.5 9.3 43.0

PKNOTS 1.0 55.5 17.5 114.5 31.5 130.0 1.5 21.0 4.0 35.5 11.5 45.5

UNAFold 4.0 67.0 25.0 118.0 21.0 115.0

RNAfold 4.0 65.0 18.0 112.5 28.0 122.5

Count (co) and rank sum (rs) of sequences attaining the highest MAR with each chunking method for the various prediction programs.
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look for those aspects of the search that can impact

performance.

We measure the total time needed to explore the

chunking tree of each sequence using either the centered

or optimized methods and with either coarse-grained or

fine-grained mapping. The total time includes the time

needed for chunking and prediction (map time), recon-

struction (reduce time), exchange of predictions among

nodes (shuffling time), and any overhead due to load

imbalance and synchronizations. Note that the total time

does not include the time needed for analysis since the

secondary structures of the sequences considered here

Table 5 P-values from the Friedman test

Non-pseudoknotted sequences Pseudoknotted sequences

Prediction R-C-O C-O R-C R-O R-C-O C-O R-C R-O

IPknot 9.21E-06 5.27E-01 2.43E-05 4.02E-04 2.16E-05 4.55E-02 4.50E-03 3.74E-05

pknotsRG 1.82E-07 5.27E-01 1.86E-06 9.72E-06 3.65E-06 1.84E-02 1.08E-04 9.62E-05

HotKnots 8.80E-09 6.47E-01 4.20E-07 5.36E-07 2.47E-05 1.84E-02 1.30E-03 1.62E-04

NUPACK 5.16E-09 2.17E-01 5.79E-08 1.41E-06 3.70E-04 5.64E-01 9.11E-04 1.30E-03

PKNOTS 1.22E-15 2.69E-02 3.56E-10 1.18E-11 6.78E-06 6.70E-03 5.32E-04 1.83E-04

UNAFold 5.25E-09 2.74E-01 6.91E-07 2.96E-07

RNAfold 1.18E-08 8.82E-01 1.29E-06 1.81E-07

P-values from the Friedman test to compare the accuracy retention of the three chunking methods as well as the posthoc pairwise comparison tests.

Figure 16 Accuracy versus free energy for the RFAM sequence RF0002_A. Scatter plot of prediction accuracy versus free energy of different

predicted structures of the RFAM sequence RF0002_A using the centered and optimized chunking methods with different L and G parameters

with maximum chunk length of 100. Correlation coefficient r = 0.11.
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are not known experimentally; thus an analysis in terms

of accuracy is not feasible. We use IPknot for our predic-

tions since it is the most recently implemented program

and its accuracy values are very high in the previous

section.

Each of the four subfigures in Figure 17 shows the total

times in seconds for exploring the prediction trees (left

y-axes) and the number of map tasks (right y-axes) for the

14 sequences when a maximum chunk length of 60, 150,

and 300 bases is used. In each subfigure there are three

groups of times, one for each maximum chunk length.

Each group lists the 14 sequences sorted based on their

length in nucleotide bases. More specifically, Figure 17.a

presents the times and number of map tasks when the

coarse-grained MR implementation and the centered

method are used; Figure 17.b presents the times and num-

ber of map tasks when the coarse-grained MR implemen-

tation and the optimized method are used; Figure 17.c

presents the times and number of map tasks when the

fine-grained MR implementation and the centered method

are used; and Figure 17.d presents the times and number

of map tasks when the fine-grained MR implementation

and the optimized method are used. As already presented

above, when using coarse-grained mapping, each mapper

performs the chunking for the assigned sequence using a

set of parameter values for the max length of stems (L)

and gap sizes (G). The mapper then predicts the secondary

structures of all its local chunks. This results in the

exploration of a whole branch of the tree by the mapper.

The total number of branches (and map tasks) is given by

the combinations of L and G values (i.e., 54). When using

fine-grained mapping, chunking of a sequence based on a

set of L and G values is performed across mappers and

mappers are assigned resulting chunks in a round-robin

fashion. Computationally this is performed by replicating

the chunking processes across mappers and by using a

hash function to assign different chunks to different map-

pers. The number of chunks equals the number of map

tasks and depends on the number of inversions identified

in the chunking process.

When comparing centered vs. optimized chunking

methods for the coarse-grained mapping, we observe

that the two methods result in similar execution times

(Figure 17.a and Figure 17.b). Table 6 quantifies the

similarity for both subgroups (i.e. RNA2 and RNA1)

which is within 3%. This observation is different from the

previous work in which the centered method resulted in

shorter execution times due to the fact that a different

implementation of the chunking methods and a different

program were used.

