
 1

Enhancement of Cavity Cooling of a Micromechanical Mirror Using Parametric 

Interactions 

 

Sumei Huang and G. S. Agarwal 

Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA 

(9th  Oct  2008) 

 

It is shown that an optical parametric amplifier inside a cavity can considerably 

improve the cooling of the micromechanical mirror by radiation pressure. The 

micromechanical mirror can be cooled from room temperature 300 K to sub-Kelvin 

temperatures, which is much lower than what is achievable in the absence of the 

parametric amplifier. Further if in case of a precooled mirror one can reach millikelvin 

temperatures starting with about 1 K. Our work demonstrates the fundamental 

dependence of radiation pressure effects on photon statistics. 

             

      PACS numbers: 42.50.Lc, 03.65.Ta, 05.40.-a 

 

I. INTRODUCTION 

 

Recently there is considerable interest in micromechanical mirrors. These are macroscopic quantum mechanical 

systems and the important question is how to reach their quantum characteristics [1-4]. The thermal noise limits 

many highly sensitive optical measurements [5,6]. We also note that there has been considerable interest in using 

micromirrors for producing superpositions of macroscopic quantum states if such micromirrors can be cooled to 

their quantum ground states [7,8]. Thus cooling of micromechanical resonators becomes a necessary prerequisite for 

all such studies. So far two different ways to cool a mechanical resonator mode have been proposed. One is active 

feedback scheme [9-12], where a viscous force is fed back to the movable mirror to decrease its Brownian motion. 
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The other is passive feedback scheme [4,13-17], in which the Brownian motion of the movable mirror is damped by 

the radiation pressure force exerted by photons in an appropriately detuned optical cavity.  

     Clearly we need to think of methods which can cool the micromirror toward its ground state. Since radiation 

pressure depends on the number of photons, one would think that the cooling of the micromirror can be manipulated 

by using effects of the photon statistics. In this paper, we propose and analyze a new method to achieve cooling of a 

movable mirror to sub-Kelvin temperatures by using a type I optical parametric amplifier inside a cavity. We remind 

the reader of the great success of cavities with parametric amplifiers in the production of nonclassical light [18-20]. 

The movable mirror can reach a minimum temperature of about few hundred mK, a factor of 500 below room 

temperature 300K. The lowering of the temperature is achieved by changes in photon statistics due to parametric 

interactions [21-26]. Note that if the mirror is already precooled to say about 1 K, then we show that by using OPA 

we can cool to about millikelvin temperatures or less. 

The paper is organized as follows. In section Ⅱ we describe the model and derive the quantum Langevin 

equations. In section Ⅲ we obtain the stability conditions, calculate the spectrum of fluctuations in position and 

momentum of the movable mirror, and define the effective temperature of the movable mirror. In section Ⅳ we 

show how the movable mirror can be effectively cooled by using parametric amplifier inside the cavity.  

 

Ⅱ. MODEL 

 

We consider a degenerate optical parametric amplifier (OPA) inside a Fabry-Perot cavity with one fixed partially 

transmitting mirror and one movable totally reflecting mirror in contact with a thermal bath in equilibrium at 

temperatureT , as shown in the Fig. 1. The movable mirror is free to move along the cavity axis and is treated as a 

quantum mechanical harmonic oscillator with effective mass m , frequency mω  and energy decay rate mγ . The effect 

of the thermal bath can be modeled by a Langevin force. The cavity field is driven by an input laser field with 

frequency Lω and positive amplitude related to the input laser power P by /( )LPε ω=% h . When photons in the 

cavity reflect off the surface of the movable mirror, the movable mirror will receive the action of the radiation 

pressure force, which is proportional to the instantaneous photon number inside the cavity. So the mirror can 
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oscillate under the effects of the thermal Langevin force and the radiation pressure force. Meanwhile, the movable 

mirror’s motion changes the length of the cavity; hence the movable mirror displacement from its equilibrium 

position will induce a phase shift on the cavity field. 

                                              

FIG. 1. Sketch of the cavity used to cool micromechanical mirror. The cavity contains a nonlinear crystal which is 

pumped by a laser (not shown) to produce parametric amplification and to change photon statistics in the cavity. 

 

Here we assume the system is in the adiabatic limit, which means /m c Lω π<< ; c is the speed of light in vacuum 

and L  is the cavity length in the absence of the cavity field. We assume that the motion of the mirror is so slow that 

the scattering of photons to other cavity modes can be ignored, thus we can consider one cavity mode only [27,28], 

say, cω . Moreover, in the adiabatic limit, the number of photons generated by the Casimir effect [29], retardation 

and Doppler effects is negligible [9,30,31]. Under these conditions, the total Hamiltonian for the system in a frame 

rotating at the laser frequency Lω  can be written as 

                  
2

2 2 2 21
( ) ( ) ( ) ( )

2
i i

c L c c m

p
H n n q m q i c c i G e c e c

m
θ θω ω χ ω ε + + −= − − + + + − + −h h h h .                                   (1)                             

Here c and c+  are the annihilation and creation operators for the field inside the cavity, respectively; cn c c+=  is the 

number of the photons inside the cavity; q and p  are the position and momentum operators for the movable mirror. 

The parameter /c Lχ ω=  is the coupling constant between the cavity and the movable mirror; and 2ε κε= % . Note 

that κ  is the photon decay rate due to the photon leakage through the fixed partially transmitting mirror. Further

(2 )c FLκ π= , where F  is the cavity finesse. In Eq. (1), G  is the nonlinear gain of the OPA, and θ  is the phase of 

the field driving the OPA. The parameter G is proportional to the pump driving the OPA. 

In Eq. (1), the first term corresponds to the energy of the cavity field, the second term arises from the coupling of 

the movable mirror to the cavity field via radiation pressure, the third term gives the energy of the movable mirror, 

inc
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the fourth term describes the coupling between the input laser field and the cavity field, the last term is the coupling 

between the OPA and the cavity field. 

The motion of the system can be described by the Heisenberg equations of motion and adding the corresponding 

damping and noise terms, which leads to the following quantum Langevin equations  

                                                       /q p m=& , 

                                                      2
m c mp m q n pω χ γ ξ= − + − +& h , 

                                             ( ) 2 2i
L c inc i c i qc Ge c c cθω ω χ ε κ κ+= − + + + − +& .                                                   (2) 

Here inc  is the input vacuum noise operator with zero mean value; its correlation function is [32] 

                                                 ( ) ( ) ( )in inc t c t t tδ δ δ+ ′ ′= − ,                                                                                     

                                                 ( ) ( ) ( ) ( ) 0in in in inc t c t c t c tδ δ δ δ+′ ′= = .                                                                (3) 

The force ξ is the Brownian noise operator resulting from the coupling of  the movable mirror to the thermal bath, 

whose mean value is zero, and it has the following correlation function at temperature T   [31] 

                                                     ( )( ) ( ) [coth( ) 1]
2 2

i t tm

B

t t m e d
k T

ωγ ωξ ξ ω ω
π

′− −′ = +∫
h h ,                                                      (4)                             

where Bk is the Boltzmann constant and T  is the thermal bath temperature. In order to analyze Eq. (2), we use 

standard methods from Quantum Optics [33]. A detailed calculation of the temperature for 0G =  is given by 

Paternostro et al. [16]. By setting all the time derivatives in Eq. (2) be zero, we obtain the steady-state mean values  

                                                    0sp = , 
2
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s
s

m

c
q

m

χ
ω

=
h

, 
2 2 2

2

4

i

s

i Ge
c

G

θκ ε
κ
− ∆ +=
+∆ −

,                                                         (5) 

where  

                                                   