Figure 17 Total MapReduce times for different methods and mapping. Total time in seconds for coarse- vs. fine-grained mapping and

centered vs. optimized methods, i.e., (a) Coarse-grained mapping using centered method; (b) Coarse-grained mapping using optimized method;

(c) Fine-grained mapping using centered method; and (d) Fine-grained mapping using optimized method.
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When comparing centered vs. optimized chunking

methods for the fine-grained mapping, the optimized

method results in a slightly lower execution time. As

shown in Table 7, the execution times of fine-grained

mapping when using the optimized chunking method for

both subgroups (RNA2 and RNA1) is 11% to 18% slower

than using the centered method. Table 8 shows the aver-

age number of chunks (i.e., map tasks) for both sub-

groups using centered and optimized methods. We can

see that the optimized method results in 10% to 19% less

chunks. The optimized method tends to cut sequences

into fewer chunks, which leads to fewer map tasks and

shorter MapReduce total times. This observation is dif-

ferent from the previous work in which the centered

method results in shorter execution times due to the

same reason we mentioned above [17].

When comparing coarse-grained mapping vs. fine-

grained mapping, we observe that coarse-grained mapping

results in shorter execution time compared to fine-grained

mapping, independent of the chunking method used. Also

we observe the trend that when the maximum chunk

length grows from 60 to 300, the time gain of coarse-

grained mapping over fine-grained mapping decreases.

The speedup of coarse-grained mapping over fine-grained

mapping using the centered chunking method for RNA2

subgroup of sequences decreases from 3.75 to 1.38, and

for RNA1 it decreases from 7.86 to 2.37. A similar beha-

vior is observed for the optimized chunking method:

speedup of coarse-grained mapping over fine-grained

mapping for RNA2 subgroup of sequences decreases from

3.4 to 1.25, and for RNA1 it decreases from 6.82 to 1.93.

The same trend of the total times is summarized in

the box-and-whisker diagram of minimum, median,

mean, and maximum execution time for each subgroup

of sequences (RNA2 and RNA1) in Figure 18. More spe-

cifically, in Figure 18.a, we show the box-and-whisker

diagram of the total times for the RNA2 subgroup of

sequences (∼1300 nucleotides bases) using coarse-

grained mapping, both centered and optimized methods,

and maximum chunk lengths of 60,150, and 300. In

Figure 18.b, we show a similar box-and-whisker diagram

but for the RNA1 subgroup of sequences (∼3100 bases).

In Figure 18.c, we show the box-and-whisker diagram of

the minimum, mean, and maximum execution time for

the RNA2 subgroup of sequences using fine-grained

mapping, centered and optimized methods, and max

chunk lengths of 60, 150, and 300. In Figure 18.d, we

show a similar box-and-whisker diagram but for the

RNA1 subgroup of sequences. We observe that for coarse-

grained mapping, when using the centered and optimized

methods, the average total times increase with the maxi-

mum chunk length at the rate of 2.0 for RNA2 and 2.4 for

RNA1. On the contrary for the fine-grained mapping,

when using centered and optimized methods, the average

total times decrease with the maximum chunk length at

the rate of 0.7 for both subgroup of sequences. This

suggests that potentially for larger maximum chunk length

and sequence lengths the fine-grained mapping can

outperform the coarse-grained mapping in terms of

performance.

When decoupling the total time in its components, we

observe that the time components for the reduce function

and shuffling are very marginal compared to the times

used for the mapping functions (around 1% of the total

time). We also observe that, as we explore a prediction

tree, some mappers are performing more work than

others, resulting in idle time and low efficiency. The load

imbalance among mappers depends on the granularity

and chunking methods used. To better understand the

causes of load imbalance we cut down the mapping times

into compute time (i.e., chunking and predictions) and

idle time (i.e., waiting for all the mappers to complete

their predictions). Figure 19 shows the percentage of com-

pute and idle times in map function for coarse-grained

mapping vs. fine-grained mapping as well as for centered

vs. optimized methods. More specifically, Figures 19.a and

Table 6 Total times for RNA2 and RNA1 with coarse-

grained mapping

Mean Total Time (sec) RNA2(∼1300 bases) RNA1(∼3100 bases)

60 150 300 60 150 300

Centered 68.7 99.0 134.3 410.7 618.0 971.7

Optimized 66.7 98.9 131.6 404.3 618.9 986.1

Opti./Cent. 0.97 1.00 0.98 0.98 1.00 1.01

Average total times for the seven sequences in RNA2 and in RNA1 for

coarse-grained mapping using centered and optimized methods.

Table 7 Total times for RNA2 and RNA1 with fine-grained

mapping

Mean Total Time (sec) RNA2(∼1300 bases) RNA1(∼3100 bases)

60 150 300 60 150 300

Centered 257.7 232.3 185.7 3228.7 2871.7 2303.9

Optimized 226.6 197.4 164.6 2758.0 2366.0 1907.7

Opti./Cent. 0.88 0.85 0.89 0.85 0.82 0.83

Average total times for the seven sequences in RNA2 and in RNA1 for fine-

grained mapping using centered and optimized methods.

Table 8 Average number of chunks for RNA2 and RNA1

with fine-grained mapping

Mean Total Time (sec) RNA2(∼1300 bases) RNA1(∼3100 bases)

60 150 300 60 150 300

Centered 395 258 155 939 622 383

Optimized 355 218 134 825 525 312

Opti./Cent. 0.90 0.84 0.86 0.88 0.84 0.81

Average number of chunks (i.e. number of map tasks) for the seven

sequences in RNA2 and in RNA1 for fine-grained mapping using centered and

optimized methods.
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19.b show the percentages for compute and idle times for

the coarse-grained framework with the centered and opti-

mized methods respectively; Figures 19.c and 19.d show

the same percentages but for the fine-grained framework

and the two chunking methods.