22

0 0 2

s
c L s s

m

c
q q

m

χ
ω ω χ χ

ω
∆ = − − = ∆ − = ∆ −

h
                                                        (6) 

is the effective cavity detuning, including the radiation pressure effects. The modification of the detuning by the 

sqχ  term depends on the range of parameters. The sq denotes the new equilibrium position of the movable mirror 

relative to that without the driving field. Further sc represents the steady-state amplitude of the cavity field. Note 

that sq and sc can display optical multistable behavior , which is a nonlinear effect induced by the radiation-pressure 
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coupling of the movable mirror to the cavity field. Mathematically this is contained in the dependence of the 

detuning parameter ∆  on the mirror’s amplitude sq . It is evident from Eqs. (5) and (6) that ∆ satisfies a fifth order 

equation and in principle can have 5 real solutions implying multistability. Generally, in this case, at most three 

solutions would be stable. The bistable behavior is reported in Refs [34,35]. 

 

Ⅲ. RADIATION PRESSURE AND QUANTUM FLUCTUATIONS 

 

In order to determine the cooling of the mirror, we need to find out the fluctuations in the mirror’s amplitude. 

Since the problem is nonlinear, we assume that the nonlinearity is weak. We are thus interested in the dynamics of 

small fluctuations around the steady state of the system. Such a linearized analysis is quite common in quantum 

optics [33,36]. So we write each operator of the system as the sum of its steady-state mean value and a small 

fluctuation with zero mean value, 

                                              , ,s s sq q q p p p c c cδ δ δ= + = + = + .                                                                      (7)                              

Inserting Eq. (7) into Eq. (2), then assuming 1sc >> , we get the linearized quantum Langevin equations for the 

fluctuation operators  

                                                   /q p mδ δ=& , 

                                                   2 ( )m s s mp m q c c c c pδ ω δ χ δ δ γ δ ξ+ ∗= − + + − +& h , 

                                                   2 2i
s inc i c i c q Ge c c cθδ δ χ δ δ κδ κδ+= − ∆ + + − +& , 

                                                   2 2i
s inc i c i c q Ge c c cθδ δ χ δ δ κδ κδ+ + ∗ − + += ∆ − + − +& .                                                   (8) 

Introducing the cavity field quadratures x c cδ δ δ+= +  and ( )y i c cδ δ δ+= − , and the input noise quadratures 

in in inx c cδ δ δ+= +  and ( )in in iny i c cδ δ δ+= − , Eq. (8) can be written in the matrix form 

                                            ( ) ( ) ( )f t Af t tη= +& ,                                                                                                    (9)                             

 where ( )f t is the column vector of the fluctuations, ( )tη is the column vector of the noise sources. For the sake of 

simplicity, their transposes are  

                                                 ( ) ( , , , )Tf t q p x yδ δ δ δ= ,  
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                                                 ( ) (0, , 2 , 2 )T
in int x yη ξ κδ κδ= ;                                                                             (10) 

and the matrix A  is given by  

                                         2

1
0 0 0

2 2
( ) 0 ( 2 cos ) 2 sin

( ) 0 2 sin ( 2 cos )

s s s s
m m

s s

s s

m

c c c c
mA

i
i c c G G

c c G G

ω γ χ χ

χ κ θ θ
χ θ κ θ

∗ ∗

∗

∗

⎛ ⎞
⎜ ⎟
⎜ ⎟

+ −⎜ ⎟− −= ⎜ ⎟
⎜ ⎟

− − − ∆+⎜ ⎟
⎜ ⎟+ −∆+ − +⎝ ⎠

h h .                                                   (11) 

The solutions to Eq. (9) are stable only if all the eigenvalues of the matrix A  have negative real parts. Applying 

the Routh-Hurwitz criterion [37,38], we get the stability conditions                                               

                          2 2 2 22 ( 4 2 ) (2 ) 0m m m mGκ κ κγ γ κγ ω− + ∆ + + + > , 

                          
22 2 2 2 2 2 2

2 2 2 2 22 2 ( ) sin 2 ( ) cos
(2 ) [ ] 2 {( 4 )s s s s s

m m

c c c G i c c G
G

m m m

χ χ θ χ θκ γ κγ κ
∗ ∗+ −

+ ∆ + + + − + ∆
h h h

 

                                            2 2 2 2 2 2 2 2 2(2 )( 4 ) [2( 4 ) 2 ]} 0m m m m mG Gκγ γ κ ω κ ω κγ+ + − + ∆ + + − ∆ + + > ,     

                          
22 2 2 2 2 2 2

2 2 2 2 2 2 ( ) sin 2 ( ) cos
( 4 ) 0s s s s s

m

c c c G i c c G
G

m m m

χ χ θ χ θω κ
∗ ∗+ −

− + ∆ − ∆ − − >
h h h

 .             (12)                              

Note that in the absence of coupling χ ,  the  conditions (12) become equivalent to  

                          

2 2 24 0Gκ − + ∆ > .                                                                                                                          (13) 

The condition for the threshold for parametric oscillations is 2 2 24 0Gκ − + ∆ =  . We always would work under the 

condition that (13) is satisfied. Further for 0χ ≠  we would do numerical simulations using parameters so that 

conditions (12) are satisfied. 

On Fourier transforming all operators and noise sources in Eq. (8) and solving it in the frequency domain, the 

position fluctuations of the movable mirror are given by 

                          2 2 21
( ) {[ ( ) 4 ] ( ) 2 [(( ) 2 ) ( )

( )
i

s s inq i G i i c iGe c c
d

θδ ω κ ω ξ ω κχ ω κ δ ω
ω

∗ += − ∆ + − − − + − ∆ +h       

                                  (( ) 2 ) ( )]}i
s s ini c iGe c cθω κ δ ω∗ −+ + + ∆ + ,                                                               (14)    

Where 
22 2 2 2 2 2 2 2( ) 2 ( ) ( )[ ( ) 4 ]i i

s s s m md c iGe c iGe c m i i Gθ θω χ ω ω ωγ κ ω− ∗= ∆ + − + − + ∆ + − −h . In Eq. (14), the first 

term proportional to ( )ξ ω originates from the thermal noise, while the second term proportional to χ arises from 

radiation pressure. So the position fluctuations of the movable mirror are now determined by the thermal noise and 
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radiation pressure. Notice that if there is no radiation pressure, the movable mirror will make Brownian motion, 

2 2( ) ( ) /[ ( )]m mq m iδ ω ξ ω ω ω ωγ= − − + , whose susceptibility has a Lorentzian shape centered at frequency mω  with 

width mγ . 

The spectrum of fluctuations in position of the movable mirror is defined by  

                             ( )1
( ) ( ) ( ) ( ) ( )

4
i t

qS d e q q q qωω δ ω δ δ δ ω
π

− +Ω= Ω Ω + Ω∫ .                                                                (15)                             

To calculate the spectrum, we need the correlation functions of the noise sources in the frequency domain, 

                            ( ) ( ) 2 ( )in inc cδ ω δ πδ ω+ Ω = +Ω , 

                            ( ) ( ) 2 [1 coth( )] ( )
2m

B

m
k T

ωξ ω ξ π γ ω δ ωΩ = + + Ωh
h .                                                                          (16)                             

Substituting Eq. (14) and Eq. (16) into Eq. (15), we obtain the spectrum of fluctuations in position of the movable 

mirror  

                           
22 2 2 2 2 2 2

2
( ) {2 [( 4 ) 2 ( ) 2 ( )]

( )

i i
q s s sS G c Ge c i Ge c i

d

θ θω κ χ κ ω κ κ
ω

∗ −= + + ∆ + + − ∆ + + ∆h
h     

                                  2 2 2 2 2 2 2[( 4 ) 4 ] coth( )}
2m

B

m G
k T

ωγ ω κ ω κ ω+ ∆ + − − + × h .                                         (17)                             