Independent of the maximum chunk length, Figure 19

shows how fine-grained mapping reaches better effi-

ciency compared to coarse-grained mapping. In other

words, with fine-grained mapping, the mappers spend

more time doing real chunking and predictions. We

observe in Figure 17 (left y-axes) how fine-grained map-

ping has a larger number of map tasks and each map task

is shorter (it predicts only one chunk) making easier for

the Hadoop scheduler to allocate the several tasks effi-

ciently by using a first-in-first-out (FIFO) policy. On the

other hand, coarse-grained mapping has a smaller num-

ber of map tasks and each map task is longer (all the

sequence chunks of a given L and G combination are pre-

dicted by a single mapper). In this case, once the schedu-

ler assigns a longer task to a mapper, it has to wait for its

completion, even if the other mappers have generated

their chunk predictions, before proceeding to the reduce

phase. We also observe that as the maximum chunk

length increases from 60 to 300 bases, the map efficiency

tends to drop. More specifically, the average map effi-

ciency for coarse-grained mapping decreases from 36% to

25% on RNA2 and from 18% to 15% on RNA1 when

using centered or optimized chunking methods. The aver-

age map efficiency for fine-grained mapping decreases

from 91% to 79% on RNA2 and from 97% to 93% on

RNA1. This is due to the fact that the centered and opti-

mized chunking methods tend to produce more chunks

with shorter chunk lengths when using a maximum chunk

length of 60. On the other hand, when using a maximum

chunk 300, the same methods tend to produce fewer

chunks each with longer lengths.

Diverse chunk lengths within a prediction can also cause

inefficiency. To study this phenomenon, we consider the

Nodamura virus (NoV) RNA2 sequence which shows the

largest drop in efficiency when moving from 60 to 300

max chunk lengths, as shown in Figure 19. Figures 20 and

21 show the number of chunks and their lengths (i.e.,

max, min and median) for the different L and G parameter

combinations with centered and optimized methods when

the maximum chunk length is equal to 60 (Figure 20) and

when the length is equal to 300 (Figure 21). When the

Figure 18 Box-and-whisker diagram of total MR times. Box-and-whisker diagram of total MR times for each subgroup of Nodaviridae

sequences (RNA2 and RNA1) using centered and optimized methods with maximum chunk length of 60, 150, and 300, i.e., (a) Coarse-grained

mapping on RNA2 (short sequences); (b) Coarse-grained mapping on RNA1 (long sequences); and (c) Fine-grained mapping on RNA2 (short

sequences); and (d) Fine-grained mapping on RNA1 (long sequences).
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Figure 20 Profile of Nodamura virus (NoV) RNA2 with maximum chunk length 60. Number of chunks and chunk lengths for the Nodamura

virus (NoV) RNA2 with centered and optimized methods and maximum chunk length of 60 bases.

Figure 19 Efficiency of map functions for different methods and mapping. Percentages of compute and idle time in map function for

coarse- vs. fine-grained mapping and centered vs. optimized methods, i.e., (a) Coarse-grained mapping using centered method; (b) Coarse-grained

mapping using optimized method; (c) Fine-grained mapping using centered method; and (d) Fine-grained mapping using optimized method.
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maximum length grows from 60 to 300, the number of

resulting chunks for each combination of L and G para-

meters decreases. At the same time the length of each set

of chunks increases as well as the length variability within

the set of chunks for a defined combination of L and G

values. Note that for some combinations of L and G, the

chunking process does not identify any set of chunks and

we do not report any result for these cases. This confirms

our observation that as the number of chunks decreases,

the chunk lengths increase but not homogeneously within

a prediction, causing load imbalance and loss in efficiency.

Selecting the shorter maximum length for the sake of effi-

ciency is not always a wise decision: a maximum chunk

length of 60 bases may be too short for the type of RNA

sequences we are considering. In Figure 20, the median is

very close to the maximum length of 60 for the centered

methods, indicating that we are cutting out valuable parts

of the inversion and ultimately of the secondary structures

we are predicting.

The overall results suggest that the best set of parameter

values to achieve higher accuracy, performance, and effi-

ciency depend on multiple aspects including the input

sequence and the available resources. Driven by these two

aspects, in future work we will integrate an automatic

selection of these values into our MR framework.

Conclusions

In this paper, we propose a MapReduce-based, modular-

ized framework that allows scientists to systematically

and efficiently explore the parametric space associated

with chunk-based secondary structure predictions of

long RNA sequences. By using our framework we can

observe how sequence segmentation strategies, directed

by inversion distributions enable us to predict the sec-

ondary structures of large RNA molecules. Furthermore,

the chunk-based predictions can, on average, attain

accuracies even higher than those obtained from predic-

tions using the whole sequence. The observations in this

study have led to our hypothesis that local structures

formed by pairings of bases in close proximity, rather

than the global free energies, may better correlate with

the real structures of large RNA molecules. This

hypothesis will be tested by further computational and

experimental investigations.
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