In Eq. (17), the first term is the radiation pressure contribution, whereas the second term corresponds to the thermal 

noise contribution. Then Fourier transforming /q p mδ δ=&  in Eq. (8), we get ( ) ( )p im qδ ω ωδ ω= − , which leads to 

the spectrum of fluctuations in momentum of the movable mirror  

                            2 2( ) ( )p qS m Sω ω ω= .                                                                                                                     (18)                      

For a system in thermal equilibrium, we can use the equipartition theorem to define temperature

2

2 21 1

2 2 2m B eff

p
m q k T

m
ω = = , where 2 1

( )
2 qq S dω ω
π

+∞

−∞
= ∫ , and 2 1

( )
2 pp S dω ω
π

+∞

−∞
= ∫ . However here we are 

dealing with a driven system and 
2

2 21

2 2m

p
m q

m
ω ≠ , hence the question is how to define temperature. We use an 

effective temperature defined by the total energy of the movable mirror 
2

2 21

2 2B eff m

p
k T m q

m
ω= + . We also 

introduce the parameter 2 2 2 2
mr m q pω= . This parameter gives us the relative importance of fluctuations in 
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position and momentum of the mirror. We mention that one can calculate the quantum state of the oscillator and we 

find that the Wigner function is Gaussian. 

The Eq. (17) is our key result which tells how the temperature of the micromirror would depend on the 

parameters of the cavity:κ , gain of the OPA, external laser power etc. We specifically investigate the dependence of 

the temperature on the gain G  and the phase θ  associated with the parametric amplification process. In the limit of 

0G → , the result (17) reduces to the one derived by Paternostro et al. [16]. 

 

Ⅳ. COOLING MIRROR TO ABOUT SUB-KELVIN TEMPERATURES 

 

In this section, we present the possibility of cooling the micromirror to temperatures of about sub-Kelvin by 

using parametric amplifiers inside cavities. In all the numerical calculations we choose the values of the parameters 

which are similar to those used in recent experiments: 2 / 1064 nmL Lcλ π ω= = , 25 mmL = , 4 mW,P =  

15 ngm = , /(2 ) 275 kHzmω π = , the mechanical quality factor 4/ 2.1 10m mQ ω γ= = × . Further in the high 

temperature limit Bk T ω>> h , we have coth( / 2 ) 2 /B Bk T k Tω ω≈h h . 

 

A. FROM ROOM TEMPERATURE ( 300 KT = ) TO ABOUT SUB-KELVIN TEMPERATURES. 

 

If we choose 8 -1 -110  s ,  188.4 s , 0,F Gκ = = = to satisfy the stability conditions (12), the detuning has to satisfy

6 -1
0 4 10  s∆ ≥ × . The Fig. 2 gives the variations of the sqχ , the effective temperature effT , and the parameter r with 

the detuning 0∆ . It should be borne in mind that for the range of the detuning shown in the Fig. 2, 0 0sqχ∆ = ∆ − ≈ ∆

. We find the sqχ  is single valued, so the movable mirror is monostable. Note that the parameter r is very close to 

unity, 
2

2 21

2 2m

p
m q

m
ω ≈ ; the mirror is thus in nearly thermal equilibrium. The Fig. 2 shows the possibility of 

cooling the mirror to a temperature of 15.23 K  for 7 -1
0 4.9 10  s∆ = × , which is in agreement with the previous 

calculation [16].  
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FIG. 2 (color online). The dotted curve indicates the 6 -1 (10 s )sqχ  as a function of the detuning 7 -1
0  (10 s )∆  

(rightmost vertical scale). The solid curve shows the effective temperature  (K)effT as a function of the detuning

7 -1
0  (10 s )∆  (leftmost vertical scale).  The dashed curve represents the parameter r as a function of the detuning 

7 -1
0  (10 s )∆  (leftmost vertical scale). Parameters: cavity decay rate 8 -110  sκ = , cavity finesse -1188.4 sF = , 

parametric gain 0G = . 

 

Now we keep the values of ,  and Fκ  the same as in the Fig. 2, and we choose parametric gain 7 -13.5 10  sG = ×  

and parametric phase 0θ = , the detuning has to satisfy 7 -1
0 5.7 10  s∆ ≥ × . If 7 -1

0 5.7 10  s∆ < ×  and for fixed κ and 

G , the system will be unstable. The threshold for unstable behavior occurs when any of the three conditions (12) is 

not satisfied. It may be noted that the threshold for parametric oscillation has been of great importance in connection 

with the production of nonclassical–squeezed light. Near the parametric thresholds but under (13), large degrees of 

squeezing was produced [18,19]. Thus it would be advantageous to work near the threshold of instability but below 

the instability point. The Fig. 3 shows the variations of the sqχ , the effective temperature effT , and the parameter r

with the detuning 0∆ .We find the sqχ  is still single valued, so the movable mirror is still monostable. The 

minimum temperature reached is 0.65 K  for 7 -1
0 6.7 10  s∆ = × . Thus with parametric amplifier the minimum 

temperature is about a factor of 20 lower than the one without parametric interaction. Note that the parameter r  is 

always larger than 1, implying that momentum fluctuations are suppressed over position fluctuations. Note that as 

one moves away from the threshold for parametric instability, the minimum temperature does not rise sharply which 

is in contrast to the behavior in the Fig. 2, and is advantageous in giving one flexibility about the choice of the 

detuning parameter. 
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FIG. 3 (color online). The dotted curve indicates the 7 -1 (10 s )sqχ  as a function of the detuning 7 -1
0  (10 s )∆  

(rightmost vertical scale). The position that corresponds to the minimum effective temperature reached is indicated 

by the arrow. The solid curve shows the effective temperature  (K)effT as a function of the detuning 7 -1
0  (10 s )∆  

(leftmost vertical scale). The dashed curve represents the parameter r as a function of the detuning 7 -1
0  (10 s )∆  

(leftmost vertical scale). Parameters: cavity decay rate 8 -110  s ,κ = cavity finesse -1188.4 sF = , parametric gain

7 -13.5 10  sG = ×  , parametric phase 0θ = . 

 

We next examine the case when the behavior of the system is multistable. For this purpose, we choose the cavity 

to have higher quality factor. We choose 7 -1 -1 6 -110  s , 1884 s , 5 10  s , 3 4F Gκ θ π= = = × = , then to satisfy the 

stability conditions (12), the detuning has to satisfy 7 -1
0 1.847 10  s∆ ≥ × . The Fig. 4 gives the behavior of sqχ  as a 

function of the detuning 0∆ . We find the sqχ is multivalued, so the movable mirror is multistable. By use of the 

lowest curve of the sqχ , we obtain the variations of the effective temperature effT  and the parameter r  with the 

detuning 0∆ , as shown in the Fig. 5. We choose the range of the detuning is 7 -1 7 -12.0 10  s 3.0 10  s× − × . The 

minimum temperature achieved is 0.265 K for 7 -1
0 2.0 10  s∆ = × . Note that r  is close to unity but larger than unity. 

The general trend is clear. By playing around with various parameters like laser power, cavity finesse, parametric 

gain, one can achieve a variety of different temperatures. As another example, if we choose 6 -15 10  s ,κ = ×

-13768 s ,F = 7 -110  s ,G = 0.2467 / 2θ π= + , then we find that the minimum temperature is 0.092 K  for

7 -1
0 2.13 10  s∆ = × . 
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FIG. 4. The behavior of 7 -1 (10 s )sqχ  shown as a function of the detuning 7 -1
0  (10 s )∆ . The position that corresponds 

to the minimum effective temperature reached is indicated by the arrow. Parameters: cavity decay rate 7 -1 10  sκ =  , 

cavity finesse -11884 sF = , parametric gain 6 -15 10  sG = × , parametric phase 3 4θ π= . 

 

FIG. 5 (color online). The solid curve shows the effective temperature effT as a function of the detuning 7 -1
0  (10 s )∆ . 

The dashed curve represents the parameter r as a function of the detuning 7 -1
0  (10 s )∆ . Parameters: cavity decay rate

7 -1 10  sκ =  , cavity finesse -11884 sF = , parametric gain 6 -15 10  sG = × , parametric phase 3 4θ π= . 

 

B. FROM 1 K  TO MILLIKELVIN TEMPERATURES. 

 

If the thermal bath is cryogenically cooled down to a temperature of 1 K and the mirror is initially thermalized, 

then we can use radiation pressure effects and photon statistics to reach millikelvin or even lower temperatures. 
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     If we choose 8 -1 -110  s ,  188.4 s , 0,F Gκ = = = the effective temperature effT  with the detuning 0∆  is shown in the 

Fig. 6. The minimum temperature reached is 0.051 K  for 7 -1
0 4.9 10  s∆ = × . Next we examine how the effective 

temperature changes by the parametric interactions inside the cavity. We keep all other parameters as in the Fig. 6 

and choose parametric gain 7 -13.5 10  sG = ×  and phase 0θ = . Then the effective temperature effT  with the detuning 

0∆  exhibits behavior as shown in the Fig. 7. The minimum temperature achieved is 0.0044 K for 7 -1
0 7.9 10  s∆ = × , 

a factor of 12 lower than the one without parametric interaction. 

  

FIG. 6 (color online). The solid curve shows the effective temperature  (K)effT as a function of the detuning

7 -1
0  (10 s )∆ (leftmost vertical scale).  The dashed curve represents the parameter r as a function of the detuning

7 -1
0  (10 s )∆ (rightmost vertical scale). Parameters: cavity decay rate 8 -110  sκ = , cavity finesse -1188.4 sF = , 

parametric gain 0G = . 

 

FIG. 7 (color online). The solid curve shows the effective temperature  (K)effT as a function of the detuning

7 -1
0  (10 s )∆ (leftmost vertical scale).  The dashed curve represents the parameter r as a function of the detuning
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7 -1
0  (10 s )∆ (rightmost vertical scale). Parameters: cavity decay rate 8 -110  s ,κ =  cavity finesse -1188.4 sF = , 

parametric gain 7 -13.5 10  sG = ×  , parametric phase 0θ = . 

 

Finally it should be borne in mind that the radiation pressure depends on the number operator and then it is 

sensitive to the photon statistics of the field in the cavity. The photon statistics can be calculated from the quantum 

Langevin equations (8). It can be proved that the Wigner function W of the field in the cavity is Gaussian of the 

form 2 2exp[ ( ) ( ) ( )( )]s s s sc v c c cµ α α λ α α∗ ∗ ∗ ∗− + − + − − , with , ,µ ν λ  determined by , , ,Gκ θ∆  etc. The photon 

number distribution [24] associated with such a Gaussian Wigner function depends in an important way on the 

parameter µ and the inequality of µ and ν . The latter depend on 0G ≠ or on the presence of OPA in cavity. 

 

Ⅴ. CONCLUSIONS 

 

In conclusion, we have demonstrated how the addition of a parametric amplifier in a cavity can lead to cooling 

of the micromirror to a temperature which is much lower than what is achieved in an identical but without 

parametric amplifier. The parametric processes inside the cavity change the quantum statistics of the field in the 

cavity. This change leads to lower cooling since the radiation pressure effects are dependent on the photon number. 

Thus photon statistics becomes central to achieving lower cooling temperatures. The use of parametric process could 

provide us a way to cool the mirror to its quantum ground state or even squeeze it. 

We thank M. S. Kim and M. Paternostro for interesting correspondence on the cooling of the mirror. We 

gratefully acknowledge support for NSF Grant No.CCF 0829860. 
